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ABSTRACT The densification of mobile network infrastructure has been widely used to increase the overall
capacity and improve user experience. Additional tiers of small cells provide a tremendous increase in the
spectrum reuse factor, which allows the allocation of more bandwidth per user equipment (UE). However,
the effective utilization of this tremendous capacity is a challenging task due to numerous problems, including
co-channel interference, nonuniform traffic demand within the coverage area, and energy efficiency. Existing
solutions for these problems, such as stochastic geometry, cause excessive sensitivity to the pattern of the UE
traffic demand. In this paper, we propose an intelligent solution for both coverage planning and performance
optimization using unsupervised self-organizing map (SOM) learning. We use a combination of two different
mobility patterns based on Bézier curves and Lévy flights for more natural UE mobility patterns compared
with a conventional random point process. The proposed approach provides the advantage of adjusting
the positions of the small cells based on an SOM, which maximizes the key performance indicators, such
as average throughput, fairness, and coverage probability, in an unsupervised manner. Simulation results
confirm that the proposed unsupervised SOM algorithm outperforms the conventional binomial point process
for all simulated scenarios by up to 30% in average throughput and fairness and has an up to 6-dB greater

signal-to-interference-plus-noise ratio perceived by the UEs.

INDEX TERMS Coverage planning, heterogeneous network, self-organizing map, unsupervised learning.

I. INTRODUCTION

Mobile networks are currently facing a rapid increase in
traffic demand, forcing operators to enhance the existing
radio access network (RAN) infrastructure. Conventional
solutions such as cell splitting and sectoring have already
reached their limits in terms of the effective trade-off between
network performance and total cost of ownership [1]. There-
fore, a heterogeneous network (HetNet) architecture has
been proposed by the 3rd Generation Partnership Project
(3GPP) as an acceptable alternative for improvement of the

overall system throughput by introducing multitier coverage.
These additional tiers are created by small cells in areas
with particularly high traffic demand [2]. The important
benefit of the small cells is their convenient deployment in
any indoor or outdoor area (e.g., lampposts, metro stations,
restaurants, and shopping malls). Moreover, indoor small
cells are frequently purchased by the location owners,
who also cover the electricity cost to power these base
stations (BSs). This, in turn, results in a considerable
reduction of capital expenditures (CAPEX) and operating

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission. 39807

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-7311-6459

IEEE Access

J. Gazda et al.: Unsupervised Learning Algorithm for Intelligent Coverage Planning and Performance Optimization

expenses (OPEX) for the mobile operators, while providing
a significant improvement in overall network capacity and
coverage quality [3].

The overall capacity of multitier HetNets is greater than
that of conventional single-tier RANSs, owing to the many
additional cells, which overlay the coverage of the macro-
cell. Because these cells are considerably smaller than
macrocells, the operator can reuse spectrum among them
more effectively, providing more bandwidth per user and,
theoretically, unlimited area spectral efficiency. Moreover,
the small cell itself has higher spectral efficiency owing to the
improved quality of shorter wireless channels. This advantage
is especially noticeable in the macrocell edge areas, where
macrocell user equipment (UE) suffers from a low signal-
to-interference-plus-noise ratio (SINR) owing to the high
distance from the serving BS. Offloading UEs from macrocell
edges to small cells can substantially improve user experi-
ence and overall network performance [4]. Small cells can be
installed in any arbitrary location that provides an advantage
in flexibility of coverage deployment. However, the locations
of the small cells cannot be completely random because their
uncoordinated deployment could result in severe interference
among cells, especially in dense scenarios. It is important
to consider the area traffic demand during coverage plan-
ning to ensure the highest gain from any additional small
cells. Therefore, optimized planning of HetNet coverage
must be applied by the operator to avoid semi-blind
placement of small cells and ensure the best network
performance [5].

Typically, the deployment of small cells follows local
design guidelines, which means that there are no strict
requirements for electromagnetic compatibility or exposure
limits to electromagnetic radiation because of low trans-
mission power. Thus, installation of a small cell is similar
to the installation of an additional Wi-Fi access point and
should not be considered as a substantial CAPEX, such
as that of a macrocell. However, technical and regula-
tory requirements remain, which must be considered before
roll-out of a HetNet [6]. First, the network capacity must be
planned considering the existence of the shared and neutral
host infrastructure and the availability of a reliable back-
haul connection, covered by novel flexible deployment stan-
dards and regulations. Nevertheless, solving the optimization
problem of determining the best network configuration in
terms of throughput and coverage can be computationally
intensive and not feasible for dynamic systems such as
HetNets [7]. The performance of a HetNet is extremely sensi-
tive to parameters such as the UE location, mobility, and
traffic demands. For example, a small cell does not provide
any significant advantage in terms of capacity if current
traffic demands are less than the capacity of the macrocell.
Therefore, it is important to consider the geographic distri-
bution of the traffic demands around the target coverage
area to determine where to install the small cells. The
complexity of optimal HetNet deployment is in the random
movement of the UEs, which makes it difficult to predict
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the areas with the highest average traffic demand and to
identify the most profitable allocation for the small cells.
In this paper, we address this complex problem and propose
a self-learning algorithm for optimization of HetNet deploy-
ment using self-organizing maps (SOMs). The proposed
algorithm employs two mobility patterns that reflect the
features of pedestrian and vehicular UE. Based on the
simulated behavior of the UEs, the proposed algorithm
attempts to deploy small cells in areas with higher loads,
while considering the presence of co-channel interference
among the small cells. In general, an SOM represents an
unsupervised learning technique based on neural networks,
which was introduced by Kohonen [8]. Further extensions
of SOMs are presented in [9] and [10]. SOM networks have
demonstrated excellent performance in various applications,
such as document collection [11], image processing [12],
and security-threat detection [13]. Recently, SOMs have
been applied as the basic algorithm for the event-sensor
deployment problem with random distribution of events [14].
In [15], Salem et al. apply the SOM algorithm to effectively
minimize the probability of sensing errors in dynamic spec-
trum access networks. A detailed and comprehensive survey
of different SOM applications in wireless communications is
provided by Zhang et al. [16].

In this paper, we follow the conclusions regarding the
efficient deployment of emerging HetNets based on artificial
intelligence as presented in [17]. We utilize the unsuper-
vised SOM algorithm for solving both HetNet coverage plan-
ning and performance optimization. Unlike previous studies,
where random point processes (e.g., Poisson and binomial)
are used to simulate the mobility of the UEs, we propose
a combination of two different mobility patterns based on
Bézier curves and Lévy flights. The former represents a
periodic semi-dynamic pattern, which reflects the movement
in public transport, and is interchangeable with the periods of
fixed user positions, such as at home or at the office. The latter
model employs a Lévy flight pattern with truncated power-
law flight lengths [18]. The Lévy flight is a series of short
movements with random longer movements. Such patterns
have been observed in human behavior in Song et al. [19].
Thus, the proposed mobility model is noisier and more natural
than a conventional random point process. The proposed
approach targets explicitly topologically correct mappings of
the spatial probability density distributions of high demand
areas.

The major contributions of this paper can be summa-
rized as:

o The new intelligent algorithm for HetNet coverage plan-
ning and performance optimization is proposed based on
unsupervised SOM algorithm.

o The new realistic UE mobility pattern has been devel-
oped based on the combination of Bézier curves and
Lévy flights random movement.

o Comprehensive simulations have been conducted for
different number of small cells within the target
coverage area.
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o Practical recommendations for HetNet coverage plan-
ning have been derived by finding the best trade-off
between average throughput per UE, coverage proba-
bility and fairness of resource allocation.

The remainder of this paper is organized as follows. Section II
provides an overview of the recent related work on multitier
HetNet coverage design. Section III presents a detailed expla-
nation of the investigated system model and mobility patterns.
Section IV describes the proposed SOM-based algorithm for
optimization of the deployment of small cells. Simulation
results and performance analyses are presented in Section V.
Section VI concludes the paper.

Il. RELATED WORK

The deployment of a two-tier HetNet consisting of macrocells
and small cells has attracted significant attention recently for
many reasons, including improved user throughput, reduced
latency, and overall energy savings. In this paper, we focus
mainly on the optimization of small cell deployment within
the existing coverage of macrocells. Therefore, this section
aims to advance our research in the context of existing
works in this area. Although there are many research papers
regarding the advantageous characteristics of small cell
deployment, specific research targeting small cell optimiza-
tion for outdoor scenarios remains limited.

We must acknowledge that the simulation of two-tier
HetNets, where the investigation of different positions
and transmission power of a small cell within the cell
coverage of the macrocell, was conducted in [20]. The
results rely mainly on the brute-force-based investigation
of the various parameters, with a general recommendation
regarding the small cell settings (large macro-to-small cell
distances, relatively high transmit power, and high deploy-
ment density). Shin and Zain [21] investigate the coverage of
the geo-clustering algorithm in HetNets, where small cells
are added to complement the coverage holes of the macrocell
coverage. This approach performs static clustering of network
coverage without consideration of UE mobility. A sampling-
based optimization method for small cell deployments with
the objective of maximizing UE throughput is introduced
in [22]. More general objectives such as maximization of
the traffic offloading to small cells or minimization of the
cost of service delivery are targeted in [23]. However, within
the scope of the above-mentioned research, no specific UE
dynamics have been considered that limit their application in
general.

Applications that exploit the self-organizing principle in
combination with the dynamic behavior of UEs are investi-
gated in [24] and [25]. In [24], Park et al. propose an algo-
rithm for outdoor small cell deployment that considers mutual
interference and load variation among different coverage
zones. The algorithm is based on the weighted sum of
objectives, which belongs to the class of multi-objective
optimization methods. Another study is provided in [25],
where the authors analyze the impact of the imperfect
small cell positioning concerning dynamic hotspots (HSs).
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Grid search based on metric calculations for several candidate
locations of small cells is proposed and evaluated in [26].
Nomadic spatially quasi-static UE distribution is considered
throughout the simulation scope. Zhou et al. [27] investigate
the optimum location of small cells given a specific UE traffic
pattern. They assume predefined probable locations for the
small cells, and thus they are not obliged to search through the
entire parametric search space, which reduces the complexity
of the algorithm.

However, the existing (primarily static) model solutions
remain significantly distant from realistic dynamic situations
involving continuous changes in the physical locations of
the UEs. Therefore, the dynamics we study herein consider
not only the specific deterministic motion modulated by
periodic cycles, but also the noisy, unpredictable influence
of UEs following Lévy flight motion. We assume that the
time-varying and spatially dependent requirements of the
UEs can be achieved, for example, using appropriate heuris-
tics. Considering the results obtained, the expansion of the
portfolio of the existing heuristic approaches to the problem
of optimizing small cells in HetNets is also expected.

Ill. PRELIMINARIES AND SYSTEM MODEL
In this section, we outline the system model considered in
this paper, the investigated metrics characterizing the impact
of HetNet deployment optimization on the UE experience, the
traffic mobility patterns considered throughout the simulation
scope and finally, the model simplifications.

A. SYSTEM MODEL

We consider the downlink transmission of a two-tier HetNet.
The tiers operate at different frequencies, i.e no cross-tier
interference is observed. Nevertheless, interference among
BSs of the same type is present (i.e., co-channel inter-
ference). Whereas the traditional macrocell layer broad-
casts traffic on a dedicated 2100 MHz carrier, small cells
utilize the 3350-3650 MHz band. The reason for this derives
from the recent FCC release document Notice of Proposed
Rulemaking, where the standard development bodies issued
100 MHz of available spectrum to be used by small cells in
the 3350-3650 MHz band [28]. This bandwidth is character-
ized in general by high penetration losses, and thus is not
feasible for long-distance transmission. However, small cells
can exploit the available spectrum for providing services and
to offload traffic from the macrocells.

In our simulation setup, the BSs of both layers (i.e., macro-
cells and small cells) use the round-robin resource scheduling
algorithm with full allocation, which shares the available
resources among all UEs. Each UE is associated with a
BS based on the calculated SINR, which provides improved
results compared with conventional measurements of refer-
ence signal receiving power (RSRP).

We consider a model where the two-tier HetNet consists
of Ny macrocells with dedicated positions and Ng small
cells randomly distributed in the macrocell coverage area.
Each macrocell has access to Nrg resource blocks (RB)
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(Nrp = 100); for the small cells, Nrg = 20 as proposed by
3GPP in [29]. Denoting the number of all BSs (macrocells
and small cells) to be deployed as Nps, the total number of
BSs is given by Ngs = Num + Ns. Depending on where the
UE is associated, we classify the UE as a macro-UE (the
UE is associated with a macrocell) or small-UE (the UE is
associated with a small cell).

Let us denote the positions of the small cells and macro-
cells by y; € R2, where i = 1,2,...,Nm + Ns. The
UEs, following a specific mobility model, are dispersed in
the investigated region and their locations are denoted by
X € R2, where j = 1,2,..., Ny. Here Ny represents the
number of UEs in the region. Assuming that the channel
on each RB experiences independent and identical Rayleigh
fading, the channel power gain of the link between the j-th UE
and associated i—th BS in a RB is expressed as

gij(t) =Aij gf,ij(t)gpl,ij, (1)

where A;; denotes antenna gain; gr ;;(¢) is the exponentially
distributed fading gain with unit mean representing the small-
scale channel fading gain at time ¢; and gp;; is the path
loss. Here, we consider the ECC-33 channel propagation
model, as it demonstrates the closest agreement with the
measurement results in the frequency range 2000-3500 MHz
and is common for urban environments. The path-loss for the
ECC-33 model can be defined as in [30]:

8plij = Afs + Abm — Gp — G;[dB], (@)

where Ags, Apm, Gb, and G; are the free space attenuation,
the basic median path loss, the BS height gain factor, and UE
height gain factor, respectively. These elements can be further
characterized as

Apm = 20.41 + 9.831log,(d) + 7.894 log,(f) +
+9.56[log;0(f)1°,
Gy = log(hy/200){13.958 + 5.8[10g10(d)]2},
G, = [42.57 4+ 13.71og ()]

x [logo(hr) — 0.585], 3)
where f denotes the frequency in GHz; hy, is the antenna
height; &, is the height of the UE; and d is the Euclidean
distance between the associated cell-UE pair. The instanta-
neous received SINR of the dedicated RB of the j-th macro-

UE located at x;, associated with the macrocell at location y;
at time ¢ can be expressed as

Pigij(r) Pigij(1)
yi(t) = ———" =—"=. @
M ) Ilj+0
Y Prgit)+o
k=1,k#i

where P; is the transmit power of the i-th macrocell; ol is
the additive white Gaussian noise variance; and I;; is the
interference power received by macro-UE j from macrocells
other than the i-th macrocell.
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For a small-UE, we have the similar description:

Pigij(t) Pigij(t)
yi(t) = ———" = foz’ (5)
1
S Pgg)+o Y
k=1,ki

where P; denotes the transmition power of the i-th small cell;
and I;; is the interference power received by the small-UE
Jj from neighboring small cells.

The throughput of the jth macro-UE when associated with
the i-th macrocell at time ¢ (the aggregated value accumulated
through all assigned RBs) can be defined as

NRB P: k k
,gi-(t)bi-
Dj(t) =W ) _log, (1 + #> : (6)

P I ,]j‘ +02
where bg. = 1 if the k-th RB of the associated i-th macrocell
is served to the j-th UE (otherwise bg- = 0); W denotes the
bandwidth per RB; gg.(t) and 15 denote the channel power
gain of the link between the j-th UE and the associated i-th BS
in the k-th RB and interference received in the k-th RB,

respectively. The variable N iRB determines the number of RBs
assigned to the j-th macro-UE in the i-th macrocell as follows:

N,

NRB — fbk _ | Ve 7)

joo— ij N ’
k=1

where |...] denotes the floor function, and N, determines
the number of macro-UE associated with the i-th macrocell
(Neo < Ny). This concept ensures the proportional fairness
distribution of the resources among the UEs of macro cells.
associated with the i-th macrocell (round-robin scheduling).
A similar assumption is derived for the UEs of small cells.
Throughout this paper, the network model is assumed to
operate in a saturated mode where all BSs (both macro-
cells and small cells) transmit at their maximum power
setting. This represents a worst-case scenario, and is a
typical methodology used for network capacity dimen-
sioning, as suggested in [31]. By applying the full-load condi-
tion in the network, the various deployment solutions are
pushed to their ultimate limits in a systematic manner. Finally,
we assume that UEs are capable of forwarding the traffic
only over one cell at a time (either macrocell or small cell,
depending on the conditions), which conforms with the LTE
standard without the advanced carrier aggregation feature.

B. METRICS

With the objective of analyzing the impact of HetNet deploy-
ment optimization, we now introduce various metrics that
allow us to numerically quantify our solutions. In addition
to the most intuitive metric, the throughput I';;, we have
also chosen to consider fairness and coverage probabilities
to achieve more general conclusions.

In wireless communication networks, all UEs expect to
have uniform quality of experience (QoE) across the whole
network coverage. If UEs in the network do not experience
a similar QoE (expressed using, for example, the throughput
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\é\g'}‘f The UEs following Lévy flight mobility model

FIGURE 1. Schematic diagram of a HetNet model with a set of macrocell
and small cell stations, and mobility patterns of HSs and UEs.

metric), the system is less fair and thus, we must introduce a
function that quantifies the fairness. Here, we use Jain’s index
defined as

2
(Zjv:ul Ff)
FATY) = ——x—"%" 3
No2jmr T

For readability, we drop the index i from the definition of
I";; as we are interested in particular UE contributions to the
fairness regardless of the associated BS. Jain’s index has the

following characteristics [32]:
o The index provides values in the interval (0, 1], where

“1” means a completely fair allocation (all UEs have
the same SINR value) and value close to “0” means
totally unfair allocation (single UE has highest SINR
value, while other UEs are out of coverage), respectively.
o The fairness is independent of the number of UEs active
in the system.
o The fairness is a continuous function. Any change in the

perceived {I'} is reflected in the fairness.
The coverage probability p. determines the mean fraction of

UE:s that, at any given time, achieve an SINR greater than the
given threshold g, i.e.,

Rl
Pe= g Z =g, ©9)
j=1
where 1) represents the indicator function.

C. TRAFFIC MOBILITY MODELS

In recent years, a number of techniques have been developed
to model different transport mobility situations. The main
idea behind the application of mobility models is that the
outputs (i.e., trajectories) depict synthetic data that repre-
sents the realities of transport. One of the key points of our
present work is the extension and application of mobility
modeling principles [33]. This is mainly the formal decom-
position of motion into its regular (trending or periodic) and
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random components. Furthermore, we focus particularly on
the assemblies, including periodic and stochastic trajectories.
Itis clear that long-term stationarity is essential for the quality
of SOM learning required to provide the (static) small cell
layouts. In our applications, we consider the regular transport
of UE clusters (semi-dynamic HSs) having a typical transport
period of half an hour. Regular trajectories are parameterized
by the function composition consisting of the Bézier curves,
and logistic and harmonic functions. Independently generated
Lévy flights are used to mimic the unpredictable and intermit-
tent two-dimensional (2D) moves. An additional assumption
is that the simulated entities do not change their manner of
movement from random to regular, or vice versa.

1) REGULAR MOBILITY, PERIODIC TRAJECTORIES

AS MODULATED BEZIER CURVES

We describe the periodic regular movements of the
semi-dynamic HSs. HSs can be used to calculate smooth
pathways between obstacles using a Bézier curve character-
ized by control points. The application of Bézier trajectories
is advantageous in describing the movement pattern with
collision-free and obstacle constraints [34]. The basic idea
is to create an assembly of smooth trajectories consisting of
a system of regular visits to predetermined starting, target,
and intermediate points. The intermediate points (only for
the Bézier curves of order higher than two) are used to
control trajectory curvature. Assume that M semi-dynamic
HSs enumerated as j = 1,2,..., M are dispersed in 2D.
The simplified assumption is considered here, so that each
HS consists of a constant number of UEs. We introduce At
as the time step used to generate the mobility data. For a
given simulation time interval [ 0, Tsim A¢] that is greater than
the period of motion 7T (i.e., TsimAt > T), a system of
numerical trajectories can be generated that is parametrized
by the modulated quadratic Bézier curves {x;j(t) € RZ;
t € [0,TsmAt]; j = 1,2,...,M } with the particular
trajectory

X;(t) = (1 = Bj(1)° Xinit,
+2(1 — ®j(1))P;(r) Xinterm,j
+ Q7 (1) Xiar - (10)
Its structure depends on the temporal modulation medi-

ated by the periodic activation functions {®;(z) € [0, 1];
tel0, Tsiml;j=1,2,...,M}, where

1
1 +exp [—al — ap sin (M )]

The persistent (time-invariant) properties of the HSs can be
characterized by a system of four-tuples

(1) = (In

{(Xinit,j, Xinterm,j, Xtar,j, lj]); J = 1’ 27 .. '9M }7 (12)

where Xyt j € R? determines the starting point of the j-th HS
trajectory and Xgr; € R? is the vector directed to the
target destination. An additional aspect is the control point,
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FIGURE 2. Time evolution of activation function &(t).

Xinterm,j € R2, which can be indirectly used to alter the curva-
ture of x;(t). Each ®(t) is determined by the HS-specific
phase shift #; all trajectories are characterized by the posi-
tive real-valued parameters 7, aj, and ap. The parametric
pair (a1, ap) determines the extent to which the logistic
form tunes the periodic activity. Some important elementary
facts must be considered before parametrization is suggested.
As observed from (11), the choice ax > aj pushes ®;
to the vicinity of asymptotic (boundary) values zero and
one, which means that the limit points xj|q>_ﬁo = Xinit,j
and Xj|<1>j_>1 = X, are never attainable. For some typical
intermediate situation ®; = 1/2, the weighted average
Xjlo—1/2 = (Xinit,j + 2Xinterm,j + Xtar,j)/4 is obtained, which
underlines the known fact that Xjeerm,; does not necessarily
lie on the trajectory x;(¢). In Fig. 2, we depict an illustrative
example of ®;(¢), important for the parametric choices and
further simulations.

2) LEVY FLIGHT MOBILITY

Another variant of motion is provided by the Lévy model,
where, in general, human mobility has been empirically
observed to exhibit Lévy flight [19]. This combined motion
is based on the following interpretation. If a UE travels to
a certain relatively distant destination (in the city), the best
direction of movement appears to be a straight line. Paradox-
ically, moving closer to a target point causes the information
regarding the exact location of the UE to become vague;
hence, another local search (though random) is required.
In this precarious situation, a random strategy for the next
route choice becomes the most efficient. The Lévy flight
process arises as a repeated application of these two move-
ment strategies. As UE moves are considerably subjec-
tive, and therefore unpredictable and interrupted by variable
targets, we represent them through 2D Lévy flights.

In this segment, we present essential simulation details that
illustrate this situation. Under the assumption that angular
decisions are distributed uniformly and randomly, at each
simulation step, the random angle of the j-th UE is gener-
ated by QI.LF(t) = 27 rangj(t), Where rungj(t) is drawn
uniformly from [0, 1]. The instantaneous length of each iter-
ative step is obtained as the product of the typical spatial step
length £, and the random multiplier r_l/.aLF, where o is

stp,J
the stability parameter and g j(f) € [0, 1] is independently
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and uniformly generated. The position XJ.LF(I) € R2 (LFis the
distinguishing label for a UE with this type of mobility) of the
Jj-th UE is updated iteratively according to

01 (1) < 27 rang (1),

X+ A = xT(@) +
(cos(QjLF(t)), sin(ajLF(z))2
[rstp,j(t)] 1/ewr

where (., .)2p is used to represent the vector in 2D.

An additional simulation detail is that a Lévy type of UE is
not permitted to move a step that overcomes the rectangular
boundaries of the system (i.e., no wrapping is assumed).
Of course, the accumulation of limited movements could
cause a marginal increase in the concentration of UEs in a
border region. These subtle consequences are left for further
study.

+ 4y D (13)

D. SYSTEM MODEL SIMPLIFICATIONS

Although the system model is designed to reflect the real
HetNet as precisely as possible, there are still some simplified
assumptions, which were introduced to decrease the compu-
tational complexity of the proposed algorithm.

o The spectrum bands of macrocells and small cells are
completely separated to simplify the task of interference
aware resource allocation for small cells. Such simplifi-
cation is common for the real network deployment, espe-
cially with the advent of LTE-Unlicensed technology,
which assumes utilization of unlicensed spectrum for the
small cells.

« Round-robin resource scheduling is assumed to ensure
that all simulation results will solely depend on the
positions of small cells, rather than on other random
parameters. Such simplification allows to ensure that
SOM algorithm will find the HetNet topology with the
most uniform QoFE across coverage area.

o In real network scenario, UEs accept the QoE, which
is not lower than some minimum threshold. In this
paper, we assume that QoE requirements are the highest
possible for each UE. This allows us to ensure that each
UE will tend to maximize his throughput as much as
possible. Such assumption is important for SOM algo-
rithm to find the most effective network topology.

« In this paper, we limit our investigation to the two-tier
HetNet architecture with fixed transmission powers of
all macrocells and small cells. This allows us to reduce
the algorithm complexity only to small cells positioning,
which is the main goal of this paper. In our future
research we will extend this problem to more tiers of
coverage and flexible power adjustment of BSs, in order
to reflect more realistic network scenarios.

o ECC-33 wireless channel propagation model is assumed
as the best suitable for the chosen frequency range and
urban environment. In real scenarios, the channel prop-
agation models are different across coverage area due to

VOLUME 6, 2018



J. Gazda et al.: Unsupervised Learning Algorithm for Intelligent Coverage Planning and Performance Optimization

IEEE Access

different type of landscape, height of buildings and link
distances. However, this is very complex to simulate,
so most of similar studies usually focus on the single
channel propagation model.

o The UEs’ mobility pattern is assumed to be the combina-
tion of Bézier curves and Lévy flights random movement
to reflect more realistic behavior of UEs. Nevertheless,
this pattern is still far from the real UEs’ mobility,
because it does not reflect the typical UEs’ mobility in
the big city. In our further research, we will implement
more realistic patterns for UEs’ mobility based on the
machine learning algorithms.

IV. SELF-ORGANIZING MAP ALGORITHM:

PROPOSED ALGORITHM FOR HETNET

DEPLOYMENT OPTIMIZATION

In this section, we discuss the details of the application of
a known SOM network to the problem of learning, where
the parameters of the neurons define the coordinates of the
cells of a small cell network.! If we know the trajectories
of the UEs, then the SOM-mediated reduction projects these
input data to the significantly reduced, yet representative,
locations that are associated with the small cell positions in
our application. Because the learning process is unsupervised
(self-organized), it can reveal a hidden data structure, that
is, it can perform categorization without a priori knowledge
of the appropriate solutions. The ability of SOM networks
to achieve self-organized states is equivalent to the ability to
form clusters of input data. In our case, the data represent the
moving coordinates of the UEs, and the persistent positions
of the small cells belong to the locations of the neurons
(or centers of clusters) forming the SOM content. To harmo-
nize the concepts of the proposed model with the standard
neural network dictionary, we can say that the neuron (which
encodes the location of the small cell) whose position is
closest to the data entry (for example, a UE position) is the
best matching unit (BMU neuron). After each SOM iteration,
the BMU vectors are modified; they are trained linearly to
be closer to the appropriate data inputs. What is considered
to be “closest” in the context of the problem being studied,
of course, can be interpreted in different manners and is the
primary idea and specificity of the proposed SOM applica-
tion. In many cases, the proximity of the vector objects can
simply be quantified by their distance defined for the metric
space. Euclidean distance is frequently used as the stan-
dard in this area. However, the distance based on the purely
geometric properties acquired by the conventional Euclidean
prism is not suitable in cases where (i) heterogeneous
properties (e.g., those associated with signal propagation)
become important; (ii) other parties influence the process
of indirect distance evaluation, e.g., based on the signal
transmission between entities; (iii) if there is a manifestly

n this paper, we use the terms neuron and small cell interchangeably,
as they represent the same element within the algorithm framework.
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functional asymmetry between a pair of entities (such as
a transmitter-receiver) that violates symmetry, and thus
makes the applicability of the distance concept difficult.
Therefore, we propose a modified SOM application where
the immediate SINR in (4) is employed instead of the tradi-
tional Euclidean distance. Based on the previous discussion,
we assume that the SOM application in the HetNet network
can be useful not only to improve HetNet coverage but also
to explore other investigated metrics. In the next segment,
we will briefly review the SOM preliminary studies and
provide details of the SOM application in the HetNet deploy-
ment optimization process.

In the proposed SOM version and other implementa-
tions, the network consists of a set of neurons arranged
on a 2D regular square mesh. To obtain an optimized
(self-organized) 2D structure of the neurons (small cell equiv-
alents), an iterative learning process is required. Synthetic
data inputs presented to the SOM network are the trajectory

samples of the UEs, which are partially random (ijF(t)) or
deterministic (x;()) in nature. In the following text, only x;()
symbols are used to represent the synthesized patterns for
SOM learning. It is also worth mentioning that the standard
theory of learning recognizes two types of training/learning
practices, called sequential and batch algorithms. In this
work, we use a sequential learning algorithm because it
retains the time sequencing of the samples, which can be
important for the analysis of periodic UE movements. Finally,
we do not propose changing the macrocell topology structure,
and thus the macro-UEs (the UEs that are associated at partic-
ular learning time steps with the macrocell) do not have any
instantaneous impact on the SOM learning process.

The parallel dynamics of the moving UEs and the learning
dynamics of the SOM are linked by specific time variables
t' and r, where ¢’ is a discrete-time variable describing
the stages of SOM learning; the positions of the UEs
acquired within the mobility models (mobility curves) are
parametrized by the continuous (real) time variable ¢. The
mutual relation between ¢ and ¢’ is given by ¢ = [f/At],
where At is the time step of the mobility model sampling.

In the following segment, we discuss the compu-
tational details of our specific SOM implementation.
An SOM network is a recurrently evolving system of

vectors—neurons S(t') = {m;(r) € R% i = 1,...,Ns}.
The mobility models provide instantaneous data samples
including {x1(¢), X2(?), . .., X, ()} consisting of N, UE posi-

tions at a given time. The single-learning step for the occur-
rence and processing of data item x;(¢) includes:

(i) the introduction of particular input x;(¢) to the SOM. Here
we emphasize the neuronal dependence not only on ¢’ but also
on the pair (j, '), which stems from the fact that for serial
update, the learning depends not only on ¢’ but also on the
order j of the respective data item X;(¢) (i.e., data items are
visited in a typewriter manner).

(ii) the identification of the BMU vector m; .y € S(t')
specified by its index c(j, ') € {1, 2, ..., Ns};
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(iii) the adjustment of m.; ;1) and neighbors m;(t') € S(t')
with the learning rate modified by the neighborhood function
hi e,y € R (the form is specified below). The processes
of BMU identification and the calculation of #; . ;) depend
on the distance (or SINR-based alternative) between the
data samples and neurons. Given || ... |zp is the Euclidean
distance in 2D, then c(j, t'), the index representing the BMU,
is identified using

(s t/)Eargl_ {ninN I %) — my(2") ll2p. (14)
=1,...,Ns

At this stage, neurons begin adapting their components in
response to changes in their own network topology and
changes in the data environment

m;(t' + 1) = m(t)
+a(hi @) [xi(0) —mi)],  (15)

where «(t') is the learning rate and i = 1, ..., Ns. However,
not all neurons necessarily require modification; rather, local
changes are typical for the SOM architecture. The time-
varying limitations for the S(¢") update are defined at the level
of the neighborhood function

L, if m(t") —mgjll2p < 6(1) (16)
0, else.

hi o (t') = {
The convergence toward a static limit S* is achieved by the
decreasing learning rate (varying in a simulated annealing
manner)

, 1/Tsim
a(t') = agarc k|, ki = ( Utar ) , (17)

Cstart

where k| € [0, 1] is a constant and Ty, > T is a typical
time scale, which at the same time characterizes not only the
simulation of mobility but also the slowing of the learning
(simulation length). The learning rate is delimited by the posi-
tive constants o and o The complementary heuristic
6(t") = kya(t') is used for the process of the “narrowing”
of the network focus. Because k1 and k; have a significant
impact on the convergence and results achieved, several meta-
optimization tests have been applied to perform the selection
of these constants.

If no algorithmic optimization (or pre-processing of input
data) is performed for the respective SOM variant, the compu-
tational complexity of each iteration of the network can be
given as O(NSNf) [10]. The above discussed literature (and
references therein) reports that the main options to improve
the SOM performance may be available in situations where
the data environment is relatively sparse. We can mention
that the computational load due to N2 contribution can be
simply reduced by representing the spatially dispersed UEs
as the centroid using appropriate cluster mechanism. In lieu
of detailed valuation of all UEs, we assume that some pre-
treatment procedure from the class of coarse-graining proce-
dures can also be applied.

39814

We refer to the procedure presented above as the conven-
tional application of SOM to the HetNet deployment opti-
mization problem. However, as long as the Euclidean distance
in (14) is the decisive factor for selection of the BMU, the
Euclidean scenario finds somewhat limited application in the
HetNet deployment problem. The problem of the optimal
user-cell association can be extremely pronounced in the
specific situations where the optimality UE association is
achieved for a remote (in the Euclidean sense) BS. The reason
for this seemingly paradoxical choice is the ability to gain a
higher SINR of the receiver. In general, a remote BS can have
a more favorable position in terms of ubiquitous interference,
and can thus provide higher throughput to the associated UE.

Because this phenomenon cannot be captured using the
conventional Euclidean metric, we choose to use the SINR
“quasi-metric”’ formula. Our presented heuristic modifica-
tion of the SOM is limited to one calculation step. To identify
c(j, t"), we use the following modified variant of (14):

c(j, 1) = arg o max fsiNr(x;(1), m;(1")), (18)

where fsNr(.,.) represents the SINR function (see (5))
between the j-th UE and the i-th neuron (encoding the posi-
tion of the small cell). Although this may not be optimal,
the next steps of the SOM algorithm remain consistent with
the conventional application. Regarding the modified form,
the most serious doubts arise in connection with the relaxed
metric properties that are irrevocably lost when the Euclidean
description is changed to fsiNr(., .). Although the modified
approach does not provide sufficiently precise arguments,
this deficiency can be compensated by the empirical-
computational, intuitive, and comparative approach (where
e.g., a comparison of the conventional and modified SOMs
is performed in the specific cases). A mathematical intuition
can be based on a return to the metric concept. The inverse
proportionality 1/|x; — XJ-||§IDNR ~ 1/fsiNr(Xj, m;) is an
elementary idea in this direction.

V. SIMULATION RESULTS

To evaluate the performance of the proposed approaches
(based on the Euclidean metric and SINR metric), we
distributed Ns small cells following the binomial point
process (BPP) in an investigation region having an area
of 1 km?. A simple 2D BPP is typically used to model
the positions of small cells of single tier or K-tier cellular
networks. Unlike other stochastic geometry tools, the use of
a BPP is becoming prevalent in coverage-limited scenarios
to model a finite number of small cells distributed within
the coverage area. As HetNets are commonly deployed
in an increasingly irregular and random manner, modeling
the locations of the small cells using tools from stochastic
geometry would seem to be a fair solution to model the
HetNet network performance. In general, the application of
the BPP modeling approach in our discussion is twofold.
First, the BPP modeling approach serves as a reference
point for a performance comparison with the proposed
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SOM application. Furthermore, a BPP also provides the
initial HetNet topology for the SOM deployment optimiza-
tion process.

The numerical tests were conducted using the 3GPP
LTE-A specification and small cell parameters as described
in [23] and [29] using Monte Carlo simulation. Throughout
the simulation, we followed scenario #2a presented in [35],
where the outdoor small cell deployment was consid-
ered jointly with the overlaid macrocell network. Separate
frequency deployment of the macrocells and small cells was
assumed. The detailed simulation parameters are introduced
in Table 1.

TABLE 1. Simulation parameters.

Parameter Value

Simulation method

Monte Carlo with 1000 trials

Simulation length (Tgiy,)

Tsim = 800 hours

Period T" of ®(t) function

T = 0.5 hours

Coverage area

1km?

TX power (P;) macrocell: 40.3 W
small cell: 6.3 W
BS height (hy,) macrocell: 45 m
small cell: 2 m
UE antenna height (h;) 1m

Antenna pattern

0 dBi (isotropic)

Carrier frequency (f)

macrocell: 2.1 GHz
small cell: 3.5 GHz

Macro-layout (Nyp) Ny =2
Inter-site distance = 500m
Small cell layout (Ng) Ng € [2,30]

No. of RBs (INgB)

per macrocell: Ngg = 100 RBs
per small cell: Ngg = 20 RBs

RB bandwidth (W)

180 kHz

System bandwidth macrocell: 18 MHz
small cell: 3.6 MHz

Path loss model ECC-33

Thermodynamic temperature 290 K

Link scheduler Round-robin

Number of Lévy Flight UE 100

Lévy flight mobility parameter (ar,r) | apr = 1.5

Number of HSs

10, each consisting of 10 UEs

Total number of UE (V) N, = 200

Phase shift of HSs (¢;) t; € [—2,2] hours (random)
SOM learning constant (k1) k1 = 0.9974

SOM learning constant (k2) ko = 16.67

SOM learning constant (astart) astart = 0.8

SOM learning constant (cctar) atar = 0.002

We first discuss in detail the specific manner in which the
positions of the neurons were changed via sequential moves.
Here, we illustrate the use-case with a Euclidean-based SOM;
however, similar results were achieved for the SINR case.
Even a visual inspection can indicate that the dynamics
governing the radius of learning can have an important role
in the efficiency of the convergence process. We initiated the
SOM learning procedure with a neuron distribution following
the BPP (Fig. 3a). Owing to the fast learning process and
initial large radius, the neurons were grouped together and
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jointly traversed the region (see supplementary material)).
As we proceeded with the review of the simulation snap-
shots, we observed that there were clearly identifiable early
stages of the fast learning process where the instantaneous
arrangement fluctuated irregularly with relatively low global
throughput efficiency. Under this regime, the arrangements of
the neurons reflected the combined effect of instantaneously
large radius of learning (low competition, high plasticity),
high learning rate, and a local cumulative effect of the mobile
UEs, which can be localized in an extremely narrow region
of the traffic funnel that acts as an intense temporary attractor
for all neurons. Because the effect of stochasticity is ubiqui-
tous, the analogy between our variant of SOM and the simu-
lated annealing processes is clear. In simulated annealing,
the temperature determines the probability of the transition to
higher energy from some instantaneous configuration. In the
specific search for the optimal configurations of neurons,
the complex density deviations cause unpredictable quasi-
thermal dynamics. The Lévy flight randomness, the regular
perpetual motion of the traffic stream, and the funnel together
with the gradual non-equilibrium reduction of the learning
rate are the dynamical components that form the independent
time scales shaping the environment of the neurons. From an
intuitive viewpoint, the timing structure mixing the global
and local trends resembles the standard annealing sched-
ules. As can be observed, the overheated neurons wandered
initially within a broad region of the search space (see video,
supplementary material and Fig. 3b). When the learning rate
became sufficiently slow (the movements of the neurons
were less pronounced), a relatively sharp threshold transi-
tion occurred that was accompanied by a qualitative shift
toward high learning (optimization) efficiency and consid-
erable structural changes in the arrangement of the neural
degrees of freedom (Fig. 3¢). Structural tendencies supporting
axial symmetry are readily observable. It can be seen that
smaller, yet significant, changes due to slow learning have
led to the disappearance of locally unstable neuro-spatial
deviations. Gradually, almost axially symmetrical arrange-
ments are formed that reflect the overall symmetry of the
environment occupied by the moving UEs. Finally, when
the learning rate approached zero, neural movements became
limited (virtually static), and thus was considered adapted,
and a fixed arrangement was obtained that integrated all the
environmental movements. As a by-product, axial symmetry
of the neural arrangements was developed, which was exter-
nally dictated by the axis of the transport funnel and the
macrocell axis (Fig. 3d). The principal positive simulation
finding is that final neuronal alignment is reflected by the
enhanced global throughput value despite the fact that the
global fitness function is not explicitly defined for the SOM
network. By observing small, residual, deviations from the
regularity of the agreements, we conclude that barriers to
optimization appear to be an obstacle to the relaxation and
further improvement of the learning (optimization) process.
Figure 4 explains how the SOM algorithm learns over
time to improve the performance of deploying small cells.
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FIGURE 3. Visual illustration of the SOM learning framework. Four plots indicate the small cell topology design at different stages of the
SOM learning process. The subplot notation a), b), c), and d) correspond to the different SOM learning stages depicted in Fig. 4.

Starting from a random initial BPP placing (point a), the
algorithm attempts to determine improved small cell place-
ment. It is noticed that initially the algorithmic process is
“confused” regarding how to place the small cells effectively.
Such behavior is normal considering the unsupervised nature
of an SOM. Figuratively, its cognitive abilities are at the level
of a baby taking its first steps. Thus, the average throughput
per user is significantly less compared with BPP during this
learning period. After several iterations, the SOM algorithm
determines where small cells should be placed to improve
the experience of the UEs. Then, in a short time, the average
throughput per user increases more than twice (from point b
to point ¢), reaching values unattainable by BPP or other
existing solutions. Point ¢ corresponds to the local optimal
HetNet coverage. From point ¢ to point d, we do not observe
any significant changes in the network performance because
the SOM algorithm performs only minor shifting of the small
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cells to determine the best configuration. The difference in
throughput between points ¢ and d can be neglected due to
the additional noise in the system caused by the UE mobility.

To compare the performance of the proposed SOM
algorithm with existing stochastic geometry algorithms,
we conducted simulations for three key parameters of HetNet:
average throughput per user, fairness of resource allocation,
and coverage probability. Figure 5 displays the results for
the average throughput per user. It is clear that both SOM
implementations outperformed the conventional BPP deploy-
ment, especially when the number of small cells increased.
However, the difference between the two SOM metrics
(SINR and Euclidean distance) was minimal and diminished
for a large number of small cells. This phenomenon can
be explained by the features of the simulation scenario.
Increasing the number of small cells per area naturally
results in a smaller cell size. If the cell size is sufficiently
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FIGURE 4. Average throughput per user vs. SOM training time. Initially,
the throughput dramatically decreases owing to the large radius and fast
learning rate. However, the throughput gradually improves over the
learning time duration. Notations a), b), c), and d) indicate different
stages of the SOM learning process.

rrrrr proposed approach (Euclidean distance metric) P
~--proposed approach (SINR metric)

5 0es0g|  — binomial point process (BPP)

1,76e+06

29,86%

1.5e+06

1,23e+06

1.0e+06

Average throughput per user (b/s)

5.0e+05

6 7 8 9 10 11 12 13 14 1516 17 18 19

2 3 4 5

studied algorithms provide enhanced results in terms of the throughput
compared to BPP. However, the differences between the proposed
metrics diminish for Ng = 18.
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FIGURE 6. Fairness vs. number of small cells for the studied algorithms.
Clearly, the fairness decreases with an increased number of small cells.
The higher the number of small cells, the greater the degree of freedom
with user-cell association present, resulting in a decrease of fairness.
The proposed algorithms provide superior results in terms of fairness
compared with BPP.

small, we can assume that the SINR variation over the cell
is negligible; SINR depends only on the received interference
power. Received interference power increases proportion-
ally to the Euclidean distance from the serving BS. Thus,
Euclidean and SINR metrics are closely related and indicate
similar performance for all simulated parameters.
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FIGURE 7. Coverage probability for Ng = 6. SOM with proposed SINR
metric performs the best. SOM with Euclidean metric performs better
than BPP, yet significantly worse than using the SINR metric.
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FIGURE 8. Coverage probability for Ng = 12. SOM with both proposed
metrics significantly outperforms BPP topology design. However,

the differences between the metrics do diminish to a virtually negligible
level.

Although Fig. 5 displays the advantage of SOMs, this
does not necessarily mean that the most effective network
configuration is achieved. It is common in HetNet to observe
a situation where some UEs experience significantly higher
throughput than average, whereas the throughput for other
UEs is significantly below average. Thus, it is important
to determine what configuration of small cells provides
a more uniform throughput distribution among the UEs.
Figure 6 depicts fairness versus the number of small cells for
the studied algorithms. As can be observed from the results,
the fairness decreases with an increasing number of small
cells. This result was expected because UEs tend to stay
less time in cells with a smaller radius, resulting in a higher
probability of small cell overload or underutilization. Never-
theless, the proposed SOM algorithm demonstrates superior
fairness compared to the BPP, regardless of the metric used.
This advantage can be explained by the self-optimization
capability of SOM. Unlike the BPP, which tends to fill the
area without coverage holes, the SOM algorithm determines
the positions of the small cells according to the probability
of traffic demand in each area. Thus, SOM avoids small cell
placement in areas where traffic demand does not exceed
the capabilities of the macrocell. Therefore, considerably
less inequality is observed in HetNet if the small cell layout
follows the SOM topology.
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Summarizing the results in Figs. 5 and 6, we can conclude
that the effective number of small cells, which satisfy both
criteria, is from 6 to 12. If the number of small cells is less
than 6, the average throughput is overly low, even though
the fairness distribution is sufficiently fair. Conversely,
increasing the number of small cells to more than 12 can
improve average throughput per user. However, the fairness
in this case degrades significantly and the majority of UEs
will experience unacceptable throughput.

For the two chosen cases, we compare the coverage prob-
ability versus target value of SINR in Figs. 7 and 8. The
difference between the two simulated scenarios indicates that
each additional small cell decreases the SINR; this is because
number of interfering transmitters is increased. These results
correlate well with the results presented in Figs. 5 and 6 and
help to highlight the advantages of the proposed SOM over
the conventional BPP deployment of small cells. Coverage
probability is an important parameter; it provides insight
regarding the percentage of UEs who experience acceptable
SINR values. Given the direct relation between SINR and
throughput, it is clear that SOM deployment provides an
improvement of overall HetNet performance compared with
conventional BPP deployment regardless of the simulated
scenario. Considering the fact that quasi-optimal network
configuration depends solely on the statistics of traffic
demand in a particular coverage area, the proposed SOM
algorithm is a promising tool for the task of HetNet topology
design.

VI. CONCLUSION

A new approach to HetNet topology design based on unsu-
pervised learning was presented in this paper. The proposed
approach aims to address the challenge of optimal small
cell placement within a target coverage area considering
the statistics of traffic load HSs and co-channel interfer-
ence among the UEs of different cells. The HetNet topology
is designed based on the unsupervised SOM algorithm.
The proposed SOM-based algorithm can adjust the posi-
tion of small cells using one of two criteria: average UE
distance from the serving BS or average SINR perceived by
each UE. The important advantage of this approach is that
it can be trained for any type of UE mobility pattern and
provides unlimited opportunities for HetNet design for any
type of urban environment. Simulations were conducted to
compare the performance of the proposed SOM algorithm
with the stochastic BPP algorithm, which has been widely
considered as the most feasible solution for two-tier HetNet
topology design. We compared both algorithms based on the
average throughput per UE, fairness of throughput distri-
bution among UEs, and coverage probability. The results
confirm that the proposed approach outperforms the BPP
for all simulated scenarios. In particular, the SOM gain
in average throughput was noticeable with an increase in
the number of small cells. However, for a large number of
small cells, the probability of unfair throughput distribution
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increased, due to the reduced coverage area of the small
cells. The results of coverage probability indicate that in
the case of 6 small cells, SOM provides SINR gains of up
to 2 dB for the Euclidean distance metric and up to 4 dB
for the SINR metric. In the case of 12 small cells, SOM
provides an SINR gain of up to 6 dB for both studied metrics,
meaning that for small cells, the difference between SINR
and the Euclidean metric is negligible. In further research,
we will provide additional insight into the HetNet coverage
planning for different scenarios using unsupervised learning
algorithms with different performance criteria.
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