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ABSTRACT Air pollution has become an extremely serious problem, with particulate matter having a
significantly greater impact on human health than other contaminants. The small diameter of fine particulate
matter (PM2.5) allows it to penetrate deep into the alveoli as far as the bronchioles, interfering with a
gas exchange within the lungs. Long-term exposure to particulate matter has been shown to cause the
cardiovascular disease, respiratory disease, and increase the risk of lung cancers. Therefore, forecasting air
quality has also become important to help guide individual actions. This paper aims to forecast air quality
for up to 48 h using a combination of multiple neural networks, including an artificial neural network,
a convolutional neural network, and a long-short-term memory to extract spatial-temporal relations. The
proposed predictive model considers various meteorology data from the previous few hours as well as
information related to the elevation space to extract terrain impact on air quality. The model includes trends
from multiple locations, extracted from correlations between adjacent locations, and among similar locations
in the temporal domain. Experiments employing Taiwan and Beijing data sets show that the proposed model

achieves excellent performance and outperforms current state-of-the-art methods.

INDEX TERMS

Dynamic time warping(DTW), convolutional neural network(CNN), long-short-term

memory(LSTM), spatio-temporal analysis, big data, air quality forecast.

I. INTRODUCTION

Increasing attention has been given to air quality degen-
eration, with particulate matter (PM) having a significant
egregious impact on human health. The small diameter of
fine particulate matter (PM2.5) allows it to penetrate deep
into the alveoli as far as the bronchioles, interfering with gas
exchange within the lungs. Xing showed that long term expo-
sure to particulate matter increased the risk of the cardiovas-
cular disease, respiratory disease, and lung cancer [1]. With
increasing public health consciousness, many cities have
established air quality monitoring locations. However, most
services only show the current air quality and do not forecast
air quality. Air quality prediction is essential to help guiding
individual actions limiting PM2.5 exposure, e.g., choosing
outdoor or indoor activities.

However, accurate air quality forecasting is hindered by a
complex array of factors [2]-[4], including emissions, traffic
patterns, and meteorological conditions. Meteorologists are
still substantially limited to provide reliable wind pattern
predictions, which can vary considerably in direction and

strength every hour [5], and there are insufficient sensors
deployed to provide emission data from factories or vehi-
cles. Recent studies have shown it is critical that time and
space be explicitly considered to analyze air quality [6]-[8].
Particulate matter has high cyclicality and is easily affected
by space, stagnating or diffusing to pollute surrounding envi-
ronments. If PM is only analyzed in the time domain, this
may neglect impacts and relationships between other regions;
whereas considering only spatial relationships may omit PM
diffusion from over time. Therefore, time and spatial rela-
tions must be simultaneously considered to accurately model
PM diffusion.

Data mining provides new methods to analyze air quality
in the absence of physical models [9]-[11], and may identify
hidden information in the collected data. Furthermore, pre-
diction speed is far quicker once a model is trained than for
traditional physical models. Therefore, we propose a model
to provide 48 hours air quality index (AQI) predictions every
hour at every monitoring location. As shown in Figure 1,
we forecast 48-hours predictions from the current time, ¢,
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FIGURE 1. Air quality index (AQI) forecast format.

using historical data. In particular, the peaks and valleys are
the most important segments for the future predictions.

This study proposes a general predictive model for
air quality forecasts called spatial-temporal deep neural
network (ST-DNN) that incorporates various information
from monitoring locations, including PM2.5, PM10, tem-
perature, wind speed, wind direction, average wind speed,
average wind direction, relative humidity, and data related
to the elevation space. The model was trained using current
and previous few hours air pollutant and meteorological con-
dition data. The proposed scheme does not consider fore-
cast data from external sources. We developed a method to
integrate the relevant data based on geographical and tempo-
ral correlations among monitoring locations. We first found
the most relevant spatial-temporal relations among locations,
then combined multiple neural network architectures using a
convolutional neural network (CNN) [12] and long short term
memory (LSTM) [13]. Target and similar location spatial-
temporal features were used to increase the predictive model
sensitivity and explicitly consider terrain impacts for pollu-
tant propagation. Thus, the proposed model uses (i) temporal
information based on target location historical data, (ii) spa-
tial relationships based on related locations’ data, i.e., loca-
tions with high spatial or temporal similarity, and (iii) terrain
information for the area around the locations.

To validate the proposed model, we performed experi-
ments using two real-world datasets: 76 locations in 23 cities
in Taiwan [14] and locations from Beijing dataset [15].
The experimental results confirm that the proposed methods
achieve excellent performance, superior to current baselines
and several state-of-the-art methods. The main contributions
of this study are as follows.

o We propose a framework to mine spatial-temporal data

for a given location to provide a predictive model.

o We develop a deep learning model combining multi-
ple neural networks to incorporate air quality correla-
tions among similar locations and temporal dependency
at a given location. Spatial and temporal predictions
are combined dynamically based on the trained neural
network.

o The proposed system has been deployed throughout
Taiwan, providing access to fine grain information
regarding air quality via a public website [16] and
Facebook chatbot [17].
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The remainder of this paper is organized as follows.
Section II describes related works, and Section III defines the
problem to be addressed. Section IV presents an overview
of the proposed system, describes the proposed method
to mine spatial-temporal relationships, and provides the
proposed spatial-temporal prediction model framework and
details. Section V compares the proposed model perfor-
mance with previous state-of-the-art algorithms based on
real-world datasets, and Section VI introduces real applica-
tions developed to provide convenient and publicly accessible
PM2.5 forecasts. Finally, Section VII summarizes and con-
cludes the paper.

Il. RELATED WORKS

Qin et al. [18] proposed mining environmental spatial-
temporal relationships using an a-priori pattern mining algo-
rithm. They shifted one of the time sequences to create
specific gaps in each time sequence to generate high fre-
quency candidates for rule generation. The resulting rules
reveal the appearance of pollutants with delays in different
locations. However, his method requires repeatedly running
the rule generation process through numerous combinations,
which is time consuming.

Zheng et al. [5] proposed a framework that considered
temporal as well as spatial relationships. The framework
was divided into four components: temporal predictor, spatial
predictor, prediction aggregator, and inflection predictor. The
temporal predictor considered only historical data of the tar-
get location using linear regression. The spatial predictor con-
sidered global data using the mean and median in the region
around a location, using an artificial neural network (ANN).
The ANN excluded information from other locations, hence
the results were insensitive to surroundings conditions and
global trends. The predictor aggregator used a regression tree
with three inputs to combine temporal and spatial predic-
tors with local meteorological data. The inflection predictor
identified sudden drops in target feature value, i.e., PM2.5,
by finding situations where specific feature thresholds were
surpassed. The proposed framework pre-trained the temporal
predictor and spatial predictor, and then trained the predictor
aggregator to combine the results. However, this can over-fit
the data, since the same features are adopted as delimiters
in the predictor aggregator; and the spatial predictor con-
siders the mean and median values in a large region, which
can reduce sensitivity. Zheng also separated the wind direc-
tions into 8 classes and did not consider terrain information,
although PM2.5 diffusion depends strongly on wind, which is
greatly influenced by terrain. Therefore, Zheng’s model may
not be suitable for undulating terrain.

Soh et al. [19] previously proposed a k-nearest neigh-
bor by DTW distance (kNN-DTWD) method to consider
time sequence similarities for different locations and then
compared surrounding locations using the k-nearest neigh-
bor by Euclidean distance (kNN-ED). DTW [20], [21] is a
well-known method to calculate similarity between two time
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series, hence we applied DTW to calculate location tempo-
ral distances and used k-nearest neighbor (kNN) to identify
locations with the most similar temporal behavior [19]. This
differs from the approach of Zheng et al. [5] in that we were
seeking to enhance prediction sensitivity over short durations
rather than longer periods. Experimentally, KNN-DTWD out-
performed kNN-ED on average. However, for some special
cases, e.g., flat areas with numerous locations, the kKNN-ED
method proved advantageous. The kKNN-DTWD method was
well suited selection locations with similar behavior, and
the kKNN-ED method was best avoided where there was a
mountain between the locations.

This work combines KNN-ED benefits for featureless land-
scapes with kNN-DTWD benefits for complex landscapes,
allowing the model to derive optimal combinations of based
on the training data, as detailed in the following sections.

ill. PROBLEM DEFINITION

We first identify the locations with the most influential
spatial-temporal relationships to the target location and then
predict sequences for the target location based on time
sequence features that include spatial information. Hence,
the locations are fixed, and the time sequences vary accord-
ing to their positions. Spatial features could also impact the
sequences, e.g., a mountain between two locations. There-
fore, we use both temporal and spatial relationships in the pre-
dictive model. To extract the features for prediction, we first
define related spatial and temporal relationship parameters.
Suppose we have a set of locations: L = {Iy, l>,...,[,} and
a set of features: F = {fi, f, .. .fmn}. Each location has geo-
graphical information, such as latitude and longitude, hence
we define the location coordinate (LC) as

Definition 1: Location Coordinate.

Lei = (i, xi,y), liel (D

where x; and y; are the latitude and longitude at location /;,
respectively. Since related location features could improve
prediction, we define the distance between two location coor-
dinates as

Dsq,c = diStlocation(Lan Le.)

= disrlocation((lq, Xg» )’q)7 (e, xes ¥e)),

lgle €L, qg#c (2

to find the most closely related locations in the spatial
domain; and the spatial relationships sequence (SRS) set as
Definition 2: Spatial Relations Sequence Set.

SRS = {Ds12,Ds13,...,Dsp—1n}, Dsii =0,

O<i<n4+1 (3)

where the matrix elements are calculated from (2); n is the
number of locations; and the diagonal elements, Ds; ;, are all
zero. The most relevant locations are SRS_cand(l;,k), the set
of k locations with the smallest spatial distance to ;.

We consider the features of these relevant locations in the
spatial domain, since locations with similar feature sequences
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may help to improve prediction. We define the feature
sequence interval (FSI) for a specific location as
Definition 3: Feature Sequence Interval with Location.

S(li’f}’ tS[,fl) = {e(li’f}’ tsf)v e(li’f}’ tSt+1)’ sy
e(li,fi,t0)}, Liel, feF, st<ft. (4

where [; has feature f; that varies from start, s¢, to finish, ff,
time (st < ft); and e(l; f;,tx) represents the measured value
of f; at .

We can express the distance between feature sequences for
any two locations as

thvc’tsr,ﬁ
= disrsequence(s(lqaftarget, tst,ft)s S(lc’ftargetv txt,ﬁ))a
lg,lc €L, qg#c. (5

to obtain the most related locations in the temporal domain.
Before using the measure, we must select a feature fia ger,
as the target prediction sequence: this study chose PM2.5,
but other targets could be employed as required. Then we can
use (5) to calculate the temporal relations sequence (TRS) set,
Definition 4: Temporal Relations Sequence Set.

oy Dtnfl,n,lst.ﬁ} (6)

We then select candidates TRS_cand(l;,k), the set of k
locations with the least difference from location /;. To con-
sider both relationships simultaneously, we define the spatial-
temporal relations (STR) set, i.e., the set of locations most
strongly related to /; as

Definition 5: Spatial-Temporal Relations Set.

TRSt;, ; =Dt 2,15, D11 3,155 - -

STRS _cand(l;, k)

= SRS_cand(l;, k) UTRS _cand(l;, k), lieL. (7)

where we use the union SRS_cand(l;,k) and TRS_cand (l;,k)
rather than the intersection, to provide a larger number of
relationships for the model to learn; and since some location
behaviors may differ from adjacent locations, the intersection
would have fewer candidates (or none), resulting in the loss
of useful target features. We define the spatial-temporal pre-
dictor (STP) using STRS_cand(l; k) as
Definition 6: Spatial-Temporal Sequence Prediction

M (STRS _cand (l;, k))[ty,.1,.]

= S(livftargely tst’,ft/): tp < te < st’ fft/‘ (8)

to build the model M to predict a target feature sequence,
where M returns a sequence set, S, of the target features for
the period f, to 7. S is generated from the most similar time
series compared with #;, to z., where ¢y, is the lookback time.
Section IV proposes the solution method for this prediction
problem.

IV. PREDICTION MODEL FRANEWORK

To find the most relevant relationships between locations
we apply spatial-temporal analysis to explore sequence
delays and interactions between locations using historical
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FIGURE 2. Predictive model (ST-DNN) framework.

temporal patterns, and consider location feature trends for
potential factors. We consider adjacent locations or locations
with similar temporal patterns because they have high cor-
relations with the target location. After importing processed
data into the system, we determine the most related locations
to the target location using the proposed kNN-ED and kNN-
DTWD relationship extractors, and then generate training
datasets from the top k related locations. Finally, we train
the deep learning based model and compare prediction per-
formances. Figure 2 shows the proposed predictive model
framework comprises four main components as follows.

o The temporal relationships extractor (TRE) obtains air
quality features from the target location meteorological
data over the previous few hours using LSTM model.

« The spatial-temporal relationships extractor (SRE) uses
ANN model to obtain air quality feature data from
related locations selected by kNN-ED or kKNN-DTWD.

o The terrain extractor (TE) obtains terrain information
in the vicinity of the target location and uses a CNN
to extract interactions between terrain and air quality
features.

o The merge layer provides the STP to combine the dis-
crete component outcomes. In some cases, predictions
based on historical target location data are more relevant,
whereas in other cases, such as windy days, spatial data
should be given a higher weight. The full connected
ANN layer can learn the weights from the training data.

The following sections introduce the methods to mine

spatial-temporal relationships and the ST-DNN predictive
model.

A. MINING SPATIAL-TEMPORAL RELATIONSHIPS

FROM RELATED LOCATIONS

1) k-NEAREST NEIGHBOR BY EUCLIDEAN

DISTANCE (kNN-ED)

We calculated Euclidean distance between the locations
using their geographical coordinates, as shown in Figure 3.
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FIGURE 3. Example derivation (kNN-ED, k = 5).

The 20 selected candidates, shown in green in Figure 3, are
denoted as SRS_cand(l;, k) and used to train the predictive
model. The procedure is shown in Algorithm 1.

2) k-NEAREST NEIGHBOR BY DTW DISTANCE (kNN-DTWD)
We used the DTW algorithm to calculate the distance between
two sequences by minimizing the errors in shifting and scal-
ing between the sequences., as shown in Figure 4. Although
the sequences are dissimilar using Euclidean distance, DTW
can restore sequence distortions by mapping the data points
to corresponding intervals. Thus, DTW identified the most
strongly related temporal relationships to the target location
and calculated the time series feature distances between loca-
tions. The distances were sorted and the top & most similar
locations chosen as candidates to predict the target location
sequence. We refer to this method as kKNN-DTWD. Figure 5
shows that the PM2.5 time series exhibit various shift and
scale differences.S7 (purple) has delays compared with S1
(red), and S2 (orange), as highlighted within the red circle.
We calculated the degree of similarity between TRS_cand
(l;, k), i.e., the candidate set, members using conventional

38189



IEEE Access

P.-W. Soh et al.: Adaptive Deep Learning-Based Air Quality Prediction Model

Algorithm 1 Geographical Relationship Set Generator
(kNN-ED)
Input: Target station /;; Set of Locations’ coordinate Lc,
where [; ¢ Lc;
Number of candidates k;
Output: Set of Locations by SRS_cand(l;, k);

Let SRS_cand < @; for each Ic € Lc do
Calculate distances between [; and Ic: ED(l;, lc);
SRS _cand U {lc, ED(;, Ic)};

end

Sort SRS_cand by ED(l;, Ic);

if k < Size of SRS_cand then
SRS_cand(l;, k) < first k™ of SRS_cand

end

else
SRS _cand(l;, k) < SRS_cand

end

FIGURE 4. Euclidean and DTW matching.

FIGURE 5. Example PM2.5 time series data (seven locations).

DTW, hence eliminating time shift and scaling effects, and
identified TRS_cand(l;, k) candidates, i.e., those with the
strongest temporal relationship to the target location.
Unfortunately, this method cannot calculate the degree of
similarity between time series with missing data. We tackle
this problem as follows. (i) Two selected sequences were
divided into a plurality of common interval sequences, choos-
ing the shortest interval threshold, /,,;,, to filter short, i.e., not
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meaningful, sequences. (ii) We then apply DTW to the fil-
tered sequences and convert the calculated values to unit
similarity as shown in Figure 6. (iii) Finally, TRS_cand(l;, k)
for the predictive model is generated using Algorithm 2.

Algorithm 2 Temporal Similarity Set Generator
(kNN-DTWD)
Input: Target station /;; Set of Locations’ L, where
li¢ L;

Number of candidates k; Target feature frarger;
Time Interval ty f;
Output: Set of Locations by TRS_cand(l;, k);
Let TRS_cand < 0,
for cach [ € L do
Calculate similarity between /; and [;
dist gpy <
DTWDSim(S(livﬁargets tst,ft)9 S(lj’ftargetv tstft)a lmin);
TRS_cand U {l, dist,}; end Sort TRS_cand by distgs,;
if k < Size of TRS_cand then
TRS_cand(l;, k) < first k™" of TRS_cand
end

else
TRS_cand(l;, k) < TRS_cand
end

Figure 6 is explained in details as follow. When two time
series intervals have non-missing values simultaneously and
the common interval length exceeds lpi, (i.e., Iy > Lnin,
Figure 7) then the common interval the interval is included for
DTW similarity. In contrast, [ < I, (Figure 7), and hence is
ignored in the DTW calculation. Although the ignored cause
some loss of information, but this method effectively removes
most noise related errors.

The average unit distance is defined as

_2hdi
Yl
where d; is the distance in a common interval, and /; is the
length of that interval; which combines multiple fragment
sequences to facilitate overall similarity identification.
Figure 8 shows two interval distances, d; and d;, calculated
by DTW; and their common interval lengths, /1 and /5, respec-
tively, recorded for calculating the average unit distance.

da

C))

B. PREDICTION MODEL DESIGN

The proposed ST-DNN model combines target location tem-
poral information, and related location spatial-temporal and
terrain information (see Figure 2). The data flow includes
target and related location historical data, i.e., pollutants,
meteorological conditions, and target features and their trends
over the previous few hours. These data were input to
the LSTM, adaptive temporal extractor (ASE), and ANN.
We used a matrix of 121 square sections for terrain data,
i.e., 11x11 coordinate lines at 500 m intervals, where the
central square in the grid represents the local location.
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FIGURE 6. Similarity measure procedure.

FIGURE 7. Shortest interval threshold.

FIGURE 8. Average unit distance calculation example.

Thus, 120 unobserved points, with AQI calculated by inverse
distance weighting (IDW) [22]. We convolve the relative
elevation with the unobserved point AQIs to reduce AQI
impact at higher elevation and provide this matrix as input
to the CNN. CNN inputs can be adjusted later to increase the
resolution, e.g., LASS open source data.

We set [, = 6 hour in KNN-DTWD [23], [24],
i.e., the minimum time interval for meteorological forecasts.
Pollutants, meteorological conditions, and target feature(s)
of locations with high similarity (determined using KNN-ED
and kNN-DTWD) were input to the LSTM and ASE without
pretraining. A two-layer ANN was employed to combine
TRE, SRE, and TE. This final prediction was the deviation
between the target feature value at 7, and some future time
te+h, Where toy) < ft.

Figure 9 shows the model structure. Air quality and meteo-
rological condition data sources are input to LSTM and ASE,
and terrain related data are input to CNN. The models are
merged via side by side concatenation, and the variables are
passed to the following layer. The model is trained hourly
over the subsequent 48 hours, since the current status varies
with respect to its effect on future time intervals. Thus,
we pair the inputs with target feature deviations in the various
time intervals to train multiple models with the same structure
corresponding to the different time intervals. The advantage
of this structure is that the input sizes are constant, regardless
of the location and time interval.

1) TEMPORAL RELATIONS

The TRE uses historical target location features as inputs
to predict the future time series. The input time series for
PM2.5 and other concentrations are continuous and coherent,
and can be divided into low frequency (trends) and high
frequency (rapid changes) information.
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Since LSTM models historical time series behavior,
we consider the TRE LSTM to obtain target location time
series trends; whereas the ANN uses current data only, and
hence is sensitive to rapid changes. Thus, the LSTM and ANN
provide low and high frequency information, respectively,
from the sequences.

The LSTM TRE models trends for PM2.5 and PM10 con-
centrations as well as local meteorological data (wind speed,
wind direction, humidity, and temperature) over the previous
six hours; and the ASE TRE increases the model sensitivity
using the same features as LSTM TRE. Previous studies have
verified the relevance of these features with regard to air
quality [11].

2) SPATIAL-TEMPORAL RELATIONS

Pollutant dispersal means that air quality at one location can
be spatially correlated with that at other sites. SRE uses
historical spatial-temporal neighborhood location features
inputs since air quality at a given location is affected by
local emissions as well as emissions in surrounding areas.
Therefore, we devised a SRE to predict target location air
quality based on AQIs and meteorological data from other
locations. Partitioning spaces into regions using circles of
various diameter overlooks terrain impacts, e.g., a mountain
between locations.

Partitioned region data are often mean or mode values,
which can be highly inaccurate, particularly in areas with
few locations. Thus, the SRE for a location requires data
mining from locations in the spatial-temporal neighborhood
using kKNN-ED and kKNN-DTWD, including AQIs and meteo-
rological conditions (wind speed and direction) for the previ-
ous 6 hours. Similar to the target location, spatial-temporal
neighborhood time series features are also continuous and
coherent. Thus, we included the ANN SRE to increase
model sensitivity by considering spatial-temporal neighbor-
hood impacts.

3) TERRAIN EXTRACTOR

The relationships between locations vary due to various bar-
riers and altitude differences. Therefore, terrain related data
were included to enhance location correlations. Terrain data
in the vicinity of the locations were captured using a matrix
of 121 square sections; i.e., 11x 11 coordinate lines at 500 m
intervals. We adopted the approach of Ferrero et al. [25]
to define the relationships between terrain and PM2.5. The
elevation of each point, elev, was normalized as

H, = elev — elevg (10)

elevg

38191



IEEE Access

P.-W. Soh et al.: Adaptive Deep Learning-Based Air Quality Prediction Model

FIGURE 9. Proposed prediction model (ST-DNN) structure.

and transformed to the relative elevation,

: (1)
eHs

where H; is the standardize elevation, to decrease the impact
of higher altitudes, as shown in Figure 10. Figure 11 shows
that PM2.5 distribution is strongly related to elevation.

elevy, =

FIGURE 10. Relative elevation function design [25].

We then calculated AQIs for each location using IDW and
multiplied this by elev,,; to reduce location impact at higher
elevations. Thus, we could extract relationships between loca-
tions that would otherwise have been obscured, such as the
impact of wind direction and wind speed for locations adja-
cent to mountains. The CNN was designed to extract useful
information particularly in the spatial domain. We used the
CNN to include spatial correlations between locations and
extract the obscured terrain relationships.

4) MERGE LAYER
We concatenated the TRE, SRE, and TE outcomes, and
passed these to the ANN. Thus, the model applied local and

38192
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FIGURE 11. Relative elevation function of PM2.5 distribution.

global inputs for prediction. In some cases, local informa-
tion is more relevant than global, e.g., when air circulation
between locations is weak. On the other hand, global disper-
sion may be a major factor determining air quality when wind
speed is high. Thus, we looked for meteorological condition
trends at a given location, such as wind speed, wind direction,
humidity, temperature, etc., to weight prediction calculations
provided by the three components.

V. EXPERIMENTS

A. DATASETS

We chose PM2.5 as the predictive feature because it is the
most widely reported metric and also the most difficult air
pollutant to predict. Similar architectures can be applied to
predict other pollutants.

1) TAIWAN DATASET

We collected air quality and meteorological data every
hour from 76 locations in 23 Taiwanese cities. Each loca-
tion recorded PM2.5 and PM10, but not all locations
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FIGURE 12. TWEPA PM2.5 index for the Taiwan dataset [26].

FIGURE 13. Influence of past h hours (x-axis: hour (s), y-axis: ug/m3).

recorded levels of other pollutants or meteorological data.
More than 28 million instances were collected from
January 2014 to September 2017 by Taiwan Environmental
Protection Administration (TWEPA). PM2.5 was measured
using Met-One BAM-1020 and other measurement instru-
ments are shown in [27]. Data was partitioned into a training
data (Jan. 2014 to Sep. 2016) and testing set (Oct. 2016 to
Sep. 2017) at 2:1 ratio, based on seasonal cycles in Taiwan,
where the testing set covers all four seasons.

Figure 12 shows the TWEPA PM2.5 index over the study
period, and TWEPA forecast data was not included. The
proposed PM2.5 prediction used PM2.5, PM10, wind speed,
wind direction, temperature, and humidity features.

2) BEUJING DATASET

The Beijing dataset focused on Beijing city [15], excluding
weather forecasts because they were based on physical mod-
els. We modified the proposed model to predict min-max
outputs to ensure a fair comparison. The dataset contained
records from May 2014 to Apr. 2015. Months 5, 6, 8, 9, 11,
12 of 2014 and 2, 3 of 2015 were adopted as training data
and the balance as testing data, covering the last month of
each season, i.e., 7, 10 of 2014 and 1, 4 of 2015.

B. METRICS AND GROUND TRUTH

Air quality prediction were compared with ground truth
results obtained at each location, and the mean absolute
error (MAE) [28]-[31] was adopted to evaluate prediction

VOLUME 6, 2018

performance,

Y= il

n

12)

where y; and y; are the prediction and ground truth for the iy,
hour, respectively; and 7 is the number measurements within
a time interval.

We calculated MAE for 1-6, 7-12, 13-24, and 25-48 hours,
which are common time frames in conventional weather
forecasting. Lower absolute error indicates higher prediction
accuracy.

C. COMPARATIVE MODELS AND PARAMETER SETTINGS
We compared the proposed ST-DNN method predictions with
a number of baselines.

1) Baselines that feed all features into a single model,
e.g., linear regression (LR_ALL) and neural net-
work (ANN_ALL), without treating various features
differently.

2) Baselines using kNN-ED, kNN-DTWD, and both
methods (referred to as adaptive baselines), to identify
the top k related locations.

3) Zheng et al. [5] proposed a predictive model that
considered local spatial data similar to the approach
adopted in the current study but used average neighbor
values over a specified region.

To determine suitable lookback time, A, for the models,
we evaluated different % for predicting the next hour, ¢ + 1,
as shown in Figure 13. Hence, we chose 7 = 6 hours
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as the minimum time interval for meteorological
forecasting [23], [24]. We also used an independent LSTM
for each feature with 4 = 6 hours, and chose k = 3 for
kNN-ED and kKNN-DTWD in the proposed ST-DNN model.
We used a 5A-5 filter for the CNN with one convolutional
layer. The CNN did not include a max pooling layer since
we did not extract the highest concentrations but the most
strongly related concentrations. We chose a linear activation
function to consider negative correlations. We used a total
of 4276 parameters for the ST-DNN models for the Taiwan
dataset.

D. PERFORMANCE OF PREDICTIONS

1) TAIWAN DATASET

We first checked if the input components to the ST-DNN
model were significant, examining all Adaptive ANN (A),
LSTM (L), and CNN (C) combinations to identify the best
models, as shown in Figure 14. For the first hour predic-
tion, we found that ST-DNN models with all components
(A+L+C) outperformed all other models, and the CNN only
model outperformed all other combinations for 2-6 hour pre-
dictions. Therefore, we include only A+L+C and C models
in further discussions.

FIGURE 14. Proposed ST-DNN prediction model with different component
combinations for the Taiwan Datase.

FIGURE 15. Short period (1-6 hour) prediction comparisons for the
Taiwan dataset.

Figure 15 compares overall model performance at all
locations. The proposed ST-DNN(A+L+C) model exhibits
superior performance to all models to predict the next hour,
whereas the ST-DNN(C) has superior prediction performance
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for further hours. The Zheng model [5] is superior to the
other considered models except ST-DNN(C) for 4-6 hour
predictions, since that model partitions regions at 30, 100, and
300 km, which helps detect diffusion from distant locations.
This phenomenon happens as Zheng partitions regions with
distances of 30km, 100km and 300km, which help to detect
diffusions from other long distanced places. The proposed
ST-DNN methods choose nearby or recently similar locations
that have insufficient diffusion data. Although ST-DNN(C)
has less information, it surpasses all other model perfor-
mances (see Figure 15). In contrast, feeding all the data into
ANN and Linear Regression models provided poorer pre-
diction performance due to interference between locations.
Generally, KNN-DTWD based models show superior perfor-
mance to those based on kNN-ED, and Adaptive methods
perform similarly to kNN-DTWD based models.

FIGURE 16. Eastern area short period (1-6 hour) prediction performance.

FIGURE 17. Northeastern area short period (1-6 hour) prediction
performance.

Figure 16 and Figure 17 compare overall model perfor-
mance in different cities. Most model trends are similar,
with ST-DNN(C) outperforming all other models in some
cities, including Hua-Tung (Figure 16) and ILan (Figure 17),
which have sparse locations and complicated terrain. CNN
extracted neighborhood elevation and determined diffusion
delays (direction and time) for target features. For example,
when predicting 7 4 3, higher weight filters were farther from
the target location. Thus, CNN may be a good approach for
further study.
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However, CNN also has limitations where reliable data
for each coordinate are unavailable. This study used IDW
to interpolate location data for each coordinate. The Zheng
model also showed poor performance in these areas due to
the complex terrain, with mean and mode in partitions leading
to inaccurate estimation. However, the Zheng model exhibits
superior performance in the southern area, particularly for
3-6 hour. The southern area is somewhat flatter, as shown
in Figure 18, and hence a given location may be significantly
affected by dispersion from other cities.

FIGURE 18. Southern area short period (1-6 hour) prediction
performance.

FIGURE 19. Flatland city short period (1-6 hour) prediction performance.

FIGURE 20. Flatland suburbs short period (1-6 hour) prediction
performance.

Figures 19-23 group the Taiwan dataset prediction results
by different terrain: flatland city, flatland suburb, basin city,
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FIGURE 21. Basin city short period (1-6 hour) prediction performance.

FIGURE 22. Mountain city short period (1-6 hour) prediction performance.

FIGURE 23. Island short period (1-6 hour) prediction performance.

mountain city, and island, respectively. ST-DNN(C) exhibits
the best flatland performance (Figures 19 and 20) for all
locations, with the Zheng model superior to other models
for 5-6 hour, except ST-DNN(C), due to the lack of distant
location data for the other models. However, the Zheng model
performs poorly for complex terrain (Figures 21-23).
Overall, ST-DNN(A+L+C) provides superior prediction
for the immediate next hour, whereas ST-DNN(C) provides
superior prediction for 2-6 hour. This dataset shows that
different places should use different models considering the
impact of distances, delays, and terrains among locations
and surroundings. The proposed approach always provides
superior performance to adaptive baseline models verifying
that considering individual feature trends is more appropriate
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than combining inputs. The proposed models also outperform
the Zheng, confirming the importance of observations at indi-
vidual locations, rather than using neighborhood averages.
Thus, the proposed ST-DNN(C) model is a suitable approach
for further study.

2) BEUJING DATASET

We modified the models somewhat for the Beijing dataset to
ensure robust prediction. We neglect forecast data, since these
were based on physical models, and omitted the CNN compo-
nent from the proposed ST-DNN model since elevations were
not available in Beijing.

FIGURE 24. Short period (1-6 hour) prediction performance for the
Beijing dataset.

Figure 24 shows that the proposed Adaptive_ LSTM, kNN-
DTWD_ANN, and Adaptive_ ANN models outperform all
other models. Linear regression models exhibit the poorest
prediction among the considered models. The Zheng model
exhibits intermediate performance between ANN and linear
regression, because using TRE with region mean or mode
results in loss of sensitivity to other locations. There are also
mountainous regions in the north, northwest, and west of
Beijing City, and partitioning across mountain regions also
reduces precision.

FIGURE 25. Extended time interval prediction performance for the Beijing
dataset.

Figure 25 shows that overall model performances are sim-
ilar to short time performances (Figure 24).
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E. BEHAVIOUR OF PROPOSED MODEL

1) ANALYSIS OF LSTM AND CNN

We used the Taiwan dataset Tainan training data to inves-
tigate patterns between different delays and identify LTSM
prediction improvements, comparing PM2.5 variations from
te40 VErsus te41, leqo Versus feip and feyo Versus f.43 as
shown in Figures 26-28, respectively. Very short prediction
(Figure 26) exhibits almost linear then a sharp rise and sub-
sequent sharp drop; whereas this linear relationship disperses
for longer prediction times (Figures 27 and 28). Thus, LSTM
only helps improve first hour prediction.

ten

teo

FIGURE 26. Example relationships between t. o and f ;.

te.2

teso

FIGURE 27. Example relationships between t. ¢ and ..

tes

teio
FIGURE 28. Example relationships between t. ¢ and . 5.
Limitations of DTW mean that kKNN-DTWD chooses the
most similar candidate locations but neglects long time delay.

However, the delay interval is important for long term pre-
dictions. The proposed method could be improved by shifting
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delayed sequences for DTW identified candidates and choos-
ing the most relevant locations. Comparing different com-
ponents combinations in ST-DNN, CNN always improves
model performance.

TABLE 1. Proposed model with CNN (ST-DNN(C)) with and without
elevation.

ST-DNN(C) Hours
1 2 3 4 5 6
3.402| 5.308| 6.213| 6.782| 7.269| 7.668|

3.410] 5.310| 6.215| 6.774| 7.270 7.669

+ elevation
- elevation

Including relative elevation helps reduce location inter-
ference and provides excellent prediction performance
for 1-6 hour with ST-DNN(C). Table 1 compares perfor-
mances with and without relative elevations, confirming the
observed improvement. Lu et al. [32] showed that fine par-
ticulate matter concentrations decrease at higher altitude,
hence relative elevation is important and should be con-
sidered in further studies. CNN can also extract the delay
factor from surrounding target features, improving prediction
performance.

In particular, Taiwan includes significant many mountain-
ous and hilly terrain regions. Since CNN with terrain factors
can learn the propagation patterns from PM2.5 variations of
the specific location and its neighbor locations, the proposed
ST-DNN(C) model was superior to LSTM, which only con-
sidered time series variation at the given location. Hence,
the experimental results confirm that CNN provides superior
prediction performance in complex terrain.

Thus, the proposed ST-DNN(A+L+C) model provided
superior performance for first hour predictions, but the pro-
posed ST-DNN(C) model provides superior longer time
frame predictions through 2-6 hour. Overall, ST-DNN has
two main characteristics: selecting spatial-temporal candi-
dates using kNN-ED and kNN-DTWD increased model
sensitivity; and including terrain information using CNN
incorporates elevation impacts.

2) INFLUENCE OF k

Figure 29 compares kNN-ED and kNN-DTWD with ANN
to investigate the performance effects of k. kNN-ED
MAE increases as k increases, whereas KNN-DTWD MAE
decreases. Thus, KNN-DTWD outperforms kNN-ED, which
only considers spatial adjacent locations, omitting ter-
rain, whereas KNN-DTWD chooses temporal similar loca-
tions, with similar responses, relaxing geographical impact
restrictions.

VI. REAL APPLICATIONS FOR THE PROPOSED MODEL

Figure 30 shows the web user interface of the proposed
system [16], where icons on the map represent monitoring
stations and the number associated with an icon denotes
its PM2.5 concentration. The color of the icons indicates
the air quality at that location based on TWEPA PM2.5
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FIGURE 29. Nearest neighbor (k) effect on prediction performance.

standards [26]. In addition, users can see the predictions of
PM2.5 for the next 1-6 hour. More details can be shown by
clicking on a specific station, which opens a pop-up chart
showing recent trends in the air quality and meteorological
conditions. Clicking on the analysis of historical data allows
users to select results for past 1, 3, or 7 days. Clicking on the
replay icon opens a timeline, which allows users to check the
air quality at any time in a particular location to observe
the PM2.5 diffusion.

FIGURE 30. Website of QQ air quality.

FIGURE 31. Dashboard of QQ air quality.

Figure 31 shows the dashboard interface of the real-time
PM2.5 and the PM2.5 predictions for the next 1-6 hour.
The dashboard will automatically update information every
hour. In addition, users can choose any specific station on
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their demands. This service aims to help people prevent the
exposure of unhealthy air.

FIGURE 32. Facebook chatbot of QQ air quality.

In addition, we develop the Facebook chatbot to send the
PM2.5 forecasts to users who subscribed the daily report of
specific stations, as shown in Figure 32. Users can query the
current PM2.5 by typing the station name or sending current
GPS location. This service benefits people to easily use it on
mobile phone or PC, which reminds people the air quality
before going outside.

VIi. CONCLUSION

This study proposed an air quality forecasting system using
data driven models, ST-DNN, to predict PM2.5 over 48 hours.
The proposed method is also generally applicable to other
pollutants, etc.

The proposed ST-DNN shows that including an LSTM
module enhanced first hour predictions, with CNN module
inclusion being more useful for longer time frame predic-
tions, since CNN can extract the temporal delay factor from
surrounding target features by learning spatial information.

We evaluated the proposed models using real-world
Taiwan and Beijing datasets. Relevant location selection was
verified to be important, with inclusion of all locations caus-
ing increased model noise and hence poorer prediction per-
formance. the proposed methods outperformed all baselines
and comparative models considered.

Future research will improve the proposed model perfor-
mances, and consider specific Airbox sensor source mod-
els as features to tune and mitigate noise due to machine
differences [33], [34]. We will also consider more chemical
features that affect PM2.5 components [35]. For long period
predictions, we will consider concentric circles for different
distance partitions or clusters to emphasize air pollution prop-
agation delay effects.

Ultimately, we intend to detect air pollution sources,
including domestic and transboundary pollution. To control
the air pollution, we must first understand how it is generated
and propagated. Only then can we devise effective solutions
to reduce pollution sources. Therefore, future pollution stud-
ies will be greatly dependent on the proposed model.
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