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ABSTRACT Motion trajectories tracked from the points of interest can provide the key relevant features for
characterizing the motion patterns in video. As the increasing number of 3-D vision sensors rises, the 3-D
motion trajectories that serve as motion representations have been applied successfully to video retrieval
and analysis, scene understanding, motion recognition, and so on, in existing works. Most of these works
use raw data of motion trajectories directly or draw simple geometric quantities to describe the motion
trajectories, whereas these simple descriptions are not intrinsically complete as they cannot feature the
orientation changes of moving points along the 3-D motion trajectories. In principle, orientation changes
of a single moving point in 3-D space have to been obtained by resorting to high-order derivatives, but the
high-order derivatives would result in high sensitivity to noise. This paper tackles the problem by describing
the local reference frames along 3-Dmotion trajectories, while we consider a motion trajectory as a temporal
sequence of local reference frames. The maximal blurred segment of the noisy discrete curves is employed
to estimate the local reference frames without high-order derivatives involved, and the local reference frame
contains complete information of positions and orientations in the 3-D Euclidean space. To describe such
local reference frames, we use the rotations and local square root velocities of local reference frames as
the proposed descriptor to characterize the position and orientation changes of the moving points along
the motion trajectories. In the experiments, we evaluate the effectiveness of the proposed descriptor by
applying it to the gesture recognition on two large benchmark data sets that contain hand motion trajectories.
The results show that our proposed descriptor can achieve superior performance compared to the existing
descriptors and state-of-the-art methods in the 3-D motion trajectory recognition.

INDEX TERMS Motion trajectory, gesture and activity recognition, local reference frame, maximal blurred
segment.

I. INTRODUCTION
As increasing number of 3D videos arise, 3D motion trajec-
tories tracked from points of interests can provide a compact
and informative clue for motion characterization. They could
serve as an effective feature to retrieve and match motions
in video [1], to recognize hand gestures in human-machine
interaction [2], to imitate human actions for robots [3], and
so on. Among these studies, 3D motion trajectories of body
parts and skeleton joints were used to represent gestures and
human actions in video. In most cases, motion trajectories
are often described directly by raw trajectory data, such as
absolute positions and relative position changes of moving
points. These raw data suffer from variance to view changes
(e.g., rotation, translation and scaling in 3D space) and

sensitivity to noise. As such, we focus on addressing these
challenges by deriving an effective and invariant descriptor
with sufficient discriminability to provide substantial advan-
tages over raw data in trajectory recognition tasks.

A variety of existing works tried to propose effective
descriptions for 3D motion trajectories which include point
motion trajectories [4], [6], [7] and rigid body motion tra-
jectories (position vectors and orientation vectors) [8], [9]
in 3D space. These descriptors showed very good properties
in noise robustness and view invariance, and achieved supe-
rior performance when applying them in trajectory matching,
retrieval, and recognition. It can be observed that a complete
description for 3D motion trajectories should be able to fully
characterize spatio-temporal patterns by considering both the
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positions and orientations of moving points. For rigid body
motion trajectories, their descriptors are usually obtained by
considering motions of more than one reference points on
rigid bodies [8], [9]. In many applications, however, we can
only obtain a single point trajectory of a moving object in
stereo vision tracking systems, such as 3Dmotion trajectories
of blobs obtained by tracking moving body parts [10]. In this
case, high-order derivatives [6], [7] have to be involved for
obtaining local reference frames to derive coordinate-free
invariant descriptors. Such invariant descriptors are closely
related to local curvature and torsion [6] that are a kind of
complete descriptors for 3D point trajectories, being able
to characterize both the position and orientation changes of
moving points. Nevertheless, high-order derivatives could
bring a sensitivity to noise in the trajectory. Inspired by our
previous work [4], [5], and [17], we are trying to estimate
a local reference frame at each point along motion trajec-
tories without computing high-order derivatives, as shown
in Figure 1. We then describe such local reference frames
to capture the position and orientation changes of moving
points along motion trajectories, while we see a point motion
trajectory as a temporal sequence of local reference frames
along time instances in this paper.

FIGURE 1. Example of a temporal sequence of local reference frames
along a motion trajectory, where {t, n, b} represent the tangent vector,
normal vector, and binormal vector of each local reference frame,
respectively.

This paper proposes a new approach to describe the posi-
tion and orientation changes of moving points along 3D point
trajectories. First, at each point we estimate a local reference
frame independent of view changes and scaling by employing
the maximal blurred segment [4], [5], [17] of discrete curves.
Basing on such temporal sequence of local reference frames,
the rotation and local square-root velocity [8] of the current
frame with respect to its previous frame are computed to
form our proposed descriptor characterizing the position and
orientation changes of moving points along motion trajecto-
ries. To evaluate the effectiveness of the proposed descrip-
tor, we apply it to gesture recognition. An overview of the
recognition pipeline based on the proposed descriptor can be
found in Figure 2. The proposed descriptor shows superior
recognition performance on very noisy and large gesture

datasets, IP (InteractPlay) dataset and MSR-12 dataset, col-
lected by tracking body parts with a stereo vision system and
Kinect sensor, respectively.

A. RELATED WORKS ON ESTIMATION OF LOCAL
REFERENCE FRAMES
The estimation of local reference frames refers to approx-
imate their basis vectors on each point of digital lines
and objects, for instance, tangent and normal vectors.
In discrete geometry, tangent estimation has many applica-
tions [14], [15], such as the length estimation and curva-
ture estimation of a digital curve. Among those estimation
techniques, parametric curve fitting and digital line segments
are most available common methods to obtain instant frames
and their curvatures and torsions. Particularly, digital line
segments are more acceptable for motion trajectories since
that they do not require the point density and clean point
data, showing more robustness to noisy digital curves [11].
As such, Nguyen and Debled-Rennesson [16], [17] proposes
a blurred segment approach to estimate the curvatures and
torsions for 3D digital shapes and curves. By using these
estimation techniques of curvatures and torsions, the basis
vectors for local reference frames can be obtained straight-
forward since that they are closely related among curvatures,
torsions, and local reference frames. Thus, we employ a
typical 3D maximal blurred segment [16], [17] to estimate
the local reference frames along 3D motion trajectories.

II. DESCRIBING LOCAL REFERENCE FRAMES
A. ESTIMATION OF LOCAL REFERENCE FRAMES
A3Dmotion trajectory is a set of position vectors of amoving
object in 3D Euclidean space. Normally, it can be represented
by a set of triple parametric functions with respect to the
time t , 0 (t) = {x(t), y(t), z(t)|t ∈ [1,N ]}, where N is the
trajectory length.

Estimating the instant local reference frame at each point
is the key problem to propose our approach for motion trajec-
tory description. In 3D Euclidean space, Frenet-Serret frame
is a special moving frame which describes the kinematic
properties of a particle along a motion trajectory [5], where
each point of a parametric trajectory is associated with a
set of triple orthogonal unit vectors to describe its dynamic
properties: 1) the tangent vector t; 2) normal vector n; and
3) binormal vector b, as shown in Figure 1. The three vectors
of the Frenet-Serret frame (t,n,b) at point pt ∈ 0 are an
orthogonal basis constructed from the Gram-Schmidt process
to the vectors and their derivatives, defined as follows,

F(t) = {t(t),n(t),b(t)} , (1)

where,
t(t) =

0′(t)
‖0′(t)‖

n(t) =
t′(t)
‖t′(t)‖

=
0′(t)×

(
0′′(t)× 0′(t)

)
‖0′(t)‖ ‖0′′(t)× 0′(t)‖

b(t) = t(t)× n(t)

(2)
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FIGURE 2. Overview of the proposed approach for 3D motion trajectory recognition. Input can be a 3D motion trajectory of the center of any particular
blob obtained by vision tracking. By using the maximal blurred segments of discrete curves, we estimate the local reference frames (LRFs) along the
motion trajectory. As the motion trajectory is considered as a temporal sequence of LRFs, the rotations and square-root velocities of the LRFs are
calculated to form the proposed descriptor (LRFb). Finally, Fisher vector encoding is employed to encode such descriptor into a representation, which
is input into a simple linear SVM classifier to do motion trajectory recognition.

In this manner, all the points in a 3D motion trajectory
can be represented by their unit vectors, (t,n,b). In this
paper, we employ a 3Dmaximal blurred segment [14], [17] to
estimate Frenet-Serret frames as our local reference frames,
avoiding high-order derivatives.

3D maximal blurred segment (MBS) of noise
curves [5], [14], [17] is used to decompose a discrete noisy
trajectory into some consecutive overlapped minimally thin
blurred segments via eliminating and bypassing those noisy
points. Next, a number of pairs of the corresponding left and
right key points of the blurred segments nearby each reference
point are obtained, so that the local reference frames can be
constructed by those non-collinear triple points. The detailed
description of MBS [5] is briefly recalled as follows.

FIGURE 3. Optimal bounding line D of two successive blurred segments
of a discrete curve in OXY plane [4].

Throughout this paper, we use 0 (i, j) to denote a seg-
mented trajectory from time instance i to j of the tra-
jectory 0. As the motion trajectory can be seen as a
discrete curve, we segment a known 3D discrete curve
into a number of 3D discrete lines (blurred segments)
D3D(a, b, c, µ, µ′, ω, ω′) [11] of the width v that is to control
the segmentation level of a sequence of points 0 (i, j) in the
3D discrete curve such that ω′ − 1/max (|a|, |b|) ≤ v on
the plane OXY and ω − 1/max (|a|, |c|) ≤ v on the plane
OXZ . A toy example of blurred segments of a discrete curve
on the plane OXY is shown in Figure 3, where there are two
consecutive blurred segments and the width is determined
by the dynamical thickness estimation of convex hulls [12]

that consists of a set of successive discrete points as shown
in Figure 3.
Faure et al. [14] and Nguyen and Debled-Rennesson [17]

further proposed the concept ofMBS ofwidth v, whichmeans
each segmented 3D discrete line for a discrete curve cannot
be extend neither at right side nor at left side for givenwidth v.
Basing on this concept, we can decompose a 3D discrete
trajectory 0 into a sequence of intercrossed maximal blurred
segments (MBSs) of width v with m length:

MBSv(0) = {MBS(B1,E1, v), . . . ,MBS(Bm,Em, v)}, (3)

with B1 < B2 < · · · < Bm and E1 < E2 < · · · <

Em. {Bi,Ei} |i ∈ [1,m] denotes the beginning and end-
ing positions of a maximal blurred segment of the discrete
trajectory. Given a sequence of maximal blurred segments
MBSv(0), to estimate the Frenet-Serret frame at a point,
we first denote the estimated key points of the discrete tra-
jectory with 0 (Bi), 0 (Ei)|i ∈ [1,m] from the MBSs of
the discrete trajectory. Then let {R(t) ∈ {Bi,Ei} ,L(t) ∈
{Bi,Ei} |t = 1 · · · N } record a sequence of positions of the
estimated right nearest key points and left nearest key points
at each reference point0 (t) such that: L(t) < t < R(t), where
we assume these triple points {0 (R(k)), 0 (t), 0 (L(t))|t =
1 · · · N } to be always not collinear. We then approximate the
osculating circle at 0 (t) using the circumcircle of the triangle
bounded by these triple points. Let C(t) be the center of the
circumcircle.

Then, we define the norm vector at 0 (t) as n(t) =
−−−−−→
0 (t)C(t)

/∣∣∣−−−−−→0 (t)C(t)
∣∣∣. The unit tangent vector t(t) is the unit

vector that is tangent with the osculating circle at point 0 (t).
Then the binormal vector b(t) is obtained straightforwardly
by cross product: b(t) = t(t) × n(t). The local Frenet-Serret
frame is then defined as, F(t) = {t(t),n(t),b(t)}.

B. ROTATION AND SQUARE-ROOT VELOCITY
OF LOCAL REFERENCE FRAMES
Basing on a temporal sequence of local reference frames,
we use a combined vector of quaternion and local square-root
velocity to describe the position and orientation changes of
the local reference frame at each time instance,

st =
[
q(t), {R}vl(t)

]
, {st } ∈ R7×N , (4)
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where the quaternion q(t)=[qw(t), qx(t), qy(t), qz(t)],q ∈
R4×N describes the rotation of the current local frame with
respect to the previous frame. {R}vl(t) = R(t)Tvg(t) denotes
the local square-root velocity that is obtained by projecting
square-root velocity vector vg(t) of each local reference frame
in the world coordinate into the relative velocity vector with
respect to the local reference frame. The unit vector vg(t) is
the SRVF [20], which is an elasticmetric based representation
with many advantages and defined as

vg(t)=
0̇(t)√∥∥0̇(t)∥∥ , (5)

where 0̇(t) denotes the first-order derivative with respect to t .
According to Euler’s rotation theorem, a sequence of rota-

tions can be equivalent to a single rotation by a given angle
β about a unit vector ŵ. The unit quaternion can provide a
simple way for encoding such axis-angle representation in
four numbers,

q =
[
cos

(
β

2

)
, ŵT sin

(
β

2

)]
, (6)

where the unit vectors ŵ can be obtained by,

ŵ =
1

2 sinβ

R(3, 2)− R(2, 3)
R(1, 3)− R(3, 1)
R(2, 1)− R(1, 2)

, (7)

where β = arccos ( trace(R)− 1
2 ) and trace(R) is the sum of

diagonal elements ofR. Suppose there are a sequence of local
reference frames F(t), t ∈ [1,N ] for a motion trajectory,
the rotation between a pair of time-adjacent local reference
frames can be represented by a rotation matrix R ∈ R3×3,
which can be explicitly calculated by

R(t) = F−1(t − 1)F(t). (8)

And therefore, by (4-8) we can obtain the local reference
frame based (LRFb) descriptor, S = {st }.

III. EXPERIMENTS
This section applies the proposed descriptor to human ges-
ture recognition for evaluating its effectiveness in motion
trajectory characterization and recognition, where two large
and noisy benchmark datasets for gesture recognition,
InteractPlay [10] and the MSRC-12 [21], are employed.
In experiments, we first explore the effects on recognition
performance when applying different individual descriptors
on the InteractPlay dataset. Then, we compare our method
with the previous state-of-the-art methods and analyze their
performance. Finally, we extend our method to full body
gesture recognition onMSRC-12 dataset when only two joint
trajectories of the left and right hands are used, and evaluate
the potential of our method in action recognition, while other
methods applied on MSR-12 dataset have utilized all 20 joint
trajectories as full body gesture representation.

The recognition performance is evaluated by the mean
classification accuracy, which represents the average of suc-
cessful classification rates for all classes in a dataset.

A. IMPLEMENTATIONS
1) FEATURE ENCODING AND CLASSIFIER
In order to apply a linear classifier on the proposed descriptor,
we employ Fisher vector (FV) encoding [18] with a temporal
pyramid manner [19] to encode the descriptors into repre-
sentations with same lengths, where the fisher vectors are
aggregated along a temporal pyramid dimension to constitute
the fisher codes. More specifically, we recursively partition
motion trajectories into a pyramid from 0 to Z scale, where
at z- th scale there are 2z segments in temporal dimension.
We then do FV encoding on all the segments, and obtain
local FVs on each segment. Thus, each representation is the
concatenation of these local FVs from all the segments, and

its size is 2KD*
Z∑
i=0

2i, where D is the descriptor length of

st and K is the number of mixture components in the GMM
model for Fisher vector encoding. With such FV encoded
representations, we train a linear SVM as the classifier to
recognize human gestures using the LIBSVM library [22].
In the training of the SVM classifier, we use the linear kernel
and leave all the parameters in default as set in the library.

2) PARAMETER SETTINGS
All the provided experiments are conducted on trajectory-
based gesture datasets. Hand trajectories tracked by stereo
vision systems and Kinect sensors are provided in two
datasets, respectively.We estimate the local reference frames,
and extract the LRFb descriptors for each hand trajectory. The
extracted LRFb descriptors of the left and right hand trajecto-
ries are concatenated along the temporal dimension into a set
of feature descriptors. As the estimation of the local reference
frames is based on discrete trajectories, we digitalize each
motion trajectory with 1000 grids. Maximal blurred segment
of the digitalized trajectory with width v = 8 on all datasets is
then performed. In the Fisher vector encoding, we empirically
use 64 mixture components to learn a GMM model. For the
temporal pyramid, we subdivide hand trajectories at 3 scales
in the temporal dimension, and do average pooling on FV
codes of each temporal partition. Hence, the final representa-
tion for each gesture is an encoded vector of size 2∗K∗D∗15,
where K = 64, D = 14 for two hand motion trajectories in
the experiments.

B. 3D INTERACTPLAY DATASET (IP)
The IP dataset [10] is a hand gesture dataset consisted of 3D
hand trajectories tracked by a stereo vision system. This
dataset contains 16 gestures from 22 persons and provides
5 sessions and 10 recordings. There is a total of 16000 gesture
samples. The dataset contains 3D motion trajectories of the
head, torso, and two hands. Figure 4(a) shows an example of
the swim gesture sequence from one camera, and the corre-
sponding trajectories of four blobs are shown in Figure 4(b).
As shown in the figure, the two hand trajectories play a major
role in performing gestures, and we use only hand trajectories
to extract the LRFb descriptors. We follow the evaluation

36118 VOLUME 6, 2018



Z. Shao et al.: Describing LRFs for 3-D Motion Trajectory Recognition

FIGURE 4. (a) Example of a ‘‘swim’’ gesture instance from the IP dataset.
From top-left to bottom-right, a frame-by-frame decomposition of a
‘‘swim’’ gesture instance from the point of view of the right camera,
where the use of gloves with distinct colors are used to facilitate visual
tracking. (b) 3D motion trajectories of the centers of particular
blobs (head, torso, left hand and right hand) for a ‘‘swim’’ gesture. [10].

protocol in [2] and [10], where the half samples performed
by 10 persons are for training, and the remaining half samples
are for testing.

We first compare our experimental result with the results
using existing popular descriptors on this dataset. Those
existing descriptors are generated as time sequences and share
the same encoding procedure as the proposed descriptor.
To have a fair comparison, the linear SVM classifier is used
for all the compared descriptors. As Table 1 summarizes
those results, it can be observed that the best performance
of 88.95% is achieved by the proposed descriptor. To seemore

TABLE 1. Comparison results with existing descriptors on IP dataset.

FIGURE 5. The confusion matrix of the proposed method for IP dataset.

deeply the results, the confusion matrix is given in Figure 5.
We observe that most gestures are classified very well. Some
mistakes occur between ‘‘up’’ and ‘‘down’’ gestures, since
that these two gestures involve a same trajectory shape but
different moving directions with respect to the hip. Likewise,
some confusion occurs between ‘‘point right’’ and ‘‘point
front’’. We then compare our method (LRFb+SVM) with
current state-of-the-art methods we can find in recogniz-
ing gestures on this dataset, and summarize their results
in Table 2. Our proposed descriptor with a linear SVM
achieves the best performance among all methods compared.

TABLE 2. Comparison results with current state-of-the-art methods on IP
dataset.

C. MSRC-12 DATASET
MSRC-12 dataset [21] is a large gesture dataset recorded
by Microsoft Kinect, where 16 classes of gestures are col-
lected from 30 subjects. One gesture is performed several
times by an individual in each sequence. In total, there
are 594 sequences consisted of 6244 gesture instances.
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TABLE 3. Gesture classes in the MSRC-12 dataset and the number of
annotated gesture instances from each class.

Each sequence contains tracks of 20 joints estimated using
Kinect pose estimation pipeline and is captured at a sam-
ple rate of 30HZ with 2cm accuracy in joint positions.
We segment these gesture sequences based on the labeled
action points provided by [26] getting 6244 gesture instances.
Table 3 lists 12 action classes in the dataset and the number
of annotated action instances of each class. We follow the
evaluation protocol of 50% cross-subject in [26], in which we
split the segmented dataset into training set and testing set,
performed by odd subjects and even subjects, respectively.
Asmost existingworks use the 20 joint trajectories for gesture
recognition on this dataset, we instead only extract the left
and right hand trajectories as the motion trajectories used in
recognition since that two hand trajectories play a main role
in most of the gestures in the MSRC-12 dataset.

FIGURE 6. Example gesture ‘‘Throw an object’’ from MSRC-12 dataset.

TABLE 4. Comparison results with current state-of-the-art methods on
MSRC-12 dataset.

Figure 6 shows an example gesture from this dataset.
Table 4 lists our result and existing state-of-the-art results.
The confusion matrix achieved by our method is shown
in Figure 7. Our method achieves a competitive result
of 90.38%, compared with the best result which however
requires all 20 joint trajectories of the full body. We achieve
such competitive results with only two hand trajectories.
Insights into our performance can be obtained by examining
the confusion matrix, where our method distinguishes all ges-
tures very well. However, the best method [27] cannot have

FIGURE 7. The confusion matrix of the proposed method for
MSRC-12 dataset.

a good classification between ‘‘goggles’’ and ‘‘had enough’’,
and achieved a classification accuracy of 72%.

IV. CONCLUSION AND FUTURE DIRECTIONS
This paper proposes an effective approach for motion tra-
jectory description and recognition. We build the descrip-
tor on the estimated local reference frame at each point
along motion trajectories. Such local reference frame based
descriptor intrinsically owns invariant properties under scal-
ing, translations, and rotations attributed to the view indepen-
dence of local reference frames. As the estimation of local
reference frames is based on maximal blurred segment which
can automatically bypass noisy points, the descriptor also can
show robustness to noise data. While this descriptor could
capture the spatio-temporal position and orientation changes
of a point trajectory, its use in trajectory classification can
help distinguish very well complicated motion patterns. The
experimental results in large benchmarks show our descriptor
is an effective descriptor for characterizing a point motion
trajectory in 3D space.

By observing the experimental results, those gestures with
similar trajectory shapes tend to confuse each other. That
is because the proposed descriptor only considers trajectory
shapes without taking their relative directions into account.
We believe that the relative directions with respect to a key
reference point in a particular scenario can be easily incorpo-
rated our descriptor in the future work.
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