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ABSTRACT Frequent subgraph mining (FSM) is one of the most challenging tasks in graph mining. FSM
consists of applying the data mining algorithms to extract interesting, unexpected, and useful graph patterns
from the graphs. It also aspires to offer a richer apprehension of the given graph data. FSM has been applied
to many domains, such as graphical data management and knowledge discovery, social network analysis,
Bioinformatics, and security. In this context, a large number of techniques have been suggested to deal with
the graph data, with the objective to extract the frequently occurring graph patterns. Such patterns are called
frequent subgraph patterns (FSPs). FSPs are extracted using the traditional support threshold parameter.
However, there exists no specialized scheme to decide the discovered FSPs are optimized as well. Thus,
the aim of this paper is to suggest an optimization strategy to uncover the association between the frequent
and the optimized subgraph patterns. For exploring the existence of the potential association between the
FSPs and the optimized subgraph, a Particle Swarm Optimization technique is suggested. This relationship
will be very handy to reduce the FSPs, by choosing those FSPs which were also discovered as optimized
FSPs. Different experiments are performed using benchmark graph data sets to validate the existence of the
aforementioned relationship between the optimized and the frequent FSPs.

INDEX TERMS Data mining, graph pattern mining, social network analysis, frequent subgraph patterns,
optimized graph patterns.

I. INTRODUCTION
In numerous applications, such as the World Wide Web,
Bioinformatics, Social, Technological and Communication
Networks, data are usually represented by graphs [1]–[4].
With the increasing demand for the analysis of a large amount
of the graph data, Graph Mining (GM) has become an active
and most significant research area [5]–[7]. The goal of GM is
to extract the hidden knowledge from a single large graph or a
set of small graphs in an effort to comprehend its key fea-
tures [8]–[10]. GM research has been further subdivided
into following subareas: graph indexing [11], [12], frequent
subgraph mining [13]–[18], graph classification [19]–[21],
graph searching [8], [22], [23], graph clustering [24]–[26],
approximate graph pattern mining [4], [27], [28], optimal
graph pattern mining [29].

FSM is one of the well-known and researched topics in the
graph mining domain [5], [6], [30]–[33]. In simple words,

FIGURE 1. A sample graph database.

FSM aims to extract all the subgraph patterns from the given
input graph dataset, whose occurrences in the graph dataset
are above the user supplied threshold value. Such subgraph
patterns are termed as frequent subgraphs (FSGs). Whereas
the number of occurrences of the subgraph is calculated using
the supports measure [34]. For example, Figure 1 shows a
sample graph database.

Now, if the support threshold value is assumed to be 3, then
the possible FSGs which can be mined from the Figure 1, are
listed in Figure 2.
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FIGURE 2. Sample mined FSGs patterns.

The problem formulations for FSM have been classified
into two main approaches [2]: graph transaction based FSM
and a single large graph based FSM. In the former class,
the input graph data contain a set of small to medium-size
graphs, which are called transactions [36] while in the later
FSM class a single input graph data are used (i.e. One very
large graph, graph with hundreds of thousands nodes).

It is widely accepted in the literature that FSM tech-
niques are classified into two categories: (1) Apriori-based
approaches; and (2) pattern growth-based approaches [6], [10],
[30], [31], [35]. These two categories are similar in spirit to
counterparts found in association rule mining, namely the
Apriori algorithm and pattern-growth algorithm [34] respec-
tively. Both of these approaches aim to identify the frequently
occurring subgraph patterns from a given collection of small
graph sets or within one large graph. These two approaches
are different from each other in the way they mine the FSPs.

In the last few decades, numerous FSM techniques devel-
oped in both approaches such as, SPIN [20], gSpan [64],
CloseGraph [65], Mofa [13], Subdigger [71], LC-mine [72],
FSP [73], FS3 [74], AGM [75], Gaston [62], and Mar-
gin [76]. However, when such FSM algorithms are applied
to more substantial domains, including image mining, text
mining and social network mining, the computational com-
plexity becomes critically very high due to the combina-
torial explosion, encountered with respect to the number
of possible FSPs [47], [76]. Therefore, many existing
approaches to FSM cannot cope with large graph datasets
[10], [17], [30], [31], [35], [62]. Moreover, mostly FSM
techniques mine a prohibitively large number of FSPs dur-
ing the mining process and there is no specialized method
which can confirm that the discovered FSPs are optimized
FSPs [35], [62], [74].

Optimization is one of the most challenging research areas
spanning across the fields of computer science, operations
research, and engineering [37], [38]. It can be defined as
the process by which an optimum is achieved. The term
swarm intelligence comes from the field of artificial intel-
ligence, in which ants, insects or bird behavior are ana-
lyzed [39], [40]. This natural behavior of different swarms is
adopted in the field of computer science in order to solve var-
ious optimization problems. In particular, swarm intelligence
algorithms refer to the branch of optimization algorithms
that simulate and model the imprecision, randomized, and
stochastic features of these physical, chemical, or biological
elements in arriving at marvelous solutions. Some of
the known swarm intelligence techniques used in solving

TABLE 1. Key notations used in this paper.

optimization problems are ant colony optimization (ACO)
[41], [42], particle swarm optimization (PSO) [43], firefly
optimization (FFA) [44], honey bees mating optimization
for TSP (HBMOTSP) [45], African buffalo optimization
(ABO) [46], bat algorithm (BA) [47], genetic algorithm
(GA) [48], adaptive simulated annealing with greedy search
(ASA-GS) [49]. In this study, we are using PSO, originally
proposed in [50]. Therefore, in the next section a primer on
PSO is presented in details.

In this exploratory study, we are interested to establish a
relationship between two types of patterns, the frequent and
optimized graph patterns. To the best of our knowledge, there
is not a single study available on the exploration of the asso-
ciation between the frequent and optimized graph patterns.
For the relationship between two kinds of patterns, we have
proposed a PSO based optimization technique, which takes
a graph dataset as an input and returns an optimized set of
graphs based on the nodes. We also have performed different
experiments to validate the relationship between the frequent
and the optimized graph patterns. By establishing this rela-
tionship we can reduce the number of FSPs discovered (only
those FSPs will be considered in the final result set which
are also observed as optimized). The contribution of this
study may thus be summarized as follows: (1) proposal of
optimization method to graph dataset; (2) devising a novel
fitness function, which is based on the basic characteristics
of the graph structure; (3) discovering the potential rela-
tionship between the frequent and optimized graph patterns;
(4) experimental evaluation of the proposed optimization
method using different graph datasets. A list of notations used
in this paper is given in Table 1.

The structure of this paper is as follow. In the next section,
we have defined the basic working principle of the PSO.
Problem formulation, for the FSPs discovery and optimized
graph patterns, along with the relevant constraints are high-
lighted in Section III. Section IV discusses the Results and
Discussion, which is followed by the concluding remarks.

II. A PRIMER ON PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) is now one of the most
commonly adopted optimization techniques [43], [51]–[53].
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FIGURE 3. Steps involved in the PSO algorithm [43].

In a PSO procedure, a swarm of particles is kept and each par-
ticle in the swarm searches the optimum of a function termed
as the fitness function. It keeps track of the best position it
has found and the best position discovered by the complete
swarm of particles. The best position discovered by a particle
is called the local best position of the particle and the best
position founded by the whole swarm is called the global
best position. The domain of the fitness function is called the
search space. Guided by the local best position and the global
best position found so far, particles move over the search
space in search for an optimum. The advantage of using the
PSO optimization method is that it does not rely explicitly
on the gradient of the optimization problem. Moreover, as a
population-based metaheuristic, PSO has the advantages of
robustness, effectiveness, and simplicity as compared to the
other swarm intelligent approaches such as GA and ACO
[54], [55]. In Figure 3, a simple PSO procedure is outlined.

Let Posti and Vel
t
i are the initial position and the velocity

vector respectively, of a particle i at a given time t . Let
Pospbestti represent the particle local best position and let
Posgbest represent the global best position found over all the
particles in the whole swarm up to the current time t . The
velocity and position vectors of particle i at time t + 1 can
be calculated by using the equations given in (1) and (2)
respectively,

Vel t+1i = ωVel ti + C1R1(Pos
pbestt
i − Posti )

+C2R2(Pos
gbestt
− Posti ) (1)

Post+1i = Posti + Vel
t+1
i (2)

In Equation (1), ω represents the inertia weight, Vel ti
denotes the velocity of the particle i at time t; C1, C2 are
called acceleration coefficients (or the behavioral parame-
ters) representing the weighting of the stochastic accelera-
tion terms that haul apiece particle toward the Pospbestti and
Posgbestt positions. R1, R2 random numbers between {0, 1};
Posti position of the particlei at time t . In the velocity updating
process, the value of the parameters {ω, C1,C2} should
be determined in advance. The selection of the appropriate
inertia weight may offer stability between the global and the
local exploitation, and thus results in an inferior number of
iterations in order to output the best possible/optimum solu-
tion. In general, to improve the convergence characteristics,
the ω factor is designed to decrease linearly [50]{Shi, 1999
#312;Lee, 2008 #311}, descending from to, as follows:

ωk
= ωmax −

ωmax − ωmax

MaxIter
× k (3)

In this study, a PSO based optimization procedure is
proposed for the optimization of a given graph dataset to
Optimized Subgraph Patterns (opt-SGP). In the proposed
optimized PSO procedure, each graph in the dataset is ini-
tialized as a swarm of random particles. Each particle stores
the position information of each vertex in the graph. All
particles automatically update their positions and velocities
in the searching process for the optimal node set discovery,
thus resulting in an opt-SGP. Each particle has a fitness value
representing the importance of the node in the graph. The
definition of the proposed fitness function is given on the
basis of the different important characteristics of the graph
node identified from the literature [35], [56], [57].

III. PROPOSED METHOD
In this section, we have described the procedure of extract-
ing the FSPs and the opt-SGPs. For extracting the FSPs,
we have used our own earlier proposed FSM framework,
called A-RAFF (A-RAnked Frequent pattern-growth Frame-
work) [58]. For the mining of the Opt-SGPs, we have used
the proposed PSO based optimization strategy. These two
procedures are highlighted in this section.

A. A-RAFF FRAMEWORK: EXTRACTION OF FREQUENT
SUBGRAPH PATTERNS
For the extraction of FSPs, we have used our own earlier pro-
posed FSM framework called A-RAFF, which was discussed
in [58]. A-RAFF worked with the labeled undirected graph
datasets. The goal of A-RAFF framework is to discover a
small collection of ranked FSGs patterns from a database of
labeled input graphs. A-RAFF used the basic characteristics
of the pattern-growth scheme to discover the FSPs, which
solely works on the divide and conquer strategy. A-RAFF
is based on pattern-growth as pattern-growth discovers the
entire set of FSGs patterns without involving costly operation
of candidate generation during the mining process. A-RAFF
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FIGURE 4. A-RAFF algorithm.

algorithm is displayed in Figure 4 and further details can be
found in [58].

B. PROPOSED PSO BASED OPTIMIZATION PROCEDURE
FOR THE DISCOVERY OF OPTIMIZED SUBGRAPHS
İn this section, the proposed PSO based optimization scheme
to graph structure is presented. The identified graph structure
characteristics are also defined which will be considered in
designing the proposed fitness function.

The key to designing a good PSO procedure is to determine
the structure of the particles. A good structure makes the
problem simple and intuitive. In the proposed work, different
graphs are used as an input to the procedure. Each graph
pattern is mapped to a particle swarm, where the composition
of each particle swarms is the vertex (each vertex is used as a
particle). The following method is adopted for structuring the
particle. Let GD represents the graph database, which can be
mathematically written as,

GD =
∑n

i=0
Gi = (G1,G2, . . . .,Gn) (4)

The structure of each individual G is given by.

Gi = (V ,E,
∑

V
,
∑

E
, l) (5)

Where V is a set of vertices, E ⊆ V × V is a set of edges,∑
V is a set of vertex labels, and

∑
E is a set of edge labels

respectively in the graph dataset. The l is the label defines the
mappings V →

∑
V and E →

∑
E . As defined earlier, in the

proposed PSO procedure, each Gi corresponds to swarm and
the set of vertex in each G is mapped to particles. Hence,
mathematically, the structure of the particle swarm, S, can be
modeled as follows,

S = (
(
Ptv1,P

t
v2, . . . .,P

t
vN
)
,PosgBest , f gBest ,N ,D, t) (6)

In Equation (6), Ptvi represents a particle; PosgBest and
f gBest represents the global best position and global best value
of the fitness function discovered by the swarm; N is the
total number of particles in the swarm; and D represents the
dimensions of the particle and t represents the current time.

In the proposed PSO based optimization procedure, as an
individual vertex is assumed to be a particle, therefore,
the structure of each particle, Pvi, is designed using different
characteristics of the vertex found in the literature [28], [35],
[39], [59], [60]. In the particle structure formulation, follow-
ing vertex characteristics are adopted.

1) VERTEX DEGREE
Vertex degree determines the number of vertices which are
adjacent to the given vertex in a graph [39], [59]. It is denoted
by d (v). For directed graphs, the vertex degree is the sum of
in-degree and out-degree of a particular node. The out-degree
of a vertex in a graph is the connection of a particle with other
particles in the pattern. It is the sum of the row values in the
adjacency matrix of a graph. Mathematically,

Odi =
∑

j
Gji (7)

Where, j and i ∈ V ,

Gji =

{
1, if vertex j is connected i
0, vertex j is not connected i

The in-degree of a vertex can be defined as the degree
at which the other particle is communicating with a single
particle in the pattern. It can be calculated as,

Idi =
∑

j
Gij (8)

Where, i and j ∈ V ,

Gij =

{
1, if vertex i is connected j
0, vertex i is not connected j

Since, in this paper, we are focusing on undirected graphs,
therefore Gji = Gij.

2) DEGREE CENTRALITY
It is an important feature of the vertex and it refers to the ratio
of the number of edges attached to the maximum number
of possible edges which can be associated with a specific
node [30]. It is denoted by CD and mathematically it can be
calculated as follows,

CD(i) = di(Pvi)/n− 1 (9)

The value of CD(i) shows the significance of a node.
The larger the value of CD, the more significant the corre-
sponding node is. Degree centrality refers to the ability of
a specific node in the network to directly acquire network
flow content and its significance and influence in the net-
work [39], [40], [59].

3) CLOSENESS CENTRALITY
Closeness is considered as one of the fundamental models in
a topological space. It can be defined as the measure of how
long the information can spread from a given node to another
reachable node in the network [28], [39], [60]. The smaller the
value of closeness centrality, the smaller is the spread time.
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Intuitively, in case of two sets, they are said to be close to each
other if they are neighbors. It can be computed as,

Cc(i) =
1∑N

j=1 l(i, j)
(10)

l(i, j) is the distance between vertex i and j in the given graph
G and it is known as a geodesic. The closeness centrality of
each node takes a Boolean value, either 0 or 1. It measures
how fast information spread from a given node to another
reachable node in the network. The normalized version of the
closeness centrality Cc can be calculated by Equation (11),

Cc(i) =
N − 1
Cc(i)

(11)

WhereN represents the total vertex found in the graphG. The
larger the value of Cc, the closer the node lies in the network
or graph center. It shows that the node occupies an important
position in the network graph.

4) BETWEENNESS CENTRALITY
In graph theory, betweenness centrality is a measurement of
centrality on shortest paths or it is the load capacity between
other nodes in the given network. For every pair of nodes
in a connected graph, there exists at least one shortest path
between the nodes. Mathematically,

CB (i) =

∑
j 6=k σjk (i)

σjk
(12)

Where, σjk shows the total number of shortest paths from
node j to node k and σjk (i) is the number of shortest paths
from node j to node k which passes through node i. The
betweenness value for each node i is normalized by dividing
the excluded number of node pairs,

CB (i) = [
CB (i)

[(n− 1)(n− 2)/2
] (13)

This measure favors nodes that join communities (dense sub
networks), rather than nodes that lie inside a community. The
higher the value of CB, the greater is the node influence in the
network.

5) EIGENVECTOR CENTRALITY
For a node v, the eigenvector centrality score is proportional
to the sum of the scores of all nodes which are connected to it.
Let Ai,j denotes the graph adjacency matrix and xi represents
the score of the ith graph node. Thus, Ai,j = 1 if the ith node
is adjacent to the jth node and value of Ai,j = 0 otherwise.
Furthermore, the values in A can be real numbers, which
represent the strength of the connection between vertices,
as in a stochastic matrix. Mathematically, it can be defined
as,

Xi =
1

Y

∑N

j∈M(i),j=1
Xj =

1

Y

∑
Xi,jXj (14)

WhereM (i) denotes the set of nodes which are connected to
ith node. N is the total number of nodes in the given graph

and

Y

are a constant. In vector notation this can be rewritten
as,

X =
1

Y(X) =
(
1

Y

)
AX = AX =

Y

X (15)

Eigenvector centrality is like a recursive version of degree
centrality. Therefore, the final structure of each particle in the
swarm particles is formulated as,

Ptvi =
((
Ptvi,V

t
vi
)
,PospBestvi , f pBestvi

)
(16)

Postvi = (Postv1,Pos
t
v2, . . . . . . ,Pos

t
vN ) (17)

V t
vi = (V t

v1,V
t
v2, . . . . . . ,V

t
vN ) (18)

In Equation (16), Ptvi represents the position and V t
vi

represents the velocity vector. The Ptvi and V
t
vi values of a

particular particle at a given time t are represented in Equa-
tion (17) and (18) respectively. The flow chart of the pro-
posed PSO based approach for the discovery of the optimized
subgraph patterns (in terms of optimized nodes in the graph
structure) is shown in Figure 5.

C. DESIGNING A FITNESS FUNCTION
After finalizing the structure of the particle, the next critical
step is the designing of fitness functions, since the fitness
function plays very important role in the success of any
heuristic approach. An efficient and carefully designed fit-
ness function is helpful for the particles in the swarm to
discover better solutions rapidly [52]. In the proposed fitness
function, different important characteristics of the graph node
(particle) are used. These characteristics include the degree
of the particle (vertex), degree centrality, closeness centrality,
betweenness centrality, eigenvector centrality, and weight of
the particle (in case of weighted vertices).

In graph theory, the graph patterns with high connectivity
in terms of degree, having greater the centrality measure
values are better as compared to the other patterns [59].
Therefore, the aggregate score of the centrality measures with
high connectivity is defined by,

f (di) =
∑n

i=1
Score{CD(i)+ Cc(i)+ CB(i)+ X} (19)

In Equation (19), the values of the CD (i) ,Cc(i),
CB (i) , e(i) and X are computed from the equations, Equa-
tion (9), (11), (13), and (14) respectively. So, the fitness
function of a particle at time t , Ptvi, the centrality value is
defined as:

f
(
Postvi

)
= [f (d)] (20)

The proposed fitness function maps the Postvi of a particle
i to a real number representing the aggregate score of the
different particle (vertex) centrality measures characteristics.
A particle with the maximum value of the fitness function is
considered as a global optimum particle (vertex).

The proposed approach starts by considering the graph
in the graph dataset. The velocities of the node are ini-
tialized randomly. The position of the node is defined
using different identified characteristics of the node in the
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FIGURE 5. Flow chart of the proposed PSO based approach to the discovery of the opt-SGP.

graph structure. After calculating the position and velocities
of the node, the fitness value of each node is computed using
the Equation (20). Next, the node is evaluated to decide
whether the current fitness value of the node is good or just
ignoring the current fitness value by keeping the previous
fitness value of the node.

Furthermore, the velocity and the position values of each
node are updated with the new updated values, using Equa-
tion (1) and (2) respectively. This procedure continues until
the position value of the node is converged or the maximum
value of the epochs is reached.

IV. RESULTS AND DISCUSSION
To investigate the probability of the potential relationship
between the mined FSPs and opt-SGPs, different experi-
ments were conducted. Therefore, this section discusses the
experimental setup and results generated by simulating our
proposed technique. The FSPs were discovered using the
A-RAFF framework that was discussed in details in [58]. The
proposed PSO optimization approach was implemented in
Java using JDK 1.8 in Netbeans 8.1. All experiments were
performed on a 32-bit Intel Core i7-2600 CPU@3.40GHz
machine with 8GBRAM running on Linux operating system.
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TABLE 2. Dataset and characteristics.

TABLE 3. Randomly selected dataset and characteristics.

A. DATASETS
We have simulated four graph datasets with different sizes.
The chosen graph datasets were benchmark graph datasets
used in FSM frequently [61]–[66]. Original graph datasets
description is shown in Table 2.

We have extracted the sample graphs from the above
two graph datasets (See Table 2). Two sample graph
datasets are extracted from Chemical Compound [77] and
one sample graph dataset is extracted from the com-
pound dataset [78]. We label the sample graph dataset as
Sample_1_Chemical_340, Sample_2_Chemical_340. These
two graph datasets are extracted from Chemical Com-
pound graph dataset. The third sample graph dataset was
extracted from the Compound dataset and labeled as Sam-
ple_3_Compound_422. The fourth graph dataset was NCI
graph dataset. Graphs in each sample datasets are randomly
selected from the original datasets. The randomly selected
graph has diversified size with respect to nodes and edges.
The results obtained on the sample graph datasets were also
verified manually. This is due to the fact that this is the first
ever study on uncovering the potential relationship between
two types of graph patterns. Detailed statistics of each graph
sample datasets are given in Table 3.

B. PSO PARAMETER SETTINGS
The parameters and values used in the proposed PSO opti-
mization are presented in Table 4. Most of the existing lit-
erature on PSO optimization like [52], [67]–[70], use the
same parameters setup. The error rate for was fixed to 9999.0.
based on these initial values of the parameters, the proposed
PSO-based optimization procedure was executed until the
maximum number of iterations is exhausted or the error rate
was minimized.

TABLE 4. PSO parameter setting.

1) EXPERIMENT 1
In the first experiment, Sample_1_Chemical_340 was used.
The FSPs discovered using the FSM framework A-RAFF
from this sample graph dataset is given in Table 5. For
example, at 50% threshold values, total 25 frequent subgraph
patterns were discovered.

In each of these patterns set, the first two values represent
the node number, next two represent the labels of the nodes
and last value shows the label of the edge between two
nodes. The last value in each pattern represents the edge
label. For example, in Pattern # 1, (0, 1, ’0’, ’0’, ’3’), 0 and
1 represents the nodes and ‘0’ & ‘0’ shows that node 0 and
1 has label ‘0’ and the label of the edge between these two
nodes is 3. Next, we use the proposed PSO approach to extract
the opt-SGPs. For each graph, we obtained an optimized set
of nodes which show opt-SGPs. The opt-SGPs are indicated
in Table 6.

Next, we compare the number of the opt-SGPs and the
FSPs. Here, we compute how many FSPs structures were
there in the opt-SGPs. For example, at Minimum_Support
= 50%, Total FSPs discovered = 25, and Total FSPs which
contain the opt-SGPs = 23. Therefore, the FSPs which also
represent the opt-SGPs are given as,

opt− SGPs =
(FSPs ∗ 100.0)
TotalOpt_SGPs

= (23/25) ∗ 100.0 = 92%.

Therefore, 92% FSPs were matched to the opt-SGPs.
Only few FSPs do contain vertices, which were not opti-
mized by the proposed PSO based optimization technique.
This is because some graphs having many vertices and
convoluted edges which were scattered having only very
low values of different measures adopted for the particle
structure.

Furthermore, we extracted the FSPs at different support
values and then computed the matching patterns with the
optimized graph patterns. Table 7 summarized the matching
results of the FSPs and the opt-SGPs.

The investigation of the results described in Table 7,
demonstrates that a relationship exists between the FSPs
and the opt-SGPs. Maximum matching results of 92% were
obtained. This indicates that a large number of the FSPs are
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TABLE 5. Discovered FSPS from Sample_1_Chemical_340 at support threshold = 50%.

TABLE 6. OPT-SGPS retrieved from the proposed PSO optimization procedure on Sample_1_Chemical_340.

such that they also contain the nodes which were also out-
put as optimized using the proposed optimization procedure.
The obtained results were found encouraging. Therefore,
in the subsequent sections further large sample graph datasets
were simulated to explore the existence of the prospec-
tive relationship between these two types of the patterns.

In addition to this, few graph patterns were extracted as
opt-SGPs but these were not discovered as FSPs by the
A-RAFF. Such patterns are also depicted in the last col-
umn of Table 7. Actually, such FSPs were dropped from
the final set of the A-RAFF as these were duplicate
patterns.
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TABLE 7. Comparison of OPT-SGPS and FSPS on Sample_2_Chemical_340.

TABLE 8. Comparison of OPT-SGPS and FSPS on Sample_2_Chemical_340.

2) EXPERIMENT 2
In this experiment, we used larger graph datasets. In this
dataset, there were a total of 100 different graphs of dif-
ferent sizes. Likewise, in Experiment 1, here all the FSPs
were generated using the proposed A-RAFF framework.
After that, using the same graph dataset, the opt-SGPs
were enumerated from the proposed PSO based optimization
procedure.

We examine the relationship between the FSPs and the opt-
SGPs to validate whether the nodes which actively partake
in the FSPs are present in opt-SGPs or not. Table 8 contains
the detailed analysis results which show a strong relationship
between the two types of the subgraph patterns. In this graph
dataset, we have achieved a maximum of 88.03% matching
score, which indicates that from 117 FSPs there were total
103 FSPs which contains the nodes of the graph which were
also included in the opt-SGPs. In this experiment, the opt-
SGPs which were not output as FSPs by the A-RAFF are also
shown in the last column.

3) EXPERIMENT 3
In the third experiment, we have used Sample_3_Compound
_422 graph datasets. Graphs selected at random from this
dataset were more complex and contained many edges as
compared to the Sample_2_Chemical_340 graph dataset. The
detailed experimental results of this investigation, at various
threshold values, for mining FSPs and the discovery of the
opt-SGPs are displayed in Table 9.

TABLE 9. Comparison of OPT-SGPS and FSPS on
Sample_3_Compound_422.

TABLE 10. Comparison of OPT-SGPS and FSPS on NCI graph dataset.

In Table 9, we can observe that the number of FSPs discov-
ered is larger than the previous two graph sample datasets.
From the result set, it is clear that a strong relationship
between the FSPs and opt-SGPs is established. In this exper-
iment maximum matching score was 85.41 (i.e., there were
41 FSPs) were discovered that these patterns are including
the nodes which were the part of opt-SGPs).

4) EXPERIMENT 4
We have performed this experiment on larger graph dataset,
the NCI organic graph dataset, which contains the graph
representing the molecules from several sources [79]. See
Table 3 for the dataset details.

In Experiment 4, we have achieved 80% results. In Table
10, at support threshold value of (σ ) = 10 and (σ ) = 20,
memory was out due to a large number of extracted frequent
subgraph patterns. However, this experiment on large graph
dataset also confirms a potential relationship between the
frequent and optimized graph patterns.

C. ANALYSIS
In the preceding section, we have discovered the FSPs using
the proposed A-RAFF framework and next optimized graph
structures were obtained using the proposed PSO based
optimization to graphs; we executed these experiments in
order to reveal any potential relationship between the two
types of patterns. To the best of our knowledge, there is
no other mechanism offered to decide whether the discov-
ered FSPs are really frequent and are the most important
from the entire dataset under observations, except the tra-
ditional user-specified threshold values. Therefore, in this
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study, we were interested to check whether there exists any
relationship or not between FSPs and opt-SGPs. From the
above experimental results, we distinguished the following
four different cases:
• Is there any relationship between the frequent subgraphs
and optimized graphs?

• Whether a discovered frequent subgraph is also an opti-
mized graph?

• Whether an optimized graph pattern represents a fre-
quent subgraph pattern?

• How to decide about a significant frequent subgraph?
Next, these cases are addressed by giving suitable examples
from the above mentioned experiment results.

1) CASE 1: IS THERE ANY RELATIONSHIP BETWEEN
THE FREQUENT SUBGRAPHS AND
OPTIMIZED GRAPHS?
In this case, the answer is ‘‘Yes’’. Results shown in Table 7,
Table 8, Table 9, and Table 10 are encouraging and confer a
clear picture of the relationship, which was assumed in case 1.
In all the four experiments, we observed that most of the dis-
covered FSPs include all or a maximum subset of nodes from
the opt-SGPs. For example, the largest discovered FSP in the
first experiment was pattern number 8, (0, 1, ’0’, ’0’, ’3’) (1,
2, ’0’, ’0’, ’3’) (2, 3, ’0’, ’0’, ’3’) (3, 4, ’0’, ’0’, ’3’) (4, 5, ’0’,
’0’, ’3’)(5, 0, ’0’, ’0’, ’3’) (5, 6, ’0’, ’1’, ’0’) (2, 7, ’0’, ’1’,
’0’). Also, in the mined opt-SGPs, it can be observed that the
set of nodes which participated in the extricated FSPs were
also seen in most of the retrieved opt-SGPs (see the results
in Table 7). It is also important to note that at highest values
of the threshold parameter (σ = 50%), matching score of the
FSPs and opt-SGPs is very impressive (87% to 92%matching
patterns, see Table 7, Table 8, Table 9 and Table 10). For
example, in all the four experiments the matching score for
both types of the pattern wasmore than 85%. As the threshold
(σ ) value increased the matching percentage gradually falls
down. In spite of this, it is straightforward to conclude that
the following relationship holds: FSPs ≈ opt-SGPs, which
shows that both of the patterns are approximately equal to
each other.

2) CASE 2: WHETHER A DISCOVERED FREQUENT
SUBGRAPH IS ALSO AN OPTIMIZED GRAPH?
Again from the obtained results given in the above tables,
we can say that these results are very remarkable which
strengthened our assumption that a subgraph discovered as
frequent subgraph pattern is also an optimized graph. For
example, the patterns in FSPs {1, 2, 3, 4, 5, 6} have found
their matching patterns in opt-SGPs 1, 3, 9, 10, 11, 12, 14,
15. All the four experiments at a maximum value of threshold
(σ ) ensured that an FSP is an opt-SGP, but with the decreasing
value of the (σ ) the relationship tends to weak by a magnitude
of 5%. However, we believe that though there were some
pessimistic results, the adopted centrality measures need fur-
ther empirical exploration to validate the results of this novel
research study.

3) CASE 3: WHETHER AN OPTIMIZED GRAPH PATTERNS
REPRESENT A FREQUENT SUBGRAPH PATTERN?
The case 3 can be shown in a similar way to the case 2.
The experimental analysis reveals that if opt-SGPs are com-
puted using the proposed PSO approach then we can say that
this subgraph pattern is also a frequent pattern in the graph
dataset. However, there were some opt-SGPs which were not
output as FSPs, but their fraction was very small. If we exam-
ine the results in Table 7 and Table 8, then it is comprehensible
if a pattern is returned as opt-SGP then there exists an FSP
with the same structure. For example, most of the nodes in
the opt-SGPs {0, 1, 2, 3, 4} which were output as optimized
ones were also seen in the different discovered FSPs such as,
{Pattern−1 t 6, Pattern−14 to 25}. It was also observed that
there were some opt-SGPs {Graph− 3, 9, 10, 11, 14} which
contain the nodes {11, 12, 14, 20, 22} as optimized nodes but
such nodes never occurred in the FSPs. However, as a whole,
the results provide a clear picture that if a subgraph pattern is
optimized then it will also be an FSP.

4) CASE 4: HOW TO DECIDE ABOUT A SIGNIFICANT
FREQUENT SUBGRAPH?
In different experiments, the relationship between the FSPs
and the opt-SGPs indicates that more than 85% opt-SGPs
are contributing towards the FSPs (see the results in Table 7,
8, 9 and 10, at Threshold 50% and 30%). There were some
FSPs which contains a strong association with the optimized
patterns. Aswe have discovered a strong relationship in all the
four graph dataset between the FSPs and the opt-SGPs, there-
fore, we can say that an FSP is a significant FSP if it is fre-
quent subgraph as well as it has a strong relationship with the
opt-SGPs set. Thus, FSPs ≈ opt-SGPs ≈ Significant FSPs,
a frequent subgraph pattern which is approximately an opti-
mized subgraph pattern is a significant frequent subgraph
pattern. To further strengthen the claim, it is also important to
note that the results shown in Table 7, Table 8 and Table 9 are
also crossed verified manually by looking at the FSPs
structure.
Computational Complexity: The computational complex-

ity of the proposed PSO optimization strategy is computed as
follows: the complexity of the proposed PSO based procedure
mainly depends on the following factors: Population size (no
of graphs) denoted byN and the number of iterations denoted
by P. Therefore, the total computational cost for the proposed
PSO based optimization procedure will be O (N ∗P).
Furthermore, the computation complexity of the frequent

subgraph mining A-RAFF algorithm mainly depends on
computation involved in the discovery of FSPs and ranking of
the frequent subgraphs. Thus, computational complexity for
the loop used for the extraction of the graph features is O (n),
where n is total of graph features. In the FSPs algorithm, there
is recursion involved inside the loop. Therefore, it can easily
be observed that it will compute all the frequent subgraph
patterns in O

(
2N

2
)
time and it was provided in our earlier

work [58].
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V. CONCLUSION
In this exploratory study, we investigated the relationships
between the FSPs and the opt-SGPs. The FSPs were discov-
ered using the proposed FSM framework A-RAFF in our ear-
lier work. The opt-SGPs were discovered using the proposed
PSO based optimization techniques in this article. We believe
that this is, in essence, the first-ever study, which is performed
to identify a relationship between the two types of patterns.
The PSO based optimization procedure is recommended to
identify the relationship. Different graph measurements and
characteristics were adopted from the literature to structure
the particle in the proposed PSO procedure. Also, based on
different node characteristics collected from the literature,
a scoring function is designed which acts as a fitness function.
One of the important advantages of this study will be the
reduction of the FSPs, by choosing those FSPs in the final
result set which were also proved as optimized. Different
experiments were performed to validate the claim of the
relationship between the FSPs and the opt-SGPs. The results
are very promising and it is optimism that this study will open
a new research direction in the frequent subgraph mining
domain. The study concludes that the optimized nodes of
the graphs in the graph dataset are also those nodes which
participate in the FSPs.

Although our efforts offer a reasonable proof of the undis-
covered association between the two types of patterns, how-
ever, we believe additional analysis will further strengthen
this relationship. We have recommended the PSO scheme for
establishing the relationship between the frequent subgraph
patterns and the optimized subgraph patterns; it will be inter-
esting to explore this relationship with another optimization
algorithm including dynamic programming.
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