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ABSTRACT Paroxysmal diseases of inpatients are globally recognized as one of the top challenges in
medicine. Poor clinical outcomes are primarily caused by delayed recognition, especially due to diverse clini-
cal diagnostic criteria with complex manifestations, irregular episodes, and already overloaded clinical activ-
ities. With the proliferation of measuring devices and increased computational capabilities, cyber-physical
characterization plays an increasingly important role inmany domains to provide enabling technologies. This
paper presents a cyber-physical system (CPS) framework to assist physicians in making earlier diagnoses
of paroxysmal sympathetic hyperactivity based on existing medical knowledge. We propose a configurable
diagnostic knowledgemodel to characterize clinical criteria to reduce domain knowledge deficiency between
physicians and computer scientists. We present a component-based medical CPS framework to employ the
knowledge models and integrate medical devices. Our approach aims to relieve medical staff from the heavy
burden of clinical activities and to provide timely decision support. We evaluate our approach on 128 real-
world clinical cases. Compared with the state-of-the-art approach, the results demonstrate that we enable
early detection in 11.02% more patients and detect the condition 16.57 hours earlier on average.

INDEX TERMS Cyber-physical system, early detection, knowledge model, paroxysmal disease.

I. INTRODUCTION
Diseases with paroxysmal features pose challenges for the
current clinical circumstances. From the perspective of medi-
cal staff, who are continuously observing all kinds of devices
and are checking patient for signs and symptoms, their job is
stressful and error-prone [1]. Especially in an aging society,
medical staff are overloaded. Due to long courses of treat-
ment, these diseases consume a large portion of healthcare
resources every year, worth millions of dollars [2].

PSH is one such disease, which causes episodes of
increased activity of the sympathetic nervous system with
complex clinical features. It requires 24-hour monitoring for
a long time [31]. In the clinical environment, with mon-
itoring of nutrition and early detection, morbidity will be
reduced [4]. However, delayed recognition of PSH leads
to poor outcomes, resulting in long-term disability and
even death [5]. Cases reported in [6] show that only 7%
of PSH patients achieved a moderate or good recovery.
However, 45% had severe disability, and 30% exhibited
a persistent vegetative state. Moreover, 18% of patients
died.

To achieve better outcomes, physicians are trying their
best to make a diagnosis as early as possible. However, from
discussions with physicians,1 we know that underdiagnoses
and misdiagnoses are extremely common. The reasons are as
follows:
• Physicians usually propose criteria sets according to
their clinical experience. For example, Lv et al. [7]
present a criteria set as Simultaneous occurrence
of 5 or more of the following features: (1) heart rate >
120 beats/min, (2) respiratory rate > 30 breaths/min,
(3) temperature > 38.5 ◦C, (4) blood pressure >

160 mmHg), (5) increased muscle tone, (6) posturing,
and (7) excessive sweating at least 1 daily paroxysm that
occurs for at least 3 days. However, individual differ-
ences harm the universally accepted diagnostic standard.

• Syndromes with sophisticated manifestations to which
many diseases have similar appearances are extremely
hard to take into consideration in a clinical environment.

1Jianghong He’s group, PLA General Hospital, Beijing, China. Emails:
he_jianghong@sina.com

34834
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-1184-2302
https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0002-4679-0488


Z. Gu et al.: Cyber-Physical System Framework for Early Detection of Paroxysmal Diseases

• The paroxysmal clinical features require several symp-
toms to be recurrent and episodic to make a diagnosis.
Unfortunately, medical staff are already overloaded at
hospitals. It is impractical to perform frequent clinical
monitoring activities manually.

Therefore, all these limitations hamper the awareness of a
diagnosis, and it is not easy for medical staff to make an early
detection.

With the proliferation of diverse measuring devices and
the increase in computational capabilities, CPS is playing
an increasingly important role in many domains [8], [9].
Recently, some researchers have applied automation technol-
ogy to solving medical problems [10], [11]. In this paper,
we propose a CPS framework to detect PSH early based
on existing medical knowledge. Efforts to improve medical
aspects are beyond the scope of this paper.

We propose a configurable diagnostic knowledge
model to describe diverse clinical criteria sets uniformly.
Because some signs and symptoms cannot be monitored
automatically, such as sweating or posturing, we allow for
the physicians to easily customize the alert constraint on per-
formingmanual checks in the configuration file, which is also
suitable for individual differences. For multiple criteria sets,
we provide an algorithm to compute the patient conditions of
compositional models.

We present a component-based CPS framework, which
is extended from our previous case study [12], to integrate
knowledge models and medical devices. In our framework, a
model generator is implemented to parse the configuration
file of the formalized models provided by physicians and
to construct the compositional diagnostic models. Medical
device adapters designed for an integrated clinical environ-
ment (ICE) [13] will sample patient vital signs. With the real-
time patient data parsed and computed by the monitoring
detector, our system displays patient data on the monitor
screen and sends the results to physicians. This will relieve
medical staff from the heavy burden of manual monitor-
ing of activities and will provide timely decision support.
We evaluate our approach on 128 real-world medical cases.
With the knowledge models constructed from two widely-
used criteria sets in natural language descriptions, we use our
system prototype to assist the diagnostic procedure.

In summary, our work contributes the following:
• We propose a configurable knowledgemodel to describe
diverse clinical criteria uniformly for paroxysmal dis-
ease, which reduces physicians’ memory load, narrows
the domain knowledge deficiency between physicians
and computer scientists, and augments the detection
capacity.

• We present a component-based CPS framework to inte-
grate the knowledgemodel andmedical devices for early
detection of paroxysmal diseases. We employ PSH as
an example and implement an early detection system to
guide the use of our methodology.

• We evaluate our method on 128 real-world medical
cases. Compared to the state-of-the-art, our approach is

able to early detect 11.02% more patients with nearly
the same false positive rate (2.52% compared to 0.96%).
For the confirmed cases, detection occurred 16.57 hours
earlier on average.

The rest of this paper is organized as follows. In Section II,
we introduce related work. Section III presents our con-
figurable diagnostic knowledge model to describe diverse
criteria and our component-based CPS framework for early
detection of paroxysmal diseases based on the models.
We evaluate our work against real-world clinical cases, and
the results are shown in Section IV. We conclude the paper
in Section V.

II. RELATED WORK
A. DETECTION OF PAROXYSMAL SYMPATHETIC
HYPERACTIVITY
PSH is an important clinical problem that has been studied
for more than sixty years. Since the first diagnostic criteria
were presented in 1993 [34], many criteria sets have been
proposed, such as [14] or modified [15] to help physicians
make diagnoses. There is strong agreement on simultaneous
and paroxysmal features, each of which contribute equally to
the diagnosis process. However, there are some inconsisten-
cies: (1) Duration, two weeks is reported in [16], which is the
longest of all the criteria published. Three days is reported
in [7]. (2) Occurrence, such as 38.5◦C of body temperature
in [7], 39◦C in [16] and undefined in [15], respectively.
Through a systematic literature review, it was found that
the duration of each episode is on average 30 minutes, and
frequency is on average 3-8 times/day [15].

To provide a consensus on the definition and diagnostic
criteria of PSH, Baguley et al. [17] proposed a tool called
the PSH-Assessment Measure (PSH-AM), which consists of
two components: a diagnosis likelihood tool addressing the
probability and a clinical feature scale assessing the sever-
ity. These components were used to estimate the diagnostic
likelihood of PSH. However, the only case study to use
PSH-AM is published in [18]. In this case study, four patients
were confirmed. PSH-AM remains a conceptual workflow
without a fully automatic system. The authors envisaged that
PSH-AM would be completed daily by medical staff at a
standardized time to check patients manually.

Therefore, the lack of a well-established set of criteria and
manual checking activities hamper the awareness of PSH and
result in underdiagnoses and misdiagnoses. This is especially
true in facilities that are overloaded with clinical activities
and exhibit underreporting of adverse clinical events in a
handwritten format [1].

B. MEDICAL CYBER-PHYSICAL SYSTEM
With the proliferation of diverse measuring devices, many
researchers have been paying more attention to Medical CPS
for providing continuous high-quality care [10], [11]. They
are especially focusing on anomaly behavior detection in the
clinical environment.
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Jiang et al. [19] applied a runtime verification technique
for medical decision support systems to ensure complex
temporal properties in medical guidelines. With medical
practice scenarios described in a domain-specific language
called DRTV, event sequences and runtime property veri-
fying automata can be generated to rigorously verify the
properties automatically. To deal with epilepsy, a paroxysm
feature was used, Kjaer et al. [20], which utilized a portable
electroencephalogram(EEG) to identify the paroxysms of
absence seizures in long-term monitoring based on patient-
specific modeling. Clinically satisfactory performance with a
positive predictive value showed that portable EEG recorders
are a promising tool for patients and physicians dealing with
absence epilepsy. Voros et al. [21] presented a CPS system
architecture for multi-parametric monitoring and analysis of
patients with epilepsy, using different hardware and software
modules of systems with defined interfaces. To balance
the high security and high accessibility for the implantable
medical devices (IMDs), Zheng et al. [22] presented an elec-
trocardiogram (ECG)-based data encryption (EDE) scheme.
Protected by the EDE, IMDs could not be accessed by
adversaries; however, medical personnel can have access
to them by measuring real-time ECG data in emergencies.
Ivanov et al. [23], proposed a predictive monitor to
detect sharp decreases in the arterial blood oxygen con-
tent (CaO2) caused by a pulmonary shunt in infants.
Based on the model characterized by unknown patient spe-
cific parameters, they first applied a parameter-invariant
technique in Medical CPS. To control the outbreak
of mosquito-borne diseases (MBDS) at an early stage,
Sood et al. [24] proposed a novel system based on Internet
of Things (IoT) sensors, cloud computing and fog com-
puting to distinguish, classify and monitor users infected
with MBDs.

In contrast to the approaches mentioned in [20], [23]
and [24], our work focuses on a more complicated syn-
drome, PSH, for which some features require manual checks.
This poses a great challenge to interactions with physicians.
Patients with PSH usually have a traumatic brain injury and
have to be hospitalized, implying that the sensors used in [24]
are hard to use in our work. Similar to epilepsy [20], [21]
with a paroxysm feature, PSH requires symptoms to be
recurrent and episodic to make a diagnosis. However, there
are no existing pathophysiologic models or medical guide-
lines to apply runtime verification techniques. Therefore, we
propose a different strategy by employing a configurable
diagnostic knowledge model and involving physicians to cus-
tomize the knowledge models and the constraints to perform
manual checks in a Medical CPS approach with a portable
tablet.

III. APPROACH
In this section, we present a CPS approach for early detection
of PSH.We introduce our configurable diagnostic knowledge
model first. Then, the component-based CPS framework is
presented.

A. CONFIGURABLE DIAGNOSTIC KNOWLEDGE MODEL
As discussed in Section II-A, the clinical criteria consist of
a group of clinical features with thresholds to confirm an
episode. The duration and frequency of the episodes are used
to confirm a diagnosis. However, there may be differences
between criteria sets, mainly in duration and occurrence.
In the following section, we introduce our configurable diag-
nostic knowledge model.

We use the criteria from Lv et al. [7] to illustrate the
definition, construction and semantic structure of our model,
where PSH is defined as follows: Simultaneous occurrence
of 5 or more of the following features: (1) heart rate
> 120 beats/min, (2) respiratory rate > 30 breaths/min,
(3) temperature> 38.5 ◦C, (4) blood pressure> 160 mmHg),
(5) increased muscle tone, (6) posturing, and (7) excessive
sweating, and at least 1 daily paroxysm that occurs for at
least 3 days.

To aid understanding, we provide a visualization of our
model in the format of an extended automata [25] in Figure 1.
The si,j represents the j-the episode in the i-th day defined in
Definition 3, and the expressions on the arrows are the guards
that control the states defined in Definition 4.

FIGURE 1. A simplified visualization of the diagnostic knowledge model.
Guards are presented in square brackets, and transitions with
contradiction guard are eliminated.

1) MODEL DEFINITION AND CONSTRUCTION
Definition 1: An event e = < v, t > consists of a set of

vital signs of a patient labeled as e.v and a timestamp of these
signs sampled as e.t . We label a series of events as E.
In clinical monitoring activities, medical staff write down

patient conditions after manual checking or use of medical
devices. We can parse these signals into a structured format
as follows:

e = {e.v[hr : 120, rr : 30, sweating : 1, . . . ],

e.t[2018 : 1 : 25 : 23 : 30]}

indicating that at 23:30 of 2018-1-25, the patient’s heart rate
was 120 beats/min, breath was 30 resp/min, the patient was
sweating, etc.
Definition 2: The diagnostic criteria are defined as a tuple

c = < d, Fre, Pre>, where d is the shortest duration of
episodes, Fre is a d-length vector of frequencies for each day
and Pre is a predicate to record the occurrence of an episode
under a given event.

With the natural language description defined above,
we can construct the criteria tuple

c =< 3, [1, 1, 1],Pre >, (1)

where Pre is whether a simultaneous occurrence of 5 or more
of the features. For the first two parts of c, this means that
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at least 1 daily paroxysm that occurs for at least 3 days.
The c.Pre parameter is used to check whether the episode
occurs under a given e.
Definition 3: A state s is a description of the status of a

patient, which is labeled as si,j indicating the occurrence of
the j-th episode in the i-th day. We label a set of states as S.
sf is used as the final state that a diagnosis is confirmed.

From the diagnostic criteria c in Equation (1), we can
automatically generate the S as

S = {s1,1, s2,1, s3,1} ∪ {sf } (2)

where s1,1, s2,1, s3,1 for the each paroxysm for three days
and sf for the final state to confirm the patient.
Definition 4: A guard g(si,j,sm,n) is a Boolean expres-

sion that guards the transition between two states, where
si,j presents the j-th episode in i-th day and sm,n presents
the n-th episode in m-th day. More precisely, we formalize
the guard in Equation (3), where the episode occurrence
constraint is as follows: c.Pre, episode frequency constraint
as freq and episode duration constraint dur , respectively.
We label a set of guards as G.

g(si,j,sm,n)(e) = c.Pre(e.v) ∧ freq(si,j,sm,n)(e) ∧ dur(si,j,sm,n)(e)

(3)
A guard is defined on an event e to guard the transition

between two states. As shown in Equation (3), it contains
three parts, where c.Pre is defined in Definition 2, the con-
straint on episode frequency is defined in Equation (4), and
the constraint on episode duration is defined in Equation (5).

freq(si,j,sm,n)(e) =

{
True, if p1 or p2 or p3
False, otherwise.

(4)

dur(si,j,sm,n)(e) =

{
True, if p1 or p4 or p5
False, otherwise.

(5)

From the diagnostic criteria, duration and occurrence are
two primary differences between diverse criteria sets. There-
fore, we use the freq and dur constraints to model the criteria
in a uniform format. In Equation (4) and (5), p1 is defined as

p1 = (i is c.d) ∧ (j is c.fd ) (6)

indicates the constrain on the transition to the final state. p2
and p4 cooperate to control the transitions between states in
the same day,

p2 = (i is m) ∧ (j is n− 1) (7)

p4 = (i is e.t) ∧ (j is n− 1) ∧ (m is e.t) (8)

and p3 and p5 cooperate to constrain the transitions between
two continuous days.

p3 = (i is m− 1) ∧ (j is c.fi) ∧ (n is 1) (9)

p5 = (i is e.t) ∧ (j is c.fi) ∧ (m is i+ 1) ∧ (n is 1) (10)

Definition 5: A transition t is the connection order
between two states triggered by an event e and guarded by

a guard g, where t ∈ S×E×G×S.We label a set of transitions
as T.
Definition 6: A configurable diagnostic knowledge model

is a tuple m = 〈S, c,G,T 〉 that uniformly presents the dif-
ferent clinical criteria sets and monitors the patient condition
under a series of events E.

The execution semantics of our diagnostic knowledge
model are similar to the state-space model [26], [27], where
we treat the input signals at each time point like a state and
find the final error model based on the data. In this paper,
we can consider it as a labeled transition system [28], which
can be visualized easily. The model begins at the initial state
Start to monitor patients under a series of events recording
vital signs lasting criteria-duration days. When one state tran-
sitions to another, this indicates that an episode has occurred,
and parts of the episode duration and frequency constraints
are satisfied. Finally, if the model arrives at the final state,
a diagnosis is confirmed because all of the constraints are
satisfied. As visualized in Figure 1, the diagnostic knowledge
model of criteria in [7] starts from state s1,1 to wait for the
first episode of the first day. Given a set of events in which
each event e contains patient signs v with a timestamp t , our
model transits between states guarded by the guard listed in
square brackets generated from the equations defined above.
If the guard between s1,1 and s2,1 is satisfied on an event e,
the model transits to s2,1, implying that one episode happens
in the first day. The model then waits for the first episode of
the second day. Finally, if the model arrives at sf , the patient
is confirmed.

2) MODEL COMPOSITION
Because of insufficient pathophysiology knowledge, it is dif-
ficult to create a consensus clinical criteria. Through dis-
cussions with physicians, one alternative approach has been
developed, which utilizes multiple clinical criteria.
Definition 7: A compound model is defined as a tuple

M =< M ,W , τ >, where M is a set of configurable diag-
nostic knowledge models constructed from a set of criteria
sets C , W is the weight vector for M provided by physicians
and τ is a result threshold used to make the final diagnosis.

In Figure 2, we visualize an example of our compound
model, where M is composed of three single models with

FIGURE 2. Visualization of compound model consisting of three single
models.

VOLUME 6, 2018 34837



Z. Gu et al.: Cyber-Physical System Framework for Early Detection of Paroxysmal Diseases

a weight vector W = [w1,w2,w3] and τ , indicating that
the combination of the three models crosses the pre-defined
threshold τ . This means that a diagnosis is confirmed.

ALGORITHM 1: Diagnostic Computation of Composi-
tional Model
input : Event set E , clinical criteria sets C , weight vector

W and result threshold τ
output: Diagnosis Result d

M← ConstructModel(C,W , τ);
score← InitScore();
for m ∈M.M do

r← CheckEvent(m, E);
score← UpdateScore(score, r,M.W);

end
d← JudgeResult(score,M.τ);

ALGORITHM 2: Diagnostic Computation of Single Model
input : Event set E , clinical criteria model m
output: Single model diagnosis result r

while E′← ExtractEvents(E,m.c.d) do
current← InitCurrent ();
for e ∈ E′ do

current← Transit(e, m) ;
if current is m.sf then

return 1;
else

continue ;
end

end
end
return 0;

In Algorithm 1 , we present our diagnostic computation
of compound models. The inputs are a series of events E in
which each event e records patient signs e.v with a times-
tamp e.t , a set of clinical criteria C with the weight vectorW
and a confirmed threshold τ . The result is the final diagnosis.
First, we construct diagnostic knowledge models M accord-
ing to Definition 7 by function ConstructModel. Second,
a variable score is initialized to record the combination result.
For each model, we will compute the diagnostic result with a
series of given events by function CheckEvent and combine
the single model result with score according to the weight
vector M.W .

The concrete computational steps are illustrated in
Algorithm 2, which is explained in Section III-A.1. Finally,
we make the diagnosis according to the threshold M.τ by
function JudgeResult .
Suppose that the compound model consists of |m| single

models and the size of Event is |e|. According to Algorithm 2,
for e ∈ E ′, the time complexity of the checking pro-
cess is O(1). The ExtractEvents will divide the events into

groups according to the shortest episode duration defined in
Definition 2, indicating that there are at most |e| groups, and
each group has |e| elements. Therefore, the time complex-
ity of Algorithm 2 is O(|e|2). For the computation of the
compositional model, we conclude that the time complexity
of Algorithm 1 is O(|m||e|2). The longest criteria duration
is two weeks in [16], and the duration of each episode is
30 minutes on average, indicating that the input event at
most has fourteen days with a finite sample for each day.
Additionally, through a literature review and discussions with
the physicians, it was determined that the number of models
are usually fewer than five. Because the only differences
between models are in the duration and occurrence, as dis-
cussed in Section II, and because five different models can be
sufficient, the computation of a compound model can finish
in finite time.

B. COMPONENT-BASED CYBER-PHYSICAL SYSTEM
FRAMEWORK
In this section, we present our component-based CPS frame-
work for early detection of paroxysmal diseases. First,
we present an overview of our system and the interac-
tions between the components: Revised ICE Device Adapter,
Model Generator, Monitoring Detector and Display Module.
After that, we describe the workflow of our framework and
the applications of our framework for PSH.

1) SYSTEM COMPONENTS AND INTERACTIONS
As illustrated in Figure 3, our system consists of four main
components: a Revised ICE Device Adapter, a Model Gener-
ator, a Monitoring Detector and a Display Module.
Modern hospitals are equipped with a number of advanced

medical devices for specific purposes. Some are designed to
automatically observe patient vital signs by using sensors,
and they display the data on built-in screens. Heart rate and
respiratory rate, for example, are monitored and displayed on
the device screen. However, few of these devices are able to
provide specific diagnostic analysis functions.

a: REVISED ICE DEVICE ADAPTER
To widely utilize these devices, a medical device adapter was
revised on ICE to extract patient vital signs from different
medical devices. Therefore, we can combine different signs to
customize the monitoring activities for different individuals.
However, some clinical features, such as sweating and postur-
ing, cannot be monitored automatically. To overcome these
difficulties, we invite physicians to customize the manual
check alert thresholds with other necessary system properties
like data sampling frequencies.

b: MODEL GENERATOR
is designed to parse the configurations and to generate
diagnostic knowledge models as defined in Section III-A.
We have provided a user-friendly graphical tool to help physi-
cians to create the model and system properties by clicking
buttons and filling in numbers. The generated model is used
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FIGURE 3. Components and interactions of our integrated Medical CPS for early detection of PSH.

as an input to the monitoring detector. Another benefit of
parsing a configuration is to minimize the impact of changes
to the PSH definition.

c: MONITORING DETECTOR
is designed to observe patients with the formalized models
employed from the model generator. When real-time data are
sampled from the Revised ICE Device Adapter, the monitor
detector will read the data and start the analysis process
according to the algorithm illustrated in Section III-A.2. All
of the results and patients data will be stored on the hard disk.

d: DISPLAY MODULE
We provide two types of display strategy: Main-Screen and
Nurse-Tablet. The main screen will display the patient condi-
tions in real time, while the revised ICE device adapter sam-
ples the patient data. When abnormal conditions are detected,
the monitoring detector will alert the physicians for a further
manual check, in which the tablets will be used.

With all the components integrated, our Medical CPS will
sample real-time patient data to relieve medical staff from
the heavy burden of repeated monitoring activities and to
provide timely decision support. With the model parsed from
configurations, we try our best to minimize the impact of
changes to the PSH definition.

2) MONITORING DETECTOR WORKFLOW
The Monitoring Detector is the kernel component in our sys-
tem. It uses the formalized models and monitors patient con-
dition to provide decision support for physicians. We present
the workflow details below. The data parsing step processes
patient vital signs. When the predefined sampling period
arrives, the Monitoring Detector will read patient data from
the Revised ICE Device Adapter and preprocess all of the
data. It checks data rationality, fills in empty values, interprets
data and performs additional steps. All of the processed data
are sent to the next step and stored for further use.

The auto feature verification step uses the diagnostic
knowledge models generated from clinical criteria to perform
early detection. Even though medical devices can monitor
some quantitative clinical signs like blood pressure and heart
rate successfully, some qualitative signs are not available to
automated systems, like sweating or posturing. Therefore,
with the data from the first step, we automatically verify the
patient condition to decide whether there is a need for further
manual verification. If the patient is safe, the system jumps
to the result display step because of the simultaneity feature;
with this feature, all signs and symptoms occur simultane-
ously to confirm an episode, which is described in Section II.
If the patient needs further clinical tests, the medical staff will
be alerted. In the manual verification step, medical staff will
use tablets to check the patient’s condition, using a checklist
automatically generated from the diagnostic criteria by our
system. With all of the vital signs ready, we encapsulate
them with historical data as events to compute the diagnostic
results. The results are sent to the next step.

The result display step displays all of the processed data
and analysis results. In our system, we update the patient
vital signs in the main screen rapidly. It is critical that Medi-
cal CPS should not mislead the medical staff. In particular,
the reasons for no anomaly are that the patient is in good
condition or the system has failed. Therefore, we display
the runtime system state to overcome this limitation. For the
computation result, theMonitoringDetector will send it to the
Display Module. Physicians can use the tablet to do further
manual checks along with analysis procedures in an easy-to-
follow format to provide timely decision support. All of the
results will be saved for review and further use.

3) FRAMEWORK APPLICATIONS
We have implemented our system in the Java platform, which
can be deployed on any Java-capable computers. Currently,
a medical device adapter based on the revised Integrated
Clinical Environment specific to Phillips IntelliVue MP70 is
designed to continually read patient vital signs as shown
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FIGURE 4. Deployment of network environment and medical devices.

FIGURE 5. Simulation of medical staff using a tablet to check a patient’s vital signs.

in Figure 4. A tablet shown in Figure 5 is built into our system
for manual feature verification and medical requirements.
Tablets are easy to clean and portable. We have conducted
simulations on a Microsoft Surface Pro with physicians, and
the usage is gaining wide acceptance. We built a graphical
tool for physicians to generate clinical criteria by clicking but-
tons, and all the diagnostic criteria generated by our system
are stored in a readable file format.2 Our system decreases
the dependency on individual components and can be easily
extended for other diseases, especially when the definition of
PSH is well established. Furthermore, all the raw data and
computational results are stored for further research use.

IV. EVALUATION
In this section, we describe the results of evaluating the
performance of our approach by using patient data extracted
from medical publications. First, we describe the experimen-
tal setup, including test case composition, system deployment
in a lab environment for simulation and the method of evalu-
ation. Finally, the results and discussions are presented.

2For more details, refer to this website: http://publish.illinois.edu/mdpnp-
architecture/advanced-situation-awareness/

A. EXPERIMENTAL SETUP
Test Cases.We used patient data extracted from medical pub-
lications with the help of physicians to evaluate our approach.
Publications were recommended by physicians or identi-
fied through searches of the online database PubMed [40]
by use of the following keywords: paroxysmal sympathetic
hyperactivity, case studies, and criteria. For those references
with only statistical distributions and episode descriptions,
we automatically generated data that satisfied the constraints.
The most widely used values from the references were used
as default values for quantitative features described in natural
language. Those values were 120 beats/min, 160 mmHg,
30 breaths/min, and 38.5 ◦C for increased heart rate, blood
pressure, respiratory rate, and body temperature or other
terms with the similar meaning, respectively. Qualitative clin-
ical features that were not mentioned in the case description
were treated without those symptoms.

Because the duration of each episode of PSH is on aver-
age 30 minutes, as described in Section II-A, we sampled
patients’ data with a time-window of 30 minutes. The input
for evaluation are these sampled data. Furthermore, we col-
lected patient data from day three and day six to compare
effectiveness and efficiency, respectively. Hence, we ensured
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TABLE 1. Evaluation results in lab environment.

that there were more than 2 episodes per day for 6 days
to meet the episode duration thresholds in the criteria sets.
The composition of patient data is presented in the first
four columns of Table 1, which consists of 118 PSH cases
labeled as PSH and 10 non-PSH cases labeled as N-PSH.
The clinical features overlapped for false alarm testing. For
non-PSH cases, we randomly generated cases based on the
clinical features described in the publications. All of the
cases were confirmed by the physicians (All of the data can
be obtained by emailing the authors for academic purposes
only.).
Simulation Environment: As presented in Figure 4, our

system was deployed in a lab environment to simulate a real-
world monitoring scene. In our evaluation, we chose two of
the most widely used methods published in [7] and [15] with
the weight vector [1, 1] to construct the compound model.
We set the result threshold τ at 1, indicating that a patient
was confirmed when any of the criteria sets was satisfied.
We visualized the compound model in Figure 6. To the best
of our knowledge, there is no existing automated tool for
detecting PSH. The current clinical approach is based on
checking patient signs and symptoms manually. Therefore,
we invited volunteers with medical experience to simulate
physicians in a hospital to check patient data and make diag-
noses. First, we presented the two sets of criteria and ensured
that all the volunteers had understood them. Then, we sent
the data to the volunteers at fixed time intervals and asked
them to make a diagnosis, which is similar to the clinical
activities performed in a hospital. We recorded the first time
a confirmed PSH diagnosis was produced.
Method: The input of evaluation is the patient data sampled

in Test Cases, and the output is the result of the diagnoses.
First, we define the following:
• TP represents true positives, indicating that a PSH case
was detected as PSH

FIGURE 6. A visualization of the compound model for evaluation.

• TN represents true negatives, indicating that a non-PSH
case was detected as non-PSH

• FP represents false positives, indicating that a non-PSH
case was detected as PSH implying a misdiagnosis

• FN represents false negatives, indicating that a PSH case
was detected as non-PSH, implying underdiagnosis

The results are evaluated based on two characteristics: pre-
cision and recall. Precision is the ratio of correctly detected
patients to the number of patients classified as PSH:

Precision =
TP

TP+ FP
(11)

Low precision implies that an approach treats a large propor-
tion of non-PSH patient as PSH, resulting in misdiagnosis.
Recall is the ratio of correctly detected PSH patients to the
total number of PSH patients in the input:

Recall =
TP

TP+ FN
(12)

Approaches with low recall cannot detect PSH cases well,
resulting in underdiagnosis.

VOLUME 6, 2018 34841



Z. Gu et al.: Cyber-Physical System Framework for Early Detection of Paroxysmal Diseases

FIGURE 7. Patient vital signs for the first three hours in a case from [29], which was missed by manual checking but detected by our system.
Red stars indicate outlier points above the criteria. Gradations on the X axis indicate 30 min intervals. The patient showed sweating and
posturing during the first and the second hour. (a) Heart Rate. (b) Respiratory Rate. (c) Blood Pressure. (d) Body Temperature.

B. RESULTS
All the experiment results are described in Table 1. We dis-
play the results of our work in columns 5-12, and the average
results of the current approach are shown in columns 13-20,
where 3 d stands for the day 3 results, and 6 d stands for the
day six results. TP, TN, FP, and FN have been discussed in
the Method part in Section IV-A.

TABLE 2. Statistical summary of detection results.

a: EFFECTIVENESS
To compare our work and the current approach, we use
precision defined in Equation (11) and recall defined in
Equation (12) to compare the effectiveness. These parame-
ters focus on how many correct diagnoses an approach can
achieve. The results are shown in Table 2.

Precision is the ratio of correctly detected PSH patients to
the number of patients classified as PSH.As shown in Table 1,
TP is 116 and 118 and FP is 3 on day 3 and day 6, respec-
tively. Therefore, the precision of our result is 116/(116 +
3) = 97.48%. Compared to 103/(103 + 1) = 99.04 % for
manual checking on day 3, our approach performs almost
the same in terms of the correctness. Thus, we will not
burden medical staff with more false alarms than the current
approach. In addition, both of the approaches performed
well enough on days 3 and 6; they had precision greater
than 95%.

Recall is the ratio of correctly detected PSH patients to
the number of PSH patients in our case set. With 118 cases
classified as PSH patients, we successfully detected 116 of
them in the first three days and all of them in six days. Thus,
the recall was 116/(116+2) = 98.31 % and 100 %, which is
better than the results of manually checking, which resulted
in recall of 103/(103+ 15) = 87.29 % and 114/(114+ 4) =
96.61 %. In terms of the detection capability, our approach
performs better than the current approach because we detect
11.02% more potential PSH patients at an earlier time.

Human safety is the most important factor in the medical
domain.With a reasonable false alarm rate, we achieve higher
recall, indicating a better solution.

b: EFFICIENCY
In this part, we compare the efficiencies and focus on how
much earlier an approach can make a correct diagnosis.

With the same diagnostic criteria, manually checking
underdiagnosed 13 more cases than our method out of all
the PSH cases in the first three days, which shows that our
approach can perform better in terms of the early detection of
PSH, by 11.02 %.

In Figure 7, we show the patient data for the first 3 hours in
a case from [29] to illustrate the efficiency of our approach.
Because the duration of each episode of PSH is on aver-
age 30 minutes, as described in Section II-A, we sampled
patients’ data with a time window of 30 minutes. Therefore,
the increased heart rate, respiration rate and blood pres-
sure can be captured at 1.5 hours and 1 hour, respectively,
in our system. An alert is produced to notify the nurses for
further manual checking, and we successfully detected this
episode within 1 hour to 1.5 hours. However, it is unrea-
sonable for medical staff to observe patients all the time.
Thus, most of the volunteers missed the syndromes either at
1 hour or 1.5 hours, resulting in underdiagnosis.

From another perspective, we grouped the confirmed
timestamps of all PSH cases as shown in Table 3. The results
show that manual checks have an average of 16.57 hours’
delay relative to our system. We believe that the real-world
situation is worse when paroxysm and complex clinical

TABLE 3. Distribution of confirmed timestamps of PSH cases.
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features are considered. Additionally, during the process of
manual checking, a volunteer mixed up two criteria sets,
resulting in under-recognition. Hence, our approach provides
the benefit of steady performance.

c: FALSE ALARM
Out of all cases, we had 3 false positives and 2 false neg-
atives in the first three days. Reviewing the cases manually,
we notice that for all the false positives, they met the PSH cri-
teria. For example, the patient in [38] was confirmed as
having sepsis with BT 39.2 ◦C, HR 190, RR 35, posturing and
poor response to interactions. However, these symptoms are
sufficient for diagnosis of PSH. Therefore, the main reason
for false positives is that there are many overlapping clinical
features between PSH and sepsis. In future work, wewill seek
to provide a relevant analysis to distinguish conditions with
the same clinical features. For the 2 false negatives, they were
detected on the fourth day. To detect these cases early, we can
decrease the thresholds of each of the vital signs. However,
this will disturb physicians with too many false positives.
In the future, we will carry out more experiments to balance
this issue.

C. DISCUSSIONS
1) LIMITATION
In our evaluation, we used real-world cases extracted from
medical publications. However, some of them lacked con-
crete data values and were described in human natural lan-
guage. With the default values generated based on statistics,
we filled in these cases and sampled from every 30 minute
period to make a diagnosis. All of these processes may affect
the evaluation results. Currently, we are working with physi-
cians to deploy our system in hospitals for further evaluation.

2) LESSONS
During discussions and sessions with physicians, we learned
many lessons.
• Medical CPS is desired. Medical devices have been
equipped in hospitals to provide information that
improves health care. However, physicians say they need
more intelligent tools to help themmake better decisions
with reasonable amounts of disturbances.

• False alarms are difficult. According to our experience,
themost efficient solution is to provide easy access to the
thresholds and invite physicians to define the thresholds.

• Simple is better. Computer technologies are unfamil-
iar to medical staff. Therefore, we need to develop
applications with user-friendly interfaces. Moreover,
an extensible structure is needed to cope with the
volatile clinical requirements, such as changes in the
definitions of diseases.

V. CONCLUSION
CPS has attracted increased attention recently. With the pro-
liferation of diverse measuring devices and increases in com-
putational capabilities, researchers are successfully applying

automation of CPS to diverse domains. In this paper, we pro-
pose a CPS framework for the early detection of long-term
monitoring diseases. A configurable diagnostic knowledge
model is presented to describe long-term monitoring disease
criteria in a uniform way. Using this model, we illustrate
the details of each component of the medical CPS. Our
approach aims to relievemedical staff of some of their clinical
activities and provide timely decision support. In the future,
we will evaluate real-world patient data from hospitals to
strengthen our work and apply our system to more diseases.
Our work also sheds light on the great demand for the deep
convergence of automation technologies, biomedical engi-
neering, and health informatics under the rapid development
of health engineering for the prediction and prevention of
disease and the development of precise and personalized
medicine.
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