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ABSTRACT With the increase of complexity of monitoring tasks in wireless sensor networks, using a single
kind of sensor can no longer fit the strict monitoring requirements. Nowadays, event coverage is widely
applied to detect events accurately by utilizing diverse kinds of sensors. The traditional 2-D event model
cannot meet the actual monitoring requirements, and there will be many kinds of complicated constraints in
the environment. Therefore, a compound event model with multiple constraints is put forward to 3-D sensor
networks. Simultaneously, a compound event barrier coverage algorithm on the basis of non-preference
bi-objective evolution (NPBO) strategy is presented in multiple constraints sensor networks. The proposed
algorithm introduces a non-preference α-dominance mechanism to solve the low efficiency problem of
multi-objective evolutionary under multiple constraints. A large number of experimental results indicate
that the NPBO mechanism is more high-efficient than the latest algorithm in allocating sensor resources.

INDEX TERMS Compound event barrier coverage, non-preference bi-objective evolution strategy, multiple
constraints, α-dominance, 3-D sensor networks.

I. INTRODUCTION
Event coverage is a brand new research area inwireless sensor
networks [1]. The purpose of the event coverage application
is to apply a variety of different types of sensor resources
reasonably. It is not possible for a single type of sensor
to complete the network monitoring perfectly. For instance,
in the intrusion detection, it cannot confirm the occurrence of
invasion event even if the data of infrared sensors exceeds
the threshold. This is due to the data might be influenced
by the disturbance of wind or animal passing. Therefore,
other perceptual information from vibration sensors, ultra-
sonic sensors and camera sensors should also be analyzed to
improve the accuracy of the result.

The traditional research of event coverage only focuses
on two-dimensional plane coverage. While the existing two-
dimensional unconstrained event coverage model is unable
to meet the needs of practical applications anymore [2], [3].
In practical applications, in order to achieve the best
monitoring performance, the sensors are deployed in

three-dimensional space according to the requirements of
monitoring, instead of in the two-dimensional plane. Event
coverage is subject to three-dimensional space constraints.
For example, in the application of environmental monitoring,
there will be a large number of sensors deployed in trees or on
the top of hills to get more accurate monitoring results. On the
other hand, the event barrier coverage works more often in
complex environments. For example, in border surveillance,
the sensors cannot be deployed across the border; in the
battlefield front monitoring, the height of the sensor deploy-
ment cannot be too low or too high, otherwise it will affect
the detection performance or be found by the enemy.

A variety of constraints in complex scenarios have be
analyzed, for instance, energy constraints, space constraints,
noise constraints, confidence constraints and so on [4]–[7].
Energy constraints indicate that the energy of sensors is
constrained by extreme environments where replenishing is
impossible to accomplish [8]–[11]; space constraints mean
that the locations and paths of the deployment of sensors
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are constrained; noise constraints denote that sensors might
be affected by noise interference in complex environments
when the performance of sensors would be constrained by
excessive noise; and confidence constraints can be defined
as the minimum credibility factor for forest fire event in
the application of forest fire monitoring. It is necessary to
put forward a set of model and algorithm to solve the issue
of CEBC, so as to enhance the detection ability of barrier
coverage in multiple constraints sensor networks.

Asmentioned above, it is necessary to put forward an effec-
tive algorithm for CEBC problem so as to allocate the sensor
resources efficiently. The following is our contributions:
• For the first time, the three-dimensional CEBC problem
is put forward. And three-dimensional event model
and space constraints are considered. In real world,
most of application scenarios are three-dimensional
space. Therefore, two-dimensional eventmodel has been
unable to meet the needs of practical application.

• A non-preference bi-objective model is proposed, which
solves the low efficiency problem of multi-objective
evolutionary under multiple constraints. When the
constrained optimization issue is transformed into a
bi-objective issue, the bi-objective optimization issue
is with preference. If the multi-objective evolutionary
algorithm on the basis of Pareto domination relation is
used to figure out the bi-objective issue, the algorithm
is not efficient. Because the Pareto dominance rela-
tionship believe all the objectives are equally important
when individuals are compared. In order to figure out
the bi-objective issue effectively, it is not feasible to
search entire corresponding area of the Pareto frontier.
On the other hand, adding additional preference mech-
anism to accelerate the search of the algorithm in the
target region will make the algorithm more compli-
cated. The additional preference mechanism cannot
guarantee the optimum solution of constrained opti-
mization issue. In order to overcome this shortcoming,
the constrained optimization issue is transformed into a
non-preference bi-objective model. Meanwhile, a non-
preference bi-objective evolution strategy is proposed.

• ACEBCalgorithm based on non-preference bi-objective
evolution strategy is put forward to allocate the sensor
resources effectively in multiple constraints sensor
networks. The proposed CEBC algorithm is more
reasonable and more efficient than the latest algorithm
verified by many simulation experiments. The experi-
mental results show that the proposed method is more
efficiently, especially in complex networks.

The rest of this paper is organized as follows. Related
works are described in Section II. The three-dimensional
compound event model is proposed based on joint probability
density in Section III. The bi-objective evolution problem is
analyzed and an α-dominance bi-objective evolution model
is described in Section IV. In the next Section V, a CEBC
algorithm on the basis of non-preference bi-objective evolu-
tion strategy is proposed to figure out CEBC problem under

multiple constraints in 3-D sensor networks. In Section VI,
the simulation experiments and analysis of the results are set
forth. Meanwhile, the experimental results are compared with
the performance of the latest event coverage method. Finally,
the conclusion and future work are illustrated in Section VII.

II. RELATED WORKS
The barrier coverage can monitor the intruder in the
target area effectively. Barrier coverage can be classi-
fied as k-barrier coverage, strong barrier coverage and
weak barrier coverage, etc [12]–[16]. In [17], an efficient
method is proposed to form barrier coverage by leveraging
multiple types of mobile sensors to fill in gaps between
pre-deployed stationary sensors in heterogeneous WSNs.
In [18], Gong et al. characterize the optimal placement order
and the optimal placement spacing of BRs for barrier
coverage. In [19], a deterministic sensor deployment scheme
is proposed under a general setting for barrier coverage in
wireless sensor networks.

With in-depth research of barrier coverage, the traditional
barrier coverage can no longer meet the requirement of prac-
tical application scenarios. Yang et al. [20] put forward the
concept of event monitoring model for the first time. Based
on the event monitoring model, Gao et al. [21] illustrated the
compound event issue under a single cost restriction. The
above method only applies to the ideal environment. While in
practical application scenarios, people are more likely to pay
attention to the detection performance after deployment, not
merely to the coverage performance in the initial situation.

The barrier coverage often works in complex envi-
ronments, where subject to many kinds of constraints.
Gao et al. [21] only considered a single cost constraint.
While in practical application scenarios, there are still
energy constraints, spatial constraints, path constraints and
so on [22], [23].

The current research on event coverage mostly stays in
the two-dimensional plane [20], [21]. While the practical
application scenarios are usually in three-dimensional space.
Currently, there are a lot of blanks in the research of CEBC
in three-dimensional space.

For the bi-objective problem [24], the traditional algorithm
is not efficient because the Pareto dominance relationship
believe that all the objectives are equally important when
individuals are compared. In order to solve the bi-objective
problem effectively, searching the entire corresponding area
of the Pareto frontier is infeasible [25], and adding addi-
tional preference mechanism will make the algorithm more
complicated. In addition, the additional preference mecha-
nism cannot guarantee the optimum solution.

The related research of barrier coverage, CEBC, multiple
constrained conditions, three-dimensional coverage and
bi-objective problem are analyzed separately. There are some
gaps in the research of CEBC in 3-D sensor networks under
multiple constraints. Therefore, a CEBC algorithm based on
non-preference bi-objective evolution strategy is put forward
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to figure out the integrating confidence of compound event
accurately and allocate the sensor resource optimally.

III. THE EVENT MODEL
The study of event barrier coverage is more concerned
about providing effective coverage for the event moni-
toring area. On the premise of ensuring the confidence of
event monitoring, the coverage quality of the monitoring
area should be improved as much as possible. The event
barrier coverage is mostly applied in complex and dangerous
scenarios. Therefore, the research of event barrier coverage is
to study the rational application of various types of sensors to
improve network coverage quality under a variety of complex
constraints.

The existing two-dimensional unconstrained event barrier
coverage model cannot meet the needs of practical applica-
tion scenarios. A three-dimensional event barrier coverage
model is proposed as follows.

In the barrier coverage, an event is denoted as an occur-
rence of the earthquake in the period of monitoring. Events
can be divided into sub-events and compound events. The
compound event is synthesized by a plenty of sub-events
which satisfy specified temporal or spatial constraints in
a target area. The occurrence of a compound event indi-
cates every individual sub-event has taken place. However,
the occurrence of individual sub-events could not ensure
that a compound event occurs. The increasing possibility
of relevant sub-events indicates an increasing tendency of
a compound event taking place in the target area. To our
knowledge, this is the first time to propose the issue of event
barrier coverage in 3-D sensor networks.

The sub-event denotes a phenomenon of the physical
world or the cognition of an objective derived from a single
sensing index, such as a slice of meaningful video stream
which captured by camera sensors or a monitoring indi-
cator which exceeds the threshold. The occurrence of many
sub-events leads to the occurrence of compound event which
meets multiple constraints, such as temporal and spatial
constraints. This indicates the occurrence of a complex
phenomenon. The occurrence of a compound event indi-
cates that all of the relevant sub-events have happened.
More specifically, in seismic monitoring system, geoelectric
sensors, geomagnetism sensors, inductive sensors, gravity
sensors, infrasound sensors and ionospheric sensors are
applied in the monitoring region to detect the occurrence
of the earthquake. When the seism occurs in the moni-
toring area, the aberrant perception data is generated and the
related perception data can be detected by six different kinds
of sensors. By means of analyzing all the perception data
comprehensively, a ‘‘seism’’ event can be verified.

The traditional event barrier coverage model is only in
the two-dimensional plane. Its event model coordinates are
two-dimensional coordinates (x, y). As shown in Fig. 1,
the 2-D event barrier model is two overlapping circular
regions whose position coordinates are defined as (x1, y1)
and (x2, y2), respectively. The 3-D event barrier model is two

FIGURE 1. Two-dimensional event barrier coverage model schematic.

FIGURE 2. Three-dimensional event barrier coverage model schematic.

overlapping spherical areas whose position coordinates are
defined as (x1, y1, h1) and (x2, y2, h2) respectively in Fig. 2.
When two types of sensors detect abnormalities at the same
time period and in the same area, it can be determined that the
compound event E occurs in the overlapping area which is
monitored by two different types of sensors. Similarly, when
six types of sensors detect abnormalities at the same time
period and in the same area, it can be determined that the
compound event E occurs in the overlapping area monitored
by six different types of sensors. The greater the number of
sensors in the networks, the more accurate the monitoring
performance will be. For example, in indoor fire monitoring,
temperature sensors and SO2 sensors cannot be deployed
on a two-dimensional plane in practical applications. When
the temperature sensors and the SO2 sensors detect a fire
event, the two-dimensional model can only determine the
plane position of the fire but cannot know the floor where
the fire occurs. Therefore, the three-dimensional coordinates
(x, y, h) are proposed in the three-dimensional event model.
And three-dimensional space constraints are proposed for the
three-dimensional event model, including horizontal, vertical
and height constraints which more in line with the needs of
practical applications.

A sub-event can be defined as a monitoring index trig-
gers a single type of sensor in the object area [22]. For
example, in indoor fire monitoring, when the temperature
sensors detect a fire event, the two-dimensional model can
only determine the plane position of the fire but cannot
know the floor where the fire occurs. This is unable to
meet the actual requirements of fire monitoring. Therefore,
the three-dimensional coordinates (x, y, h) are proposed in
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the three-dimensional event model. s(t , l, e) can be defined
as a sub-event. t is the time of the event which can be a
time point or time period. l is the location of the sub-event
which can be represented by a three-dimensional coordinate
(x, y, h). e represents the threshold of the event which can
be denoted by a logical expression. For instance, sub-event
s(t , l, e)=(11/6/2017/15:26, (x, y, h), Temp > 87◦C),
indicates the temperature at location (x, y, h) on
11/6/2017/15:26 is higher than 87◦C .
Compared to traditional area coverage, there is no need

for barrier coverage to cover the entire area. It is suffi-
cient for barrier coverage to ensure effective detection to
the targets which crossing through the target region. The
barrier coverage is more concerned about the Region of
Interest (ROI).

The confidence of compound event is synthesized by lots
of sub-events. The confidence of compound event is generally
defined as the detection indicator of compound event which
exceeds the predetermined index. In this paper, an event
model on the basis of joint probability is proposed to calculate
the synthesized confidence of sub-events effectively.

The coverage mechanism α = {α1, α3} represents the
synthesized confidence of sub-events which derived from
category 1 and category 3, namely, f (α) = f (α12α3) =
g(α1, α3). The composition operator2 denotes that the oper-
ation of synthesizing the joint probability. By that analogy,
the coverage performance of α = {α1, α2, α3, α4} can be
denoted as f (α) = f (α12α22α32α4) = g(α1, α2, α3, α4).
In the above formula, α represents the confidence of different
types of sub-events, that is, the confidence coefficient of
different kinds of sensors; f (α) denotes the compound event
which can be defined as f (α) = f (α12α22α32α4).
Definition 1 (Joint Probability): pi represents the confi-

dence of sub-event αi. Where P denotes the confidence of the
compound event after synthesizing. The confidence expres-
sion can be defined.

P = 1−
n∏
i=1

(1− pi) (1)

On the basis of the nature of the joint probability, it can be
concluded.

P ≥ MIN (pi) (2)

For example, in Fig. 3, many temperature sensors and SO2
sensors are deployed in the building.When a fire occurs in the
building, the burning flame and released SO2 gas will trigger
temperature sensors and SO2 sensors in nearby locations. The
trigger temperature sensor is defined as sub-event s1, and the
trigger SO2 sensor is defined as sub-event s2. s1(t1, l1, e1) =
(t1, (x1, y1, h1), Temp > 87◦C) denotes that the sub-event of
the temperature at t1 in location l1 (x1, y1, h1) is greater than
87◦C . s2(t2, l2, e2) = (t2, (x2, y2, h2), SO2 > 121.5µg/m3)
denotes that the sub-event of the SO2 concentration at t2 in
location l2 (x2, y2, h2) is more than 121.5µg/m3. T is the

FIGURE 3. The fire application scenario of the 3-D event model.

time of the compound event which can be a time point or
time period. L is the position of the compound event which
can be a location point or an area. The compound event that
the fire occurs can be forecasted by sub-event s1 and s2.
Specifically, the confidence of the temperature sensor is 0.3,
and the confidence of the SO2 sensor is 0.7. Both sensors
are triggered at time 11/6/2017/15:26. The location of the
two sensors is (25, 6, 15), which can determine the location
of the fire. Each floor of the building is 5 meters high.
From the monitoring results, it can be determined that there
is a fire on the 3rd floor in the building. The confidence
of the fire is E[(s1, 0.3)(s2, 0.7), t1, l1, t2, l2]=(Temp >

87◦C∩SO2 > 121.5µg/m3
∩ (t1, t2 ∈ T ) ∩ (l1, l2 ∈

L))=0.79. It represents that the confidence of the fire event
is 0.79 when two sub-events happen at the same time period
and in the same area. It is the first time to calculate the
confidence of compound event coverage precisely, while
the traditional method is based on historic information and
experience [21].

IV. BI-OBJECTIVE EVOLUTION MODEL
A. MAIN IDEA
In the area of barrier coverage, a compound event is detected
by monitoring each sub-event by n diverse types of sensors.
The occurrence of a compound event E represents the accu-
mulation of the results of the sub-events e. If there is no
energy, space and minimum confidence constraints, it is very
easy to deploy sufficient sensors to guarantee better moni-
toring performance in the event barrier coverage. Different
from traditional coverage scenarioes, the barrier coverage is
subject to multiple constraints due to the hostile and intricate
application scenarios.

VOLUME 6, 2018 34089



Y. Zhuang et al.: NPBO CEBC Algorithm in 3-D Sensor Networks

B. PROBLEM FORMULATION
Without losing generality, an event barrier coverage model
with multiple constraints is established as follows.

max f (α) = f (α1, α2, . . . , αn)

s.t. gi(α1, α2, . . . , αn) ≤ 0 (i = 1, 2, . . . , p)

hj(α1, α2, . . . , αm) = 0 (j = 1, 2, . . . , q) (3)

f (α) is the optimization objective function of the event
barrier coverage. α = (α1, α2, . . . , αn) represents different
types of sensors, where α = (α1, α2, . . . , αn) ∈ T ⊂ Rn

is the n-dimensional decision vector. T = {α ∈ Rn|di ≤
α ≤ ui, i = 1, 2, . . . , n} is the target space, where di ∈ R
and ui ∈ R denote the lower bound and upper bound of α
respectively. gi(α) represents inequality constraint function
and hj(α) denotes equality constraint function. For example,
s.t. {g1(α) ≤ 0, g2(α) ≤ 0, h1(α) = 0} indicates that the
objective function is subject to two inequality constraints and
one equality constraint.� = {α|α ∈ S, gi(α) ≤ 0, hj(α) = 0,
i = 1, . . . , p, j = p + 1, . . . ,m} is the feasible domain and
the points in the feasible domain are feasible solutions.

The traditional penalty function is a common method to
solve the constrained optimization issue. The penalty param-
eter affects the performance of the algorithm directly, and
the selection of the penalty parameters is difficult. In addi-
tion, in the processing method based on penalty function,
the feasible solution is always better than the infeasible
solution in the individual comparison. For the optimization
problem of the global optimal solution near the boundary
of the feasible domain, it is easier to find the optimal solu-
tion from the infeasible solution which is near the optimal
solution than from the feasible solution which is away
from the optimal solution. If these infeasible solutions are
ignored, the efficiency of the algorithm will be reduced.
Therefore, the constrained optimization issue is transformed
into a bi-objective optimization issue to eliminate the impact
of penalty parameters on the algorithm. Constraint violation
degree is denoted as:

Vi(α) =

{
max{0, gi(α)}, 1 ≤ i ≤ p;
max{0, |hi(α)| − ε}, p+ 1 ≤ i ≤ m.

(4)

In the formula (4), ε is the tolerance value of the equation
constraint which generally takes a smaller positive number.
Obviously, Vi(α) ≥ 0. If Vi(α) = 0, then α satisfies
the i-th constraint; If Vi(α) > 0, then Vi(α) represents the
constraint violation degree of i-th sub-event α. The constraint

violation function can be defined as V (α) =
m∑
i=1

Vi(α), which

indicates the degree of constraint violation and reflects the
distance between sub-event α and feasible domain.

By using the coverage optimization objective function f (α)
as an objective and using constraint violation function V (α)
as another objective, the problem (3) is transformed into a

bi-objective optimization problem:
max{f (α)};
min{V (α)};
s.t. α ∈ T .

(5)

In the formula (5), α ∈ T ⊂ Rn is a decision vector;
T is a decision space, and the image space of α ∈ T is
defined as target space. For convenience, the two objectives
of formula (5) are denoted as f1(α) = f (α), f2(α) = V (α).
The significance of the multi-constrained compound event

barrier coverage problem is to apply various types of sensors
reasonably to achieve the best coverage performance in the
network under a variety of complex constraints. With limited
network resources, the increasing number of one type of
sensors will inevitably lead to the declining number of other
types of sensors. The Pareto theory is the basis for measuring
the distribution of resources. The Pareto optimal solution is
defined as an ideal state of resource allocation. For example,
there is a group of people and limited resources that can
be allocated, from a state of distribution to another state,
to make at least one person better without making anyone
worse off. The Pareto optimal state is nomore room for Pareto
improvement. That is, the optimal coverage performance.
Therefore, the Pareto theory is introduced to deal with CEBC
problem in order to achieve the best coverage performance
and the most reasonable distribution of sensor resources.
Definition 2 (Pareto Domination): Vector n = (n1, n2),

n Pareto dominate vector m, m = (m1,m2), can be defined
as n ≺ m, if and only if n1 ≤ m1, n2 < m2 or n1 < m1,
n2 ≤ m2.
Definition 3 (Pareto Optimal Solution): The vector αn ∈ T

denotes the Pareto optimal solution of the bi-objective
issue (5), if and only if ¬αn ∈ T makes m ≺ n, where
n = (f1(αn), f2(αn)), m = (f1(αm), f2(αm)).
Definition 4 (Pareto Optimal Solution Set): For the

bi-objective optimization issue (5), the Pareto optimal solu-
tion set is defined as:

PBest = {αn ∈ T |¬αm ∈ T ,m ≺ n} (6)

Definition 5 (Pareto Frontier): For the bi-objective opti-
mization issue (5), the Pareto optimal solution set PBest in the
target space is defined as Pareto front PF .

PF = {n = (f1(αn), f2(αn))|αn ∈ PBest } (7)

C. α-DOMINANCE BI-OBJECTIVE EVOLUTION STRATEGY
The general Pareto domination relationship is no preference.
When individuals are compared and selected, it is usually
believed that all objectives are equally important, and does
not take into account the preference of the problem. The
algorithm based on general Pareto domination is not efficient.
While, adding additional mechanism to satisfy the preference
of the algorithmwill increase the complexity of the algorithm.

Based on the above analysis, aiming at the characteristics
of the bi-objective issue, a CEBC algorithm on the basis of
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non-preference bi-objective evolution strategy is proposed to
solve the constrained bi-objective optimization problem.
Definition 6 (α-Domination): For the bi-objective opti-

mization problem (5),{
91(f1(α), f2(α)) = f1(α)+ α12f2(α)01(α)
92(f1(α), f2(α)) = α21f1(α)+ f2(α)02(α)

(8)

In the formula (8), α12, α21 ≥ 0. Suppose α and β are two
decision vectors, if ∀i ∈ {1, 2}, 0i(α) ≤ 0i(β), meanwhile
∃j ∈ {1, 2}, 0j(α) < 0j(β), then αα-dominate β which can
be defines as α ≺α β.

According toα-dominance relationship, a CEBC algorithm
on the basis of non-preference bi-objective evolution strategy
is proposed to solve the constrained bi-objective optimization
problem.

V. COMPOUND EVENT BARRIER COVERAGE ALGORITHM
BASED ON NON-PREFERENCE BI-OBJECTIVE
EVOLUTION STRATEGY
A. MAIN IDEA
When the constrained optimization problem is transformed
into a bi-objective problem, the bi-objective optimization
problem is with preference. If the multi-objective evolu-
tionary algorithm based on Pareto domination relation is used
to figure out the bi-objective problem, the algorithm is not
efficient. Because the Pareto dominance relationship believe
all the objectives are equally important when individuals are
compared. In order to solve the bi-objective problem effec-
tively, it is not feasible to search entire corresponding area
of the Pareto frontier. However, adding additional preference
mechanism to accelerate the search of the algorithm in the
target region will make the algorithm more complicated.
Also, the additional preference mechanism cannot guarantee
that the final solution converges to the optimum solution
of constrained optimization problem. Therefore, in order
to overcome this shortcoming, the constrained optimization
problem is transformed into a non-preference bi-objective
model. Also, a non-preference bi-objective evolution algo-
rithm is proposed.

B. NON-PREFERENCE BI-OBJECTIVE MODEL
Three-dimensional CEBC needs to meet the condition of
multiple constraints and achieve the best coverage perfor-
mance as much as possible. Therefore, satisfying a variety
of constraints is the primary condition. The solution should
be preference to constraint satisfaction, namely, V (α) = 0.
Since the model is no preference, it is necessary to control
the constraint violation function by introducing parameter λ.
The non-preference bi-objective model (10) is as follows.

max(91(α))
min(92(α))
s.t. α ∈ T

(10)

In the formula (10), 91(α) = f (α) + λV (α), 92(α) =
V (α), λ is a control parameter. λ reflects the control degree

Mechanism α-Dominance Bi-Objective Evolution Strategy
1: Initialization: In the search space T , NP individuals

are randomly generated to form the initial population
P(0) = {α01, α

0
2, . . . , α

0
N }, and k = 0;

2: Mutation: For each individual αki =

{αki,1, α
k
i,2, . . . , α

k
i,n}, (i = 1, 2, . . . ,NP) in P(k),

the ‘‘rand / 1’’ mutation is applied to produce the
mutation of descendants V k

i = (V k
i,1,V

k
i,2, . . . ,V

k
i,n),

where V k
i = α

k
r1 + F(α

k
r2 − α

k
r3);

3: Crossover: For each variation of the descendant in
step 2, they are crossed with the target vector for
binary ‘‘bin’’ to generate the test vector Eαki =
(Eαki,1,Eα

k
i,2, . . . ,Eα

k
i,n),

Eαki =


V k
i,j, if rand < Cr or j = jrand ;

(j = 1, 2, . . . n)
αki,j, else

(9)

Cr ∈ [0, 1] is the crossover probability. jrand ∈
{1, 2, . . . , n} chooses arbitrarily to ensure that the test
vector Eαki is different from the target vector αki in
at least one gene bit. The descendant set of all test
vectors is: Q(k)

= (Eαk1 ,Eα
k
2 , . . . ,Eα

k
NP);

4: Selection: Instead of the greedy selection oper-
ator of standard DE algorithm, the non-preference
α-dominance hierarchical ranking method is applied
to select the individuals into the next generation
population. An α-dominance relationship is applied
to make non-dominated hierarchy H (k) which can
be defined as H (k)

= P(k) ∪ Q(k). Then select
the α-non-dominated individuals one by one. The
α-non-dominated individuals are saved into P(k+1)

and removed from H (k); If P(k+1) does not reach a
predetermined size, then find α-non-dominated indi-
viduals in H (k) and save it into P(k+1). Repeat the
above process until P(k+1) reaches the predetermined
size. If a certain non-dominated individual of H (k)

is added into P(k+1), so that it exceeds the predeter-
mined size, then these individuals will be sorted by
the constraint violation degree from small to large and
selected into P(k+1) according to the sequence;

5: Termination condition: If the termination condition is
satisfied, the optimal solution is output; Otherwise,
t = t + 1, skip back to step 2.

of the constraint. The greater the λ, the stronger control of the
constraint, so the constraint violation degree can be controlled
by control parameter λ.
Obviously, the bi-objective model (5) is the special case

of the non-preference model (10). The non-preference model
92(α) = V (α) indicates the constraint violation degree of
α. The greater the value of 92(α), the farther away from the
feasible domain, and vice versa.91(α) = f (α)+λV (α) is the
linear combination of the individual objective function and its
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constraint violation function. The constraint violation degree
punishes its objective function value. In particular, when α is
a feasible solution, that is V (α) = 0, the penalty value for
the objective function is 0; when α is a non-feasible solution,
that is V (α) > 0, the penalty value for the objective function
is λV (α). Moreover, the farther α away from the feasible
domain, the greater the penalty for its objective function
value, otherwise the smaller. Thus, λ is the penalty param-
eter, the larger the penalty parameter, the greater the penalty
for the objective function value of the infeasible solution.
At this time, the comparison and selection of the individual is
preference to the feasible solution or the solution with small
constraint violation degree.

When multi-constraint CEBC problem is transformed into
bi-objective model, the control of the constraint satisfaction
has been in the first place. The control degree of the constraint
satisfaction can be adjusted by penalty parameter λ. There-
fore, the problem (3) is transformed into a non-preference
bi-objective problem.

C. COMPOUND EVENT BARRIER COVERAGE ALGORITHM
ON THE BASIS OF NON-PREFERENCE BI-OBJECTIVE
EVOLUTION STRATEGY
In this paper, the non-dominance hierarchical relation-
ship based on Pareto domination is used to replace
greed selection of DE as the selection criterion in the
non-preference bi-objective evolution strategy. The primary
task of constrained optimization problem is to satisfy the
constraint condition. Therefore, when two individuals are
not dominated each other, the individual which has small
constraint violation degree is better.

On the other hand, in order to ensure the diversity of
the evolutionary population and avoid the solution of the
algorithm falling into local optima, λ should not be too large.

λ(k + 1) = ηλ(k) (11)

In formula (11), k represents the evolutionary generation.
η(η > 1) is the scale factor which controls the growth rate
of λ. λ is a control parameter. λ reflects the control degree of
the constraint. The greater the λ, the stronger control of the
constraint, so the constraint violation degree can be controlled
by control parameter λ.
The flow diagram of CEBC algorithm on the basis of

non-preference bi-objective evolution strategy is presented
in Fig.4 for more clarity.

D. THE COMPLEXITY ANALYSIS OF THE ALGORITHM
First, generated by DE, the parent population (scale NP) and
the offspring population (scale NP) are 2NP, meaning that
there are 2NP individuals need to be saved. Thus memory
space is required for O(n × NP). In addition, the computa-
tional complexity of NPBO algorithm is mainly reflected in
the generation of progeny populations and selection opera-
tions. In the generation of descendants with DE/rand/1/bin,
the amount of computations required by NPBO algorithm

FIGURE 4. The flow diagram of CEBC algorithm on the basis of
non-preference bi-objective evolution strategy.

(eg, +, −, ∗, / and so on) are O(n × NP); in the selec-
tion operation, the non-dominated hierarchical ranking based
on α-dominance relationship for 2NP population requires
O(2(2NP)2 + NP) = O(NP2) comparisons in the worst case.
So the total computational complexity of NPBO algorithm is
O(NP2), where n < NP. Therefore, the problem studied is a
P problem.

E. THE ACCURACY ANALYSES OF THE ALGORITHM
Firstly, the uniqueness of the Pareto optimal solution is
proven. Then the accuracy of the algorithm is analyzed.
Theorem 1: In compound event non-preference bi-objective

model (10), when λ → ∞, the Pareto optimal target vector
is unique.
Proof: Proof by contradiction. Suppose that when λ→∞,

the Pareto optimal target vector of the problem is not unique.
Then there are at least two Pareto optimal solutions α
and β correspond to different Pareto optimal target vectors,
that is (f (α) + λV (α),V (α)) 6= (f (β) + λV (β),V (β)).
When λ→∞, α and β are both Pareto optimal solutions.
So α and β are not dominated by each other. Without loss of
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Algorithm 1 CEBC Algorithm on the Basis of
Non-Preference Bi-Objective Evolution Strategy

1: Begin
2: k = 0;
3: Generate the initial population P(k) = {αk1 , α

k
1 , . . . ,

αkNP} randomly;
4: Evaluate (91(αki ), 91(αki )),∀i = 1, 2, . . . ,NP;
5: For k = 1 to T Do
6: For k = 1 to NP Do
7: Select r1, r2, r3 ∈ {1, 2, . . . ,NP} randomly,

Meantime r1 6= r2 6= r3 6= i
8: jrand = rand int(1, n)
9: For j = 1 to n Do
10: If (randj[0, 1] < Cr or j = jrand ) Then
11: Eαki,j = α

k
r1,j + F(α

k
r2 − α

k
r3)

12: Else
13: Eαki,j = α

k
i,j

14: End If
15: End For
16: End For
17: Evaluate (91(Eαki ), 92(Eαki )),∀i = 1, 2, . . . ,NP
18: P(k+1) = Non-dominated stratification (P(k)∪Q(k)),

Q(k) = {Eαk1 ,Eα
k
2 , . . . ,Eα

k
NP}

19: Update λ: λ(k + 1) = ηλ(k)
20: k = k + 1
21: End For
22: End

generality, suppose the following holds:{
f (α)+ λV (α) > f (β)+ λV (β);
V (α) < V (β).

(12)

Due to V (α) < V (β), if f (α) ≤ f (β), then ∀λ > 0,
f (α) + λV (α) < f (β) + λV (β) holds; If f (α) > f (β),
when λ > (f (α) − f (β)/(V (β) − V (α)), f (α) + λV (α) <
f (β) + λV (β) also holds. Both of them are contradictory to
the first expression of (12). Thus, when λ → ∞, the Pareto
optimal target vector of non-preference bi-objective model is
unique.

For the CEBC problem under multiple constraints,
the constraint satisfaction is the primary condition. So it
should be λ → ∞ to ensure that the solution of
non-preference bi-objective model satisfies the constraint
condition. The relationship between the non-preference
bi-objective model and the optimal solution of CEBC
problem under multiple constraints is as follows.
Theorem 2: α∗ is the optimal solution for CEBC problem.
⇔ (91(α∗), 92(α∗)) is a unique Pareto optimal target vector
when λ→∞ for non-preference bi-objective model.

Proof: First proof of necessity. Suppose α∗ is the optimal
solution of CEBC problem, then its constraint violation func-
tion value is 0, that is V (α∗) = 0. The following two cases
indicate that α∗ is a Pareto optimal solution of non-preference

bi-objective model when λ → ∞. That is to say ∀α ∈ D,
α is not dominated α∗.
Case 1: If α is a feasible solution, but not the optimal

solution of CEBC problem (3), then V (α) = 0 and f (α∗) <
f (α). So ∀λ > 0, f (α∗) + λV (α∗) < f (α) + λV (α), that is
91(α∗) < 91(α). Meanwhile, 92(α∗) = 92(α) = 0, there-
fore α∗α. If α is the optimal solution of CEBC problem (3),
then f (α∗) = f (α) and V (α∗) = V (α) = 0, that is to say,
α and α∗ has the same target vector. So α∗ is not dominated
by α. It can be concluded: α∗ is not dominated by any feasible
solution α.
Case 2: If α is not a feasible solution, then V (α) > 0,

thus 92(α∗) < 92(α). Further, if f (α∗) ≤ f (α), then
∀λ > 0, f (α∗) + λV (α∗) ≤ f (α) + λV (α), that is to say,
91(α∗) < 91(α), so α∗α. If f (α∗) ≤ f (α), let λ > (f (α∗) −
f (α))/(V (α)−V (α∗)), then f (α∗)+λV (α∗) < f (α)+λV (α),
that is to say, 91(α∗) < 91(α). So α∗α, namely, α∗ is not
dominated by α. It can be concluded that when λ is large
enough, α∗ is not dominated by any infeasible solution α.
Based on the Above Analysis: When λ → +∞, α∗ is

the Pareto optimal solution of the non-preference bi-objective
model (10). According to Theorem 1, the non-preference
bi-objective model (10) has a unique Pareto optimal target
value when λ → +∞. Therefore, (91(α∗), 92(α∗) is
the unique Pareto optimal target value of non-preference
bi-objective model (10) when λ→+∞.
Then prove sufficiency condition. Suppose (91(α∗),

92(α∗)) is the unique Pareto optimal target value of
non-preference bi-objective model (10) when λ → +∞.
Then α∗ is the Pareto optimal solution, so ¬∃α ∈ D, so that
the following holds:{

91(α) ≤ 91(α∗);
92(α) ≤ 92(α∗).

(13)

In formula (13), at least one inequality sign is strictly true.
The formula (13) can also be expressed as:{

f (α)+ λV (α) ≤ f (α∗)+ λV (α∗);
V (α) ≤ V (α∗).

(14)

In formula (14), at least one inequality sign is strictly true.
Suppose α∗ is not the optimal solution of CEBC

problem (3), then α∗ is either an infeasible solution or a
feasible solution. But the objective function value f (α∗) is
not optimal. Suppose α′ is the optimal solution for CEBC
problem (3), then f (α′) is minimized within the feasible
domain �, that is to say, V (α′) = 0.
If V (α∗) > 0, then V (α′) < V (α∗). Further, if f (α′) <

f (α∗), then ∀λ > 0, 91(α′) < 91(α∗) holds; If f (α′) ≥
f (α∗), then when λ > (f (α′) − f (α∗))/(V (α∗) − V (α′)),
91(α′) < 91(α∗) holds. Both of them are contradictory to
formula (13).

If V (α∗) = 0, then f (α′) < f (α∗), and V (α′) =
V (α∗) = 0, so 91(α′) < 91(α∗) holds. This is also
contradictory to formula (13).
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On the basis of the above discussion, α∗ is the optimal
solution for CEBC problem (3).

Proof finished.

VI. PERFORMANCE EVALUATION
In this part, the NPBO algorithm is evaluated by a series
of experiments in multiple constraints sensor networks and
compared with Active Set Multiplier Policy (ASMP) and
OCQ-Series mechanism in the same experimental condition.

A. ENVIRONMENT SETTINGS
Matlab2014a is used to perform the experiments. In the exper-
iments, there are six types of sensors. The confidence coeffi-
cient of the six different types of sensors is 0.30, 0.15, 0.20,
0.10, 0.45 and 0.25, respectively. Every type of sensors has
different energy consumption, perceived radius, deployment
height and confidence according to their own properties. The
parameters of these sensors are presented in Table 1 and the
experimental parameters are listed in Table 2. The monitoring
area sets up in a 1000m∗100m long and narrow area. Experi-
ments are performed for five different cases in order to verify
the performance under different situations.

TABLE 1. Parameters of sensors.

B. EXPERIMENTAL EVALUATION
The experiments are performed to analyze the efficiency of
the NPBO mechanism which is based on non-preference
bi-objective evolution strategy in multiple constraints sensor
networks. The energy, horizontal, vertical, height and
minimum confidence constraints are listed in Table 2 for five
different cases. The experimental results and analysis are as
follows.

Case 1 is subject to hard energy constraint. So the geomag-
netism sensors and infrasound sensors which consume less
energy are applied more than other kinds of sensors.

Compared to case 1, case 2 is required to have a higher
minimum confidence. Moreover, the horizontal, vertical and
height constraint increase substantially. Themonitoring space
that needs to be covered has increased by more than 3 times

TABLE 2. Parameters of experiments.

compared to case 1. However, the energy constraint only
increases by 2 times to put forward a higher request to the
coverage performance. So the geoelectric sensors and induc-
tive sensors with higher minimum confidence and bigger
perceived range are more used under severe space constraints.

In comparison to case 2, the minimum confidence has
a further rise in case 3 and its energy constraints continue
growing, which puts forward a stricter request to the coverage
performance. Case 3 and case 4 are restrained by energy
constraints. Thus low-energy inductive sensors are applied
for 66 and 42. Meanwhile, taking into account the requests
of high confidence, the ionospheric sensors are also applied
for 28 and 34.

FIGURE 5. Sensor resource distribution for CEBC in multiple constraints
3-D sensor networks.

Case 5 is limited by a strict minimum confidence
constraint. So, the infrasound sensors and geoelectric sensors
with higher confidence have been widely used, comparing
with the previous four cases. However, under the energy and
space constraint, the quantity of infrasound sensors is limited
to 96.

Fig.5 shows the sensor resource allocation of these five
cases and the network coverage performance. It indicates that,
with the increasing of the number of sensors, the network
coverage performance is enhanced gradually. Each of the
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five cases is bound by energy, horizontal, vertical, height and
minimum confidence constraints. However, these five cases
have diverse characteristics. Specifically, case 1 needs tomeet
the other four constraints under the precondition of strict
energy constraints; case 2,3,4 have to meet the other four
constraints based on the precondition of severe horizontal,
vertical and height constraints respectively in 3-D space;
case 5 have to meet the other four constraints under the
precondition of rigorous minimum confidence constraints.
The experimental results show that the NPBO algorithm is
efficient to allocate sensor resources in multiple constraints
3-D sensor networks.

The significance of the above experiments is to test and
verify whether the NPBO algorithm is effective and efficient
in multiple constraints 3-D sensor networks. In order to test
the performance of the algorithm, the NPBO algorithm is
compared with the latest event coverage algorithm in the
following experiments.

C. COMPARISON WITH OCQ-SERIES AND
ASMP ALGORITHMS
This section shows the comparison of CEBC algorithm
which is based on non-preference bi-objective evolution
strategy (NPBO), ASMP algorithm and OCQ-Series mech-
anisms. As mentioned above, the proposed algorithm which
introduced NPBO strategy is much better than OCQ-Series
mechanisms.

In this paper, ASMP, OCQ-Naïve, OCQ-Greedy and
OCQ-Max-fit algorithms are compared to NPBO with
onefold energy constraint. Since there is no relevant works
on event barrier coverage in multiple constraints 3-D sensor
networks so far. It can be seen from the experimental results
that the NPBO algorithm is superior to the latest algorithm
in terms of energy saving, large area barrier coverage and
operational efficiency.

FIGURE 6. The NPBO algorithm is compared with ASMP and OCQ-Naïve
algorithm on coverage quality with diverse total energy.

Fig.6 shows that the coverage quality has been signif-
icantly enhanced with the increasing of the total energy.
As the available energy increases, more and more sensors

can be put into use. Furthermore, the NPBO algorithm is
more superior to OCQ-Naïve and ASMPmechanism in terms
of coverage quality under different total energy constraints.
That is because the greater the total energy, the greater the
number of sensors will be, the greater the complexity of
the networks will be. OCQ-Naïve algorithm is based on
greedy algorithm, which only chooses the current optimal
solution rather than global optimal solution. Whereas, the
non-preference bi-objective evolution strategy is more suit-
able for the optimization issue whose global optimal solution
near the boundary of the feasible domain. So it is more
effectively to find out the global optima.

FIGURE 7. The NPBO algorithm is compared with ASMP, OCQ-Naïve and
OCQ-Max-fit algorithm on running time with diverse total energy.

Fig.7 shows that as the total energy increases, the running
time of four algorithms continues to increase. It can be
seen from Fig.7, the running time of NPBO, ASMP and
OCQ-Max-fit algorithm is much shorter than OCQ-Naïve
algorithm, especially in the case of sufficient total energy.
This is due to the fact that when the total energy increases,
the OCQ-Naïve algorithm does not adapt to the complex
network environment. While, the running time of OCQ-Max-
fit and ASMP algorithm only increases slightly. The increase
of the running time of NPBO algorithm is almost negli-
gible when compared with OCQ-Naïve algorithm. As the
non-preference bi-objective evolution strategy transforms a
variety of complex constraints into another objective function
to solve, which reduce the expenditure of computing effec-
tively and make the algorithm more efficient.

Fig.8 elaborates that the coverage quality is significantly
deteriorated with the increasing of deployment area. The
coverage quality of NPBO is more superior to ASMP and
OCQ-Max-fit algorithm, especially in the case of large
deployment area. As the increasing of the deployment area,
the quality of coverage gets worse due to limited total energy.
The NPBO algorithm can adapt to complex network envi-
ronment and large area deployment. So, the deployment area
can still maintain high quality coverage even though the
deployment area has grown significantly.
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FIGURE 8. The NPBO algorithm is compared with ASMP and OCQ-Max-fit
algorithm on coverage quality in diverse deployment region.

FIGURE 9. The NPBO algorithm is compared with ASMP and OCQ-Greedy
algorithm on coverage quality with different kinds of sensors.

Fig.9 demonstrates that the coverage quality gets worse
with the increase of the sensor types. Fig.9 indicates that
the coverage quality of NPBO is more superior to ASMP
and OCQ-Greedy algorithm, especially in the case of a large
variety of sensors. As the compound event is composed by
many sub-events, when the total energy is fixed, the coverage
quality will get worse with the increase of the sensor types.
The NPBO algorithm can adapt to complex network envi-
ronment. Therefore, the quality of coverage is better than
OCQ-Greedy and ASMP algorithm with the increase of the
sensor types.

Fig.10 shows that as the total energy increases, the amount
of deployment schemes generated by four algorithms
continues to increase. It can be seen from Fig.10, the growth
of the deployment schemes generated by NPBO algorithm is
slower than ASMP, OCQ-Naïve and OCQ-Max-fit algorithm,
especially in the case of sufficient total energy. The deploy-
ment schemes can be defined as there are diverse methods to
apply different kinds and numbers of sensors with the same
energy constraint. There are many types of sensors in the

FIGURE 10. The NPBO algorithm is compared with ASMP, OCQ-Naïve
and OCQ-Max-fit algorithm on deployment schemes with diverse total
energy.

network, and each type of sensor contains a different number
of sensors. If the network is not constrained by energy, the
deployment methods of the network are infinite. In the energy
constrained network, there are many deployment methods
that meet the energy constraints of the network. Each of
method can be defined as a deployment scheme. With the
increase of the total energy, there will be more methods to
apply diverse kinds and number of sensors, namely, there will
be more deployment schemes. Once the number of deploy-
ment schemes increases, the computation and network load
will increase dramatically. As a result, the total energy in the
network will be consumed rapidly. So, the fewer deployment
schemes the algorithm generates, the faster the network trans-
mits; the fewer deployment schemes the algorithm generates,
the lower energy the network consumes; the fewer deploy-
ment schemes generated by the algorithm, the higher opera-
tional efficiency of network.

With the increase of the total energy, each algorithm will
generate more deployment schemes. It can be seen from
Fig.10, the growth rate of deployment mechanism generated
byNPBO algorithm is much slower than that generated by the
other three algorithms. That is to say, theNPBO algorithm has
higher operational efficiency than the other three algorithms.
As the non-preference bi-objective evolution strategy is more
suitable for the optimization problem whose global optimal
solution near the boundary of the feasible domain. So the
NPBO algorithm produces less invalid solutions. And the
NPBO algorithm is more effective to find out the global
optima.

VII. CONCLUSION AND FUTURE WORK
In the sections above, a CEBC mechanism on the basis of
non-preference bi-objective evolution strategy is proposed
aiming at 3-D space constraints. Aiming at the application
of multiple constraints barrier coverage, the non-preference
bi-objective evolution strategy transforms a variety of
complicated constraints into another objective function
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to solve, which decreases computing costs effectively.
Finally, the experimental results demonstrate the perfor-
mance of the NPBO algorithm in 3-D sensor networks.

The event coverage with multiple constraints has many
practical applications, such as air quality monitoring, public
safety monitoring and water pollution control. At the mean-
time, camera sensors will be applied for better monitoring
performance which may cause the privacy issues. In the
future, we will put more effort on privacy issues in the event
coverage.
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