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ABSTRACT An escalating energy demand can be seen especially in developing and fast-growing economies
such as India. Conventional energy resources meet most of the energy demand. The alarming issue of global
warming and the dependency on fossil fuels to meet the energy demand has motivated the use of clean
energy sources. In this context, the educational institutions with high electricity consumption in India have
been planning to opt for locally available renewable energy sources to meet their electricity demand. Even
one of the most crucial issues in such academic institutions is the food waste management. Most of the
institutes, give up their food wastage to piggeries which are directly fed to animals or discarded or dumped
irrationally. In this paper, an optimal microgrid solution using locally available energy resources for a
real physical location considering its real time-power demand is proposed. Various scenarios and different
combinations of energy sources, such as solar photovoltaic, food waste based biogas plant, and a diesel
generator as backup have been considered along with batteries as storage in off-grid and grid-connected
systems. Hybrid optimization of multiple electric renewables (HOMER) PRO software package is utilized
for detailed technical and financial analysis with a multiyear growth approach to determine the optimal
energy system, which is unlikely observed in literature so far. The detailed analysis results illustrate that
photovoltaic contributes most of the electricity being generated in all the scenarios. The renewable fraction
is comparatively high in the off-grid system in the range of 92% to 100% as compared with 63% to 80%
in grid-connected systems. The results obtained also show that levelized cost of electricity is low in case
of grid-connected systems varying between (.18 Indian National Rupee (INR)/kWh to 1.39 INR/kWh in
contrast to 11.96 INR/kWh to 18.47 INR/kWh for off-grid systems.

INDEX TERMS Microgrid, hybrid energy system (HES), renewable energy, HOMER PRO, biogas, food
waste management.

I. INTRODUCTION

With threats of frequent climatic changes, the global com-
munity at the 21st Conference of the Parties (COP 21)
of the United Nations Framework Convention on Climate
Change (UNFCCC) held in Paris reached a milestone to
not only to combat the frequent climatic changes but also
to strengthen the steps towards a sustainable development
with low carbon footprint [1]. The agreement’s centrally
aimed to take rigorous efforts globally in order to keep the
global temperature rise well below 2°C this century and to
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make necessary efforts to limit the temperature rise not more
than 1.5°C [1], [2]. Environmental friendly power generation
is the only solution to reduce the greenhouse gas emission
which helps in creating an additional carbon sink. In devel-
oping nations, an increase in energy demand can be easily
observed. Renewable energy has proved to be a sustain-
able alternative in overcoming the energy crisis as well as
in reducing the greenhouse gas emission without hinder-
ing the economic growth. With a 7.6 % GDP growth rate
in 2015 and a projected GDP growth rate of 7.9 % by 2018,
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India has become one of the fastest growing major economy
in the world [3]. Due to its rapid economic growth, several
policies are introduced to press ahead for its moderniza-
tions and expansions in manufacturing doubling its energy
consumption since 2000. Even though having 18 % of
world population, India uses only 6% of the world’s primary
energy [4]. For achieving its development goals to upkeep
its growing economy, production of surplus energy is vital.
The economic growth is escalating the electricity demand
in all sectors (industry, transport, residential, services, and
agriculture). The electricity demand of India is projected
to rise by an average of 4.9 % per year in all sectors and
is most likely to be accounted for 17 % of the increment
in global electricity consumption by 2040 [4]. The total
installed capacity as on 31.03.2017 of India is 330261 MW,
most of which is contributed by thermal power (coal, gas,
and oil) having a share of 67.1% [5]. The renewable energy
sources only share 17.34% of total electrical production.
Figure 1 illustrates the share of electricity production from
various sources in India in 2017.
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Renewable Energy Sources (RES) include SHP, BG, BP, U&I, Solar and Wind Energy.

( SHP= Small Hydro Project, BG= Biomass Gasifier, BP= Biomass Power, U & I=Urban & Industrial Waste Power).

FIGURE 1. Electricity generation from various sources in India (2017).

India has planned to follow a cleaner path towards its
energy needs required for its development and has established
goals to use renewable energy by expanding the portion
of renewable capacity by more than 5 times from 32 GW
in 2014 to 175 GW in 2022 [6], [7]. Even several targets
have been set in the Intended Nationally Determined Con-
tributions (INDC) by 2030 such as, reducing the emission
of GDP by 33-35 % from the 2005 level along with the
creation of additional carbon sink of 2.5-3 billion tonnes
and commitment for 40 % cumulative electricity power from
renewable energy sources [6]. However, without a proper
energy planning and participation from all the consumers’
side (industries, domestic, government institutions, educa-
tional institutions, etc.), it is not possible to fulfill the energy
needs. A proper understanding of the supply and demand is
very crucial for energy planning which is full of uncertainties
at every level and can only be understood with the application
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of decision analysis reported by Prasad et al. [8], [9] and
Bansal [10]. A detailed application and methodologies based
on multi-criteria decision analysis for energy planning with
a perspective of sustainable development have been outlined
in [7] and [11]. Even integrating distributed generations in the
current power system has many challenges which are detailed
in [12]-[14].

The educational institutes in India are more of an urban
ecosystem having higher electricity consumption. India’s
higher education system is third in the world. It has
42 central universities, 581 state university (public 353 and
private 228), 127 deemed university, 71 institutes of national
importance and 5 institutions functioning under the State Act
respectively [11]. Also, the number of colleges increased to
38056 reported in 2016 [15]. Higher educational institutes
in India are planning to reduce their electricity consumption
from the grid supply by using microgrids based on locally
available renewable energy sources. In such campuses, food
waste management is also a prevalent issue which needs to be
addressed for better health perspectives [16]. Approximately
on an average daily 1.5 tonnes of food and other kitchen
waste is produced from such institutes. No proper waste
management system is in place, and most of the food waste
is given to pig farms to be fed to animals and sometimes
discarded irrationally [16]-[19]. A solution to this problem
could be energy generation based on biogas production from
institute’s food waste [20], [21]. By utilizing anaerobic diges-
tion process, the food waste can be converted to biogas and
could be utilized for several purposes such as heating, cook-
ing, etc. [16]-[25]. A detailed review of biomass gasification
process from solid waste for Indian perspective is reported
in [17], [21], and [25]. Many studies exist in the literature
about microgrid design based on renewable energy sources
utilizing different methods (soft computing techniques), opti-
mization techniques (single and multiple) and popular soft-
ware tools [26]-[36]. A critical review of recent literature
based on HOMER for techno-financial analysis of hybrid
energy systems is illustrated in following sub-section.

A. FEW RECENT STUDIES BASED ON HOMER FOR
FEASIBILITY STUDY OF HES

Table 1 illustrates some recently published studies using
HOMER software of HES for different locations based
on solar photovoltaic (SPV), wind energy (WT), micro-
hydro or hydrokinetics (HY), biomass generators (BM), bio-
gas generator (BG), fuel generators based on natural gas
or diesel (DG) along with different energy storage systems
such as batteries (BA), flywheel (FW), hydrogen-based fuel
cell (FC) and pump hydro storage (PHS) respectively in
isolated or grid connected schemes. The size of bidirectional
converters (BC) wherever applicable is also outlined. The
studies are summarized based on their location, year, archi-
tecture (isolated centralized scheme (ICS), isolated decentral-
ized scheme (IDS), grid centralized scheme (GCS) and grid
decentralized schemes (GDS)) along with technical aspects
(component details, dispatch strategy (DS) such as load
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TABLE 1. Recent feasibility studies on HES using HOMER [37]-[94].

TECHNICAL ASPECTS
Sl .
Location Year
No. . COMPONENTS DS LOAD TYPE RF (%)
Architecture
SPV| WT |HY|BG| BM | DG |GD|BC|FC| BA | PHS | FW
1. [Tsumkwe, Namibia [37] | 2017 Ics vk ||| x| v |x|v]|x|v ]| x| | Nu Remote village 46
(community)
5 Kilis, Southern Turkey 2017 cs v % < | x < yilxlvlicl v < < cc Residential 79
[38] (summer house)
Residential
v v v v
3. [Iran [39] 2017 ICS x | x| x x | x x * x NM (Forestry Camp) M
4. |Andean region [40] 2017 ICS,ISD ViV |v|«x x x x [V | x| vV x x NM Community 100
5. E‘el]idljan County, Iran 2017 GCS VY| x|x]| x V| vI|v]x| VY x x NM Hydrogen based load NM
Sarawak, East Malaysia Village
’ v vV v
6 42] 2017 s e x| ( 50 houscholds) 100
7. [South Korea [43] 2017 ICS v v x | x x v x | vV | x v x x NM City load 100
8. [Shafar, Yamen [44] 2017 ICS V| v x| x x Vx|V ] x| x x x LF Household 90
9. |Varanasi, India [45] 2017 1SD v x x | x x x x | x| x x x x NM | Small home light system | NM
i LF . 100
10. [Sabah, Malaysia [46] 2017 ICS v x x | x x Vx|V |x ]|V x x cc Community 100
i i 93
11. E‘}“%’V‘m‘s Tezpur, India 2017 ICS, GCS v x x | x v v | v I|v ]| x v x x NM Remote village o1
12. |India [48] 2017 ICS Vi x | x| x| x x | x [V |V IV x x f[g Academic building 100
13. (Chile [49] 2017 GCS x v x| x x x |V [V | x| x x x NM Community NM
14. [South China Sea [50] 2017 1CS V| v | x|« x Vx|V Iv]V x v cc Community (Island) z(l)
15. |Colombia [51] 2017 ICS Vv | x|x]| x Vx|V ]x]| Vv x x NM Remote Village NM
16. [Saudi Arabia [52] 2017 ICS v v x | x x x x |V |V |V x v NM Community 100
17. [USA [53] 2016 GDS v x x | x x x vV v x v x x NM Residential NM
18. [Oujda, Morocco [54] 2016 ICS V| v | x|« x x x |V | x|V x x cc Residential 100
i 100
19. [South Korea [55] 2016 1€56es | v | v |x|x| x| v |vi]iv]i<s|v ]| = |*| v Academic o
20. (Chamoli, India [56] 2016 ICS viviiivi|iv| VY x v v cc Remote village 100
21. |Almora, India [57] 2016 ICS v viv] VY v 4 4 cc Remote village 94
. Oil tanker ship 5.7
v x x x x v v | x v x
22. |Aden, China [58] 2016 ICS NM Tand (site specific) 9.7
23. [Kadayam, India [59] 2016 ICS V| v [Vv]«x x x x |V [ x|V x x cc Remote village 100
24. [Brochet, Canada [60] 2016 ICS x v x| x x Vx|V ]x]| VvV x x NM Community 47
25. [Bangladesh [61] 2016 ICS V| x [ V] x x Vx|V ]x]| VvV x x NM Remote village 64.4
Kutubdia Island i
> v v v v v
26. Bangladesh [62] 2016 ICS x | x x x x x x NM Community 87.9
27. |Colombia [63] 2016 ICS Vv | x|x]| x Vi|x|v]x]| Vv x x NM Remote Village 99
28. Southern Iran [64] 2016 ICS, GCS Vv | x|« x vV [ v|v]x]| Vv x x NM Community 0-43.9
29. [Khuzestan, Iran [65] 2016 ICS V| x x | x x x x |V | x|V x x NM Community 100
30. [Malaysia [66] 2016 ICS, GCS V| x | x| x| x x |V |V | V]|V x x LF Hospital 82
31. Malaysia [67] 2016 GCS v x x | x x x |V | V]| x|V x x NM Community 33
32. [Patiala, India [68] 2016 ICS, GCS v v x | x 4 x vViiv]«x 4 x x LF Community 100
33. [Egypt [69] 2016 ICS Vv | x|x]| x x | x |V |[V]| V x x NM Agricultural Load 100
34. P;%S]'“kmet’ Antarctica | ¢ 1cs x| v |x|x| x| %x|x|v|x|v ]| x| x| 8| CommunityLoad 100
35. [Saudi Arabia [71] 2016 ICS v v x | x x x x | vV | x v x x NM Community 100
36. |Almora, India [72] 2015 ICS viiviiivi|iv| VY Vx|V ]x]| Vv x x cc Remote village 92.7
37. (Garisaa, Kenya [73] 2015 ICS V| v x|V | x Vx|V ]x]| VvV x x NM Remote village 100
38. [Turkey [74] 2015 ICS, GCS v v x | x x x VI ivi|v] VY x x NM Island 100
VOLUME 6, 2018 37535
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TABLE 1. (Continued.) Recent feasibility studies on HES using HOMER [37]-[94].

Island,Venezuela [81]

39. [Chennai, India [75] 2015 ICS, GCS v v | x| x v v v v] v x x NM Telecom Load NM
40, ][\;lzlfkah» Saudi Arabia 2015 GCS v x| x| «x x | v |v] x| x % x NM Community 33

41. [Bouzareah, Algerian [77] 2015 GCS 4 v x | x x V|V x x x x LF Community 24

42. Bangladesh [78] 2015 IcS v v x | x x x | v | % v x x NM Remote village 43

43. [Nigeria [79] 2015 ICS v v x | x x x | v | x v x x LF Remote village 71

44. [United Kingdom [80] 2015 IDS, GDS V| v | x| x x x |V | x x x x NM Residential Load E]\M/I
45. Margarita 2015 IDS v v x | x v x | vV | x v x x NM Residential Load

IDemocratic Republic of

46. 2015 ICS v x x | x x x | vV | x 4 x x NM Academic Building 100
ICongo [82]
47, &(;r]vo Island, Azores 2015 Ics x | x | x| x x | x| x| x| x x x |CC LF Island NM
48. Spain [84] 2014 GCS viivi|v]|« viiv]x|x]| x| x| x| cc Sports Building NM
49. |Hong Kong[85] 2014 ICS V| v | x|« x | x|V |x |V x x cc Remote Island 100
50. [Hong Kong [86] 2014 ICS V| v | x|« x x |V | x| x v x NM Remote island 100
51. Peju, South Korea [87] 2014 ICS, GCS V| v | x|« x | V|V ]|x]| VY x x NM Remote island 100
52. [Netherlands [88] 2014 Gesics | v | v | x| x viiv|v|x]| v | x| *| g | Communitywater 79
treatment plant
53. [Iran [89] 2013 ICS V| o x | x| x Vx|V ]x]| Vv x x NM Rural household 35
54. [Saudi Arabia [90] 2013 ICS x v x | x x x | x| x x x x NM Community 100
55. |Ajloun city, Jordan [91] 2013 GCS, ICS V| v | x| =x Vi v v]x]| Vv x * NM Residential 62
56. [Kerala, India [92] 2012 ICS V| x [ V] x x x |V | x|V x x NM Remote village 100
57. [Lesvos, Greece [93] 2011 ICS x v x| x Vo x| x| x| x x x NM Community NM
58. [Ethiopia [94] 2010 ICS v vi|x]|x vi|x|v|x| v ]| x| % |ccLF Community 51

following (LF) or cycle charging (CC), load type and renew-
able fraction (RF)) respectively. NM in Table 1 specifies the
quantities which are not mentioned in the studies.

Most of the studies as illustrated in Table 1 are car-
ried out in ICS schemes for remote locations considering
a few energy combination scenarios mostly based on SPV,
WT, DG and BA. Only a handful of studies have con-
sidered studying grid extension scenarios in comparison
with isolated scenarios [95]. A very few studies focusing
on design of microgrid based on BG or BM in combina-
tion with other renewable energy technologies is reported.
Kumar et al. [96] have presented an optimal design study
of a grid-connected energy system (SPV + food waste
biogas) for academic institute in India. A hybrid power sys-
tem consisting of bio-generators (BG and BM) with SPV,
HY, DG and BA for a remote village in India has been
reported in [57], [72], and [97]. A detailed techno-financial
analysis of a hybrid energy system for a remote village
located in Kerala, India in off-grid configuration consist-
ing of SPV, HY, biomass-based generator along with BA
as storage has been discussed in [92]. Kumar et al. [98]
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using three different scenarios based on available local
energy resources have evaluated a hybrid microgrid for a
remote community in North-eastern state of India. A detailed
techno-financial analysis using single objective optimization
for the same region is reported in [99]. Using HOMER,
analysis and design of a microgrid considering 7 scenarios
with a combination of energy resources (BG with SPV) and
storage technologies (BA, FC) for a rural area in West Bengal
with an overall electric load of 22MWh/year is reported
in [100]. Economic evaluation using HOMER for a biomass-
based energy system for a better integration with other renew-
able energy sources has been studied by Montuori et al. [84].
This study primarily focus on the following research gaps:

i) In none of the studies outlined so far from the exist-
ing literature accounts for the yearly load growth, which
seems highly unrealistic towards the design of energy sys-
tem [30]-[99], [101], [102]. All the studies have evaluated the
HES on the basis of existing load data over the project life-
time. The project lifetime is taken around 20 to 25 years for
calculation of various cost incurred mainly the cost of energy
which relies mostly on the lifetime of renewable energy
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technologies (RETs). In real application, even technologies
with higher lifespan such as SPV are unable to produce the
same amount of electricity every year due to reduction in its
efficiency over a period of time. So, without considering a
yearly load growth while designing the energy system can
give not only technical errors but also financial mistakes.

ii) Also, in many works the dispatch strategy or energy
management system (EMS) for evaluating the HES is not
mentioned which itself is a big anomaly is such stud-
ies [37], [38], [40], [43], [45], [47], [49], [87]1-[93], [95], [96].
Without having a proper dispatch or EMS, the results obtained
and illustrated seems very hypothetical. Most of the sys-
tems being evaluated in literature also lack clear mention
of the cost incurred in civil works for installation of SPV,
WT or other technologies and only the capital cost of the
technologies for feasibility studies have been considered.

iii) In [95], system fixed capital cost (includes civil, logis-
tics, wages, etc.) and operation and maintenance cost (O&M)
for the project lifetime is considered on the whole for all
the RETs. Even no consideration is taken up for the land
cost which accounts for almost 5-7 % of the total capital cost
depending upon the type of RETs [101]. According to Central
Electricity Regulatory Commission (CERC), Government of
India during energy project execution, the capital cost (CPC)
of the technologies shall be inclusive of all “capital works
like plant and machinery, civil works, erection and commis-
sioning, financing and interest during construction, and evac-
uation infrastructure up to inter-connection point” [101].

iv) In [47], [56], [57], [68], [72], [73], [82], [92], [97],
[102], and [103], there is no clear mention of the CPC and
O&M cost of biomass digester. Due to this error may occur
in the calculation of levelized cost of electricity (LCOE), as it
is dependent on capital as well as O&M cost. Even if the
capital cost of the anaerobic digester is included in the capital
cost of the generator it is not wise to do so, as the O&M
cost of the biogas generator is dependent on an hourly basis
and anaerobic digester O & M cost on yearly basis. However,
it is possible to include the digester O&M cost in terms of
price/kg of biomass feedstock consumed, then the digester
O&M could be included in the biomass feedstock cost [104].

In this work, a microgrid is designed using the locally
available energy sources for a real physical location (Indian
Institute of Technology, Guwahati) considering the real
power demand. A detailed multiyear-based techno-financial
analysis of energy system is done using HOMER PRO
(hybrid optimization of multiple energy resources) software,
which is highly unlikely to be observed in literature so far.
For this study, various benchmark costs as prescribed by the
CERC, Government of India is considered [101]. This paper
evaluates energy system based on different combinations of
energy sources (solar photovoltaic, food waste based biogas
plant and diesel generator as backup) along with batteries as
storage in off-grid and grid-connected systems considering a
yearly load growth.

A total of 12 microgrid scenarios were considered based
on the combination of energy resources and storage in
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off-grid and grid connected mode for the analysis with yearly
electrical load growth. Also, two different dispatch strategies
namely, CC and LF are employed for energy management
and evaluation in all the scenarios. A detailed comparative
analysis of the technical and economic results obtained based
on CC and LF is also illustrated. The paper is outlined as
follows: section 2 provides insights of the new multiyear
module of HOMER PRO utilized to perform this study and
section 3 provides the detailed description of the real phys-
ical location which has been taken as the case study for
the analysis. Section 4 comprises of various technical and
financial parameters along with various system configuration
and scenarios taken for analysis. Section 5 shows the analysis
results and section 6 finally concludes the paper.

Il. DESCRIPTION OF MULTIYEAR MODULE

OF HOMER PRO

Around the mid of 2016, HOMER Energy released a new
version of HOMER Pro with a new Multi-Year module which
allows one to model specific critical parametric changes such
as grid price escalations, electrical load growth, SPV degra-
dation, etc., which may occur during the project lifetime.
Figure 2 shows the new multiyear module added to HOMER
PRO [104], [105].

FIGURE 2. Multiyear module of HOMER PRO [105].

The Multi- Year inputs allow users to specify the percentage
growth or degradations each year as illustrated in Figure 3.

FIGURE 3. Multiyear Input window of HOMER PRO [105].

The designer is free to choose and can consider the varia-
tions occurring in the O&M costs, SPV degradation, diesel
fuel prices, and primary electrical load changes. In case,
if changes in some parameters are not required, it can be
done by setting the values to zero. Also, if the user needs to
model changes in a specified parameter, it can be achieved by
including constant percentage value by which that component
could change every year [105]. The new module adds several
new features to HOMER’s results. Simulation results and
various parametric variations can be looked on a yearly basis
over the project life. As illustrated in Figure 4, the module
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FIGURE 4. Multiyear plot window of HOMER PRO [105].

also consists of the Multi-Year plot, which can be utilized to
plot any resulting quantity on project lifetime.

Ill. DESCRIPTION OF THE INDIAN INSTITUTE OF
TECHNOLOGY (IIT), GUWAHATI CAMPUS

A. LOCATION AND POPULACE

IIT Guwahati (/IT GHY) campus is located on the north
bank of majestic river the Brahmaputra, neighboring to
the North Guwahati town of Amingaon at 26.1929° N,
91.6951° E. With spreading over 285 hectares plot of land, the
campus includes a total of eleven departments and three
inter-disciplinary academic centers covering all the major
engineering, science, and humanities disciplines. The campus
populace comprises of about 5186 students (2570 undergrad-
uate and 1913 postgraduate) on rolls, 372 faculty members
and 386 support staff [106].

B. ELECTRICAL LOAD DEMAND INFORMATION

OF CAMPUS

The electricity grid supplies IIT’s current energy demand.
The scaled energy demand is approximately around
60379 kWh/day with a peak load of 3075 kW and an average
demand of 2515.8 kW. Figure 5 illustrates a typical load
profile of campus with hourly variation.
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FIGURE 5. A typical hourly profile of electrical load of IIT, GHY campus.
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The load factor was calculated to be 0.82. The average
power factor obtained from the IIT GHY substation is mea-
sured to be 0.97.

C. CAMPUS METEOROLOGICAL DATA

The required meteorological data of the campus were
obtained using renewable energy resource website sponsored
by NASA [107]. The average annual solar isolation was
around 4.75 kWh/m2/day with an average solar clearness
index of 0.548. Figure 6 illustrates the average monthly pro-
file of solar isolation along with clearness index. However,
the wind potential at /IT GHY location is not tangible as sur-
rounded by mountains due to which wind-based generating
systems has not been considered in this study.
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LM

N
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FIGURE 6. Average monthly profile of solar isolation and clearance index
at IIT GHY [107].

D. CAMPUS AVAILABLE BIOMASS

In IIT GHY campus on an average 4 tonnes/day, kitchen waste
is thrown out. Most of the waste is mainly taken by the local
piggeries and is fed to the animals, which are more likely to be
thrown away unreasonably by the farm owners. This wastage
can be used for the production of electricity using anaerobic
process and in turn, can efficiently provide a better solution
for the waste management of the Institute. Figure 7 illustrates
the monthly available average biomass in /[T GHY campus.

IV. VARIOUS TECHNICAL AND FINANCIAL PARAMETERS
USED FOR ANALYSIS

A. LOAD GROWTH ASSUMPTIONS

A detailed review based on the application of soft computing
techniques for electrical load forecasting has been reported
in [108]. An overview based on long-term load forecasting
with the use of specific models such as qualitative, quar-
antine, time-series, stochastic, etc. has been introduced in
detail for developing utilities by Kandil et al. [109]. The
use of econometric models such as ARDL and PAM for
forecasting electrical consumption of Ghana till 2020 has
been done in [110]. However, at disintegrated levels such
as educational institutes, the use of such models and meth-
ods are not suitable and too complicated. But, a simple
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FIGURE 7. Monthly profile of average available biomass in IIT GHY
Campus.

approach based on the current strength of faculty, student,
staff, etc. and their annual strength growth can lead the way
for approximate projection of load growth. According to,
to IIT GHY annual report of 2014-2105 [106], every year a
6.03% and 8.77 % growth in students and faculty strength
is observed respectively. Recently, the Kakodkar Committee
report [111] has suggested that over the next decade, IIT’s
(19 existing and 4 new)should increase their strength to
16000 faculty members and 160000 total student strength,
with 40000 at the Ph.D. level, 40000 at the Masters level
and 80000 UG students. The committee also emphasizes on
producing 10000 Ph.D. scholars every year. So, taking all
the above numbers into account, to achieve the above-said
targets, all the IIT’s must increase their strength by approx-
imately 8-10 % every year. Based on these factors, a 10 %
annual electric load growth is considered in this research
work.

B. DETAILS OF VARIOUS MICROGRID ELEMENTS

WITH THEIR COST

Depending upon the available resources depicted in above
sections and the load demand, following components are
considered for designing of the microgrid: solar pv, diesel
generator, grid, batteries, converters, biogas generator along
with anaerobic biogas digester plant. The details of each com-
ponent with their mathematical modelling and various eco-
nomic parameters utilized in this study have been explained
below:

1) ANAEROBIC BIOGAS DIGESTER PLANT

As the conventional biogas plant can handle only cow/buffalo
dungs (gobar) or human waste, we have taken BARC’s
NISARGRUNA biogas plant for conversion of biogas from
available biomass stock at /IT GHY for this analysis. It can
efficiently process any biodegradable waste including kitchen
waste, paper, grass, gobar, dry leaves, etc. Even this plant
offers a “Zero garbage, Zero effluent method” for solid waste
management [112]. The CPC and O & M cost of 1 tonne/day
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capacity plant is taken as INR 1600000 and 100000 respec-
tively [96], [112]. As the production of Biomass from
IIT GHY is approximately 4 tonnes/day, a digester plant
of that capacity is required for the production of biogas.
Dhamodharan et al. [24], have presented a study to evalu-
ate the production of methane gas obtained from the food
wastage at IIT GHY campus with a detailed study on the
effects of livestock dungs on the anaerobic digestion of the
food waste. Approximately, the NISARGRUNA biogas plant
can produce biogas having 70 -75 % of methane content from
the kitchen waste [24], [25], [112].

2) BIOGAS GENERATOR (BG)

A 1 kW BG is assumed to have CPC of INR 50000/kW
[72], [97] and the fuel for BG is from [IT GHY SO,
THE O & M cost/hr is zero. a search space in the range of
(100-1000) kW is considered for the analysis. the generated
power output (Ppg) and annual energy production (Epg) can
be obtained using the following equation [28], [72], [105]:

[GYap x Cv(biogas) X 1BG] )
860 x (1/day)
EBG = PBG x 8760 x CF (2)

Ppc =

where GY4p is the total biogas generated or produced from
digester in m3/day, Cv (biogas) 1s the calorific value of the
biogas produced which is around 4700 kcal/m3 [28], NBG 18
the electrical conversion efficiency of BG (around 27 % [28]),
1, is the hours of operation of BG and CF is the utilization
factor in percent value.

3) SOLAR PHOTOVOLTAIC (SPV)

A fixed type SPV panel is considered with a CPC of INR
50502/kW as per the benchmark capital cost by CERC [101].
the O & M cost is taken as INR 700/kW per year. The capital
cost as mentioned in introduction section already includes
module cost, civil and general works, mounting structures,
power conditioning unit (inverter), evacuation cost, pre-
liminary and pre-operative expenses as recommended by
CERC [101]. the power output (pgp,) of SPV array system as
calculated by HOMER is given by following equation [105]:

SR
Pspy = RCspy DFspy [—}
Gsresrc

x [14 ap(Tspy — Tspvasrc)] (3)

where, RCspy is the rated panel capacity of the SPV in kW,
DFspy is the SPV derating factor in percent values (%), Gsg is
the incident solar radiation on the SPV array in kW/M?,
Gsresrc 1s the radiation at standard testing condition (STC)
in kKW/M?, ap is the SPV temperature coefficient of power
in %/°C, Tspy is the rated SPV cell temperature in °C and
Tspv @stc is the cell temperature at STC IN °C respectively.

4) DIESEL GENERATOR (DG)
As shown in Table 2, IIT GHY has a total of 8 DG with
an overall rating of 9000 kVA. Since the DGS already are
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TABLE 2. Details of components and various costs.

SL No. Component Details Capital Cost (CPC) Replacement | O&M Cost (INR) Remarks
(INR) Cost (INR)
(Capital Cost also includes the cost
lof necessary power conditioning
nit required to connect AC BUS or|
1. Solar PV( Fixed Axis type )(SPV) [101] 50502/kW 50502/kW 700/ kW/year  [DC BUS. Land cost is not included.
The capital along with O & M cost
2. Anaerobic biogas digester plant [112] 160022231;; ;;);?te/day N/A 150000/year :gll\ilgged flélr Sy;:ggg:“sgf;i;g
lexplanation in subsection 4.3.
IAs the biomass fuel is from IIT,|
3. Biogas Generator (BG) [72, 97] 50000 /kW 45000/kW 0 IGHY available waste, O & M cost]
lis taken as zero.
(i) 1500 kVA 0 0 375/ hr |As all the DGs are already installed
(ii) 1500 kVA 0 0 375 /hr in IIT GHY campus, the capital
(iii) 750 kVA 0 0 190 / hr cost is zero. The installed DGs|
(iv) 1250 kVA 0 0 310/ hr rarely run, and moreover, it doesn’t
4 Diesel Generator (v) 1250kVA 0 0 310/ hr neefi any rgplacemem during the|
: (DG) (vi) 750 KVA 0 0 190 / hr Iproject life time, so the replacement
(vii) 750 kKVA 0 0 190/ hr cost is assumed zero. The O & M|
cost shows the approximate values|
(viii) 1250 kVA 0 0 310/ hr only, as per the data obtained from|
IIT GHY Campus sub-station.
5. |Bidirectional Converter (BCon) [72, 97] 10000/kW 10000/kW 0
6. Tubular flooded lead-acid Parameters with their values 22000 for one battery. 22000 for one 700 /year The capital, replacement and O &
batteries (LAB) [104, 105] battery IM cost of the battery is interpreted|
INominal Voltage =12 V form the quotation obtained from)|
INominal capacity = 3kWh the vendors.
IMaximum capacity = 244.97 Ah
ICapacity Ratio = 0.329
IRate Constant (1/hr) = 0.597
Roundtrip Efficiency (%) = 85
IMaximum Charge Current = 57A
Maximum Discharge Current = 133.9 A
IMaximum Charge Rate (A/Ah) =1

installed in the IIT GHY, the CPC is taken up as zero. The spe-
cific details regarding the O & M cost is illustrated in Table 2.
the annual fuel (diesel) consumption (Fpg) value is obtained
by HOMER using following equation [105]:
FDG _ F total ( 4)
Etotal ,gen

where, Fyy, 1S the annual fuel consumption of generator in
liters/year and Ejoar,gen is the electrical production on an
annual basis by the generator in kWh/year. The DG’S average
electrical efficiency (npg) is calculated using the equation
below [105]:

DG = 3'6'Et0tal,gen (5)

mpG.LHVel pG

where, Ejoral, gen is the electrical production on an annual basis
by the generator in kWh/year, mpg is the mass flow rate of
fuel in kg/hour and LHViye1 pG 1s the lower heating value of
fuel in MJ/kg (43.2 MJ/kg for diesel) respectively. The mass
flow rate of the fuel (in this case diesel) is dependent on
the DG hourly fuel consumption Fpg,Houriy Which is given
by [105]:

FDG,Hourly = (xngDG,Rated + ,BngDG,out (6)

where, PpG,Rared 15 the rated capacity of DG in kW, Ppg,our
is the average hourly electrical power output of DG in kW,
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annual basis by the generator in kWh/year, oy, is the intercept
coefficient of the fuel curve in Liter/hr/kW and B is the
slope coefficient of fuel curve in Liter/hr/kW respectively.
Hence using equation (6), the value of mpg can be given
as [105]:

N

FDG,Hourly
1000

mpG = PDG (

where, ppg is the density of fuel (diesel) in kg/m3 which is
around 820 kg/m3 for diesel [105].

5) GRID

Assam state electricity board (aseb) provides electrical supply
to IIT GHY at a commercial rate of INR 5.96/kWh. The
energy charges for grid can be calculated with or without the
net metering scheme which are as follows [105]:

a: GRID ENERGY CHARGES WITHOUT NET METERING
(GECynm) [105]

rate 12

GECwny = Z ZEpurchase,k,l * 8€Cgrid k
k l
rate 12

— Y Eseisk.i - gecseiisk  (8)
ko1
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where, Epyrchasek,i is the total amount of energy in kwh
being purchased from the grid in month / with applied rate &,
GECgig k is the power price of grid for rate k in INR/kWh,
Eselis k1 1s the total amount of energy in kWh being sold to
the grid in month / with applied rate k, GECjgjjs . is the sells
price for rate k in INR/kWh.

b: GRID ENERGY CHARGES WITH NET

METERING (GECpyy) [105]

In net metering scheme the energy charges can be calculated
wither considering the monthly or annual net generation
using following equations(9) and (10), as shown at the bottom
of this page [105]:

GE CNM (monthly)

rate 12 .
_ Z Z Em.net(grid),k,l'gecgrid,k lf Em.net(grid),k,l >0
Pl Em.net(grid),k‘l'gecsells‘k if Em.net(grid),k,l <0

©))

where, GECnp(monsmily) 1 the energy charges in kwh when
net generation is accounted monthly, Ey, yer(gria) ki 1S the net
energy purchased in kWh from grid (grid purchase minus grid
sells) in month / during the applied rate of k, GECyq « is the
power price of grid for rate [ in INR/kWh and GECgjjs k is
the sells price for rate / in INR/kWh, where, GECnum (annual) 15
the energy charges in kWh when net generation is accounted
monthly, Ej, ner(erid),k,i i the annual net energy purchased
in kWh from grid (grid purchase minus grid sells) during
the applied rate of k, GECyiq, is the power price of grid
for rate k in INR/kWh and GECj,js x is the sells price for
rate k in INR/kWh. For this study, a simple rate approach
which allows setting a constant power price and sells back
price [105] in a net metering scheme calculated on a monthly
basis for grid-connected systems is considered. the sell back
price to the grid is also assumed to be INR 5.96, due to
commercial rates and unavailability of real-time schedule
rates.

6) BATTERY STORAGE (LAB)

Tubular flooded lead-acid batteries (Discover 12VRE-
3000TF-L) which can provide lowest cost/kWh and is
suitable especially for off-grid applications is considered
as storage [104]. A kinetic battery model of Discover
12VRE-3000TF-L is taken for the design of storage system.
Various parameters along with battery costing are illustrated
in Table 2. A string size of 20 is taken with an initial state
of charge as 100 % and minimum state of charge as 20 %.
The maximum discharge power by the battery storage is

calculated using equation (11) [105],

—kcQmax +innitiale_k At + Orotatke(1— e_kAt)
1 — e kA L o(k At —1+e kAT

PDischarge =
(11

The maximum power which can be absorbed by the battery
storage is calculated using equation (12) given below [105],

p _ KQinitiare ™A + Qporarke(1 — e7*A)
M T T kAT (kAL — 1+ kAT

where, Oy 18 the total capacity of the storage bank in kWh,
Qinitial 18 the energy available in the storage during the begin-
ning of the time step in kWh, Qa1 is the total amount of
energy available in the storage system at the beginning of the
time step in kWh, c is the capacity ratio of battery storage, k is
the rate constant of battery storage (1/Hr), and At is time step
length in hours respectively. The battery storage autonomy
(ATp4) in hours is obtained using equation (13) [105],

Npat Vivat Qnbar (1 50 Cmin/l OO) (24h/da)7)
Loadyim.avg (1000Wh/kWh)

12)

ATpgr =

Where, Ny, is the total number of batteries constituting the
storage system, V. is the nominal voltage of battery in
volts, Qupar 1S the nominal capacity of a single battery in Ah,
SOC,in 1s the minimum state of charge of battery in percent
value (%) and Loadpyim,avg is the average main demand in
kWh/day respectively.

7) BIDIRECTIONAL CONVERTER (BCON)

A bi-directional converter (BCon) is considered in the off-grid
system designs. The CPC is considered to be INR 10000/kW
[72], [97], [101]. Currently, available converters in the market
are maintenance free for their lifetime, so the O & M cost is
considered to be zero. The other specific details considered
for analysis is illustrated in Table 2.

8) SYSTEM CONTROLLER [105]

The system controller in HOMER PRO allows users to spec-
ify how the system can be designed and operated during the
simulations. Every controller has a unique algorithm or set of
rules to control the operation of the various generators and
the storages to meet the load demand. HOMER can simulate
and optimize models with multiple controllers and gives the
results for performance comparisons. In this analysis, two
dispatch strategy namely LF and CC have been considered.
in the LF, the designed system’s power generating such as
generators, grid, etc. First serve the main (primary) load and
the thermal load at the lowest total costing for each time step,
while keeping the operating reserve requirements. Secondary

rate 12

GECNM( = Z Z Eannual.nel(grid),k,l'gecgrid,k lf Eannual.net(grid),k,l = 0 (10)
annud el Eannual.nel(grid),k,l-gecsells,k lf Eannual.nel(grid),k,l <0
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TABLE 3. Optimal size of various components in different microgrid scenarios.

Microgrid | Dispatch COMPONENTS Overall
Design Algorithm Renewable
Scenario SPV(KW) | BG(W) | DG (KVA) | BCon (kW) | LAB (Numbers) Grid Fracfz;‘ (RF
Total energy Total energy
Purchased (kWh) Sold (kWh)
= cC 60000 0 0 30000 180000 x x 100
LF 60000 0 0 30000 180000 x x 100
2™ cC 55000 0 9000 30000 100000 x x 98
LF 55000 0 5000 30000 140000 x x 99
34 cC 60000 300 0 30000 140000 x x 100
LF 60000 300 0 30000 140000 x x 100
4t cC 40000 900 9000 20000 100,000 * * 93
LF 55000 1000 9000 20000 100,000 * * 97
s cC 55000 0 0 15000 180,000 * * 100
LF 55000 0 0 15000 180,000 x x 100
6" cc 50000 0 9000 10000 100,000 x x 97
LF 50000 0 9000 10000 140,000 x x 99
™ cC 55000 400 0 20000 140,000 x x 100
LF 55000 500 0 20000 140,000 x x 100
8" cc 35000 900 9000 10000 100,000 * * 92
LF 50000 1000 9000 10000 100,000 * * 95
9" cc 30000 0 0 x 25925564 42565188 72
LF 30000 0 0 x 25925564 42565188 72
10" cc 20000 0 9000 x 270001138 22533684 63
LF 20000 0 9000 x 270001138 22533684 63
u® cc 35000 600 0 * 22582148 55031308 80
LF 35000 600 0 x 22582148 55031308 80
12" cc 20000 1000 9000 x 21562420 25854966 73
LF 20000 1000 9000 x 21562420 25854966 73

aims such as charging the storage or serving the deferrable
load are the responsibility of the RETs sources. However,
it may allow the generator production to sell the power to the
grid if economically it is advantageous. On the other hand, in
The CC strategy, A generator operates at full output power
when needed to serve the primary load. once the demand
of the specified primary load is met, the surplus electrical
production goes towards the secondary objectives such as
serving the deferrable load, charging the storage bank, etc.
In the CC strategy, generators will not be allowed to produce
excess electricity just for dumping. Surplus power generated
must be utilized in HOMER PRO so that, it can operate
above the levels desired to meet the primary load demand.
HOMER dispatch the controllable power sources (generators,
storage bank, and grid) in simulation by a two-step process in
CC strategy. First, HOMER selects the optimal combination
of sources of energy to serve the primary load and the thermal
load at the least total cost, while satisfying the operating
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reserve requirement. Secondly, it ramps up the production
of each generator in the most optimal combination to its full
rated capacity, or as close as possible without causing excess
electricity.

C. DESCRIPTION REGARDING KEY PARAMETERS AND
SYSTEM CONFIGURATION USED FOR SIMULATION

1) INFLATION RATES AND NOMINAL DISCOUNT FACTOR

As per the historic inflation data of india, provided by tri-
ami media [113], an inflation rate of 5.71 % is considered
annually over the project lifetime. Based on CERC [101],
10.70 % has been considered as the discount factor for all
the renewable energy technologies.

2) PROIJECT LIFETIME

A higher project lifetime has several issues considering tech-
nical and economic aspects while designing a hybrid energy
system based on yearly load growth which is also pointed

VOLUME 6, 2018



A. Kumar et al.: Multiyear Load Growth Based Techno-Financial Evaluation of a Microgrid for an Academic Institution

IEEE Access

| Cycle Charging | D77 Battery (numbers)

300000

250000

200000

150000

Size of components

100000

50000

0

L B B LA B B
0 7 9 10 11 12

Scenario

FIGURE 8. Sizing of various components in 12 scenarios in cycle charging
dispatch.
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FIGURE 9. Sizing of various components in 12 scenarios in load following
dispatch.

out in the introduction section. Also, the dependency on the
weather for RETs, decrease in their efficiency on an annual
basis, the fluctuations in their O & M cost, etc. Are a few more
possible causes. Due to all these issues, 15 years is assumed
as project life in this analysis.

3) SYSTEM FIXED COST

As mentioned in the introduction section, the capital cost of
technologies which are considered in this analysis accounts
for all type of cost involved and has been included with
specific RETs as per the prescribed rate by CERC [101]. How-
ever, the capital and O & M cost of Barc’s nisarg-runa biogas
plant is included in the system fixed costs. upon discussion
with the people from industry and potential project investors,
INR 500000 is also added up to fixed O&M cost which
accounts for small maintenance. the system fixed capital cost
is the cost that occurs at the start of the project with no effect
on size or architecture of the system [105], [109]. The system
O&M cost is the recurring annual cost that occurs regardless
of the size or architecture of the power system [105], [109].
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FIGURE 10. Comparative illustration of sizing of SPV, BG, LAB and RF

in 12 microgrid scenarios (a) SPV Size in 12 scenarios with CC and LF
dispatch (b) BG Size in 12 scenarios with CC and LF dispatch (c) Battery
size in 12 scenarios with CC and LF dispatch (d) Renewable fraction Size
in 12 scenarios with CC and LF dispatch.

the system fixed cost affects the net present cost (NPC) of all
system configurations in the search space by the same amount
as it has no effect on the system rankings [105], [109].
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FIGURE 12. Total energy production, load served and excess electricity
generation for the 15t microgrid scenario in CC dispatch.

4) SYSTEM CONFIGURATION WITH VARIOUS MICROGRID
SCENARIOS

A total of 12 microgrid scenarios in off-grid and grid con-
nected mode are taken up for the technical and financial
evaluation. the details of various microgrid scenarios along

with their architecture adopted for the assessment is given in
Appendix (Table 5) [28], [114].

V. SIMULATION RESULTS

As outlined in the previous section, using the specifications
of the various components detailed in Table 2 and consid-
ering the 12 microgrid design scenarios which are specified
in (Appendix, Table 5), simulations are performed. Results
obtained are presented as follows.

A. TECHNICAL RESULTS

The optimal size of various components for various scenarios
are given in Table 3. A graphical illustration of the optimal
sizing of the different components in all the 12 microgrid
scenarios considered under CC dispatch strategy is shown
in Figure 8. Figure 9 shows the component sizing of various
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FIGURE 13. Battery parameter profiles for the 15t microgrid scenario in
CC dispatch (a) Battery autonomy and energy output over the assumed
project life (b) Battery yearly energy storage depletion over the project
life.
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FIGURE 14. Battery SOC profiles for the 15t microgrid scenario in CC
dispatch during first (15t) year of operation.

scenarios when the simulations are carried out with LF dis-
patch algorithm.

It is observed from the Figure 8, Figure 9 and Table 3 that
in the off-grid scenarios (13-4") when SPV is connected on
the AC bus, scenario 1 (only SPV as generation unit) has the
highest number of LAB and SPV followed by 3™ scenario
(with SPV and BG as power source) in CC as well as LF
dispatch strategy. Also, both the scenarios have the 100%
renewable fraction. Even when SPV is connected to the DC
bus in the off-grid scenarios (5"-8™), the highest number
of LAB and SPV is in 5" scenario (only SPV as genera-
tion unit) followed by 7 scenario (with SPV and BG as a
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FIGURE 15. Daily averages of power profile and battery SOC for January
month in CC dispatch for 15t microgrid scenario during 15t year of
operation (a) Average power profiles on hourly basis (b) Battery
average SOC profile on the hourly basis.

power source). In both dispatch algorithms, a slight deviation
is observed in the size of the LAB, SPV, BG, and % RF when
all the microgrid design scenarios (1%-12") are considered.
However, in both dispatch strategies in grid-connected sce-
narios (9-12™), the size of components (SPV, BG, and DG)
and the electricity purchase and sells to grid along with %
RF remains the same. A comparative illustration regarding
the difference in the size of LAB, SPV, BG and % RF with
CC and LF as microgrid system controllers has been shown
in Figure 10 (a, b, ¢, and d).

In a grid-connected architecture, 11th scenario constitutes
the highest renewable fraction with SPV size of 35000 kW
and BG of 600 kW ratings with a grid electricity pur-
chase of 22582148 kWh and sell back of 55031308 kWh.
Figure 11 illustrates the electricity purchase from the grid and
sold back to the grid. In 10" microgrid scenario, the energy
purchase from the grid is significantly higher due to low
component size (SPV of 2000 kW and DG of 9000 kVA)
as compared to the other grid microgrid scenarios. All the
energy systems evaluated are capable of providing 24 hours
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FIGURE 16. Daily averages of power profile and battery SOC for July
month in CC dispatch for 15t microgrid scenario during 15t year of
operation (a) Average power profiles on hourly basis (b) Battery
average SOC profile on the hourly basis.
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FIGURE 17. Battery SOC profiles for the 15t microgrid scenario in CC
dispatch during final year (15th) of operation.

of electricity for the project lifetime with yearly electrical
load growth. As an example, the critical multiyear based
results (total production, load served, excess electricity pro-
duction, converter profiles and battery profiles) of 15 sce-
nario in CC dispatch strategy are presented in Figures 12-21.
Figure 12 shows the total energy produced, load served and
excess electricity on a yearly basis for the assumed project
lifetime.
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FIGURE 18. Average monthly battery SOC profiles for the 15t microgrid
scenario in CC dispatch during the first and final year of operation.

The average electrical energy production remains almost
same with a slight variation (approximately 126642 MWh for
15t year to 121425 MWh for the 15 year) with a mean output
of 14.45 MW over the years as illustrated in Figure12. How-
ever, the average electrical energy required to serve the pri-
mary load increases approximately from 22038 MWh in the
first year to 83690 MWh for the last year. However, around
98508 MWh (77 %) of excess electricity generation during
the first year is observed which declines to 13470 MWh
(11%) by the final year of project lifetime shown in Figure 12.
Figure 13 (a, b) illustrates the battery autonomy, energy out-
put, and its depletion over the project life (15 years assumed
in this study). The battery autonomy duration decreases on
a yearly basis from 168 hours to 44.3 hours for the assumed
project life as shown in Figure 13 (a).

As the load demand increases on a yearly basis, the energy
output from the battery also increases to serve the increasing
load over the years which can be observed from Figure 13 (a).
With a span of time, the storage depletion also increases from
27511 kWh in the first year to 135327 kWh in the final year
of the project lifetime illustrated in Figure 13 (b).

The state of charge (SOC) of the battery for 365 days on
an hourly basis during 1% year of operation in CC dispatch
strategy is illustrated in Figure 14. From Figure 14 it can
be observed that battery discharges during early morning
hours from 0100 hours to 0600 hour and evening hours
between 1900 hours to 2400 hours respectively to meet the
load demand in the absence of the power output from the
SPV in the 1% microgrid scenario. Also, the battery SOC is
maintained on an average above 90 % throughout the year
as shown in Figure 14. A typical 24- hour power and SOC
profile of daily averages for the month of January (winter
season) in CC dispatch for 1% microgrid scenario is shown
in Figure 15 (a, b). It can be observed from Figure 15 (a, b)
that, during the morning (0100 — 0600) and evening
(1900-2400) hours the load demand is met by discharging
the battery in the absence of power generation from SPV.
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FIGURE 19. System converter profile for the 15t microgrid scenario in
CC dispatch during the project life (a) Inverter mean output along with
hourly operation over the years (b) Rectifier mean output along with
hourly operation over the years.

Once the power is available from RETs (SPV in this case)
from 0600 — 1800 hours, first the load demand is met and
then balance power is send to batteries to maintain its SOC
as shown in Figure 16 (a, b). During the January month,
on an average the batteries SOC varies between 92-99 % as
illustrated in Figure 15 (b).

Similarly, Figure 16 (a, b) exemplifies the profiles for the
month of July (summer season). A small variation in the
power and SOC profile in January and June months can be
observed. During, January the SPV output is present between
0600 hours to 1800 hours but in July the SPV output is
from 0500 hours to 1900 hours which is solely due to the
seasonal variations shown in Figure 15 (a) and Figure 16 (a)
respectively.

In case the load demand is met, and batteries cannot absorb
more power, then the surplus electricity (excess electricity)
must be dumped. However, the amount of excess power pro-
duction can be observed in both the cases (January and July)
with very slight variations shown in Figure 15 (a) and
Figure 16 (a). During the first year of operation, the excess
electricity generation is more (around 77 %) as shown

VOLUME 6, 2018



A. Kumar et al.: Multiyear Load Growth Based Techno-Financial Evaluation of a Microgrid for an Academic Institution

IEEE Access

OPERATING HOURS

NO OPERATION

HOURS
(M) 1dm04 nding

OPERATING HOURS

NUMBER OF DAYS

(@)

NO OPERATION
°
£
g
ES
] T
ES H
I} 5
= =
z

NO OPERATION

NUMBER OF DAYS

(b)

FIGURE 20. System converter profile for the 15t microgrid scenario in CC
dispatch during the first (15t) year of operation (a) Inverter output profile
on an hourly basis during the first year (b) Rectifier output profile on an
hourly basis during the first year.
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FIGURE 21. System converter profile for the 15t microgrid scenario in

CC dispatch during the final (15th) year of operation (a) Inverter output
profile on an hourly basis during the final year (b) Rectifier output profile
on an hourly basis during the final year.

in Figure 12. During the 1% year of operation, the SOC of the
battery is maintained at approximately above 90 % through-
out the year shown in Figure 14 and Figure 18. However,
during the final year of operation, a lot of variation in battery
SOC can be observed as shown in Figure 17. Figure 18 depicts
the average monthly battery storage SOC profile for the first
and final year of operation in 1% microgrid scenario.

The battery SOC on an average is usually between
65-80 % in the final year of operation from February to
November months (Figure 17 and 18). However, during
December the battery SOC some days reaches below 35 %
(daily variations) during early morning hours but maintaining
amonthly average of 60 % illustrated in Figure 18. In the final
year of operation as the load demand increase, the SOC of
batteries attain lower value with many variations as compared
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FIGURE 22. Various cost of 12 microgrid scenarios in load following
dispatch. (a) Individual representation of CPC, NPC and O & M for optimal
energy system (b) Total cost of systems for optimal energy systems.

to the first year of operation illustrated in Figure 17 and 18,
and the amount of excess electricity declines to about 11 %
in the final year for the 1% microgrid scenario. Bidirectional
converter (inverter and rectifier) mean output and operating
hours over the project lifetime on a yearly basis have been
shown in Figure 19 (a) and (b) respectively. The working
hours and mean output of the inverter increases correspond-
ingly over the years to manage the optimum power flow from
the source to load and to storage, as illustrated in Fig. 19 (a).
The inverter mean output increases from 1301 kW in the first
year to 5194 kW in the last year along with its operating
hours (from 4682 hours in first year to 5072 hours final
year).

The inverter mostly operates to maintain a steady flow
of power to serve the load during early morning hours
(2400 to 0700) and evening hours (1800-2300) by discharg-
ing the stored energy from battery in the absence of power
output from SPV as shown in Figure 20 (a) during first
year and Figure 21 (a) for the final year of project life-
time respectively. The rectifier output also increases from
1698 kW during the first year to 6733 kW in the final year
with average operating hours of 3914 per year through the
project lifetime as illustrated in Figure 19 (b). The rectifier
operating hours is during the daytime from 0700 to 1700 as
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FIGURE 23. Various cost of 12 microgrid scenarios in cycle charging
dispatch. (a) Individual representation of CPC, NPC and O & M for optimal
energy system (b) Total cost of systems for optimal energy systems .

observed from Figure 20 (b) and Figure 21 (b) utilized mostly
for maintaining the battery SOC. The output profiles of the
system converter changes as illustrated in Figure 20 and
Figure 21 during the first and final year of operation. The
optimum flow of power between the source to load and then to
storage in a cost-effective manner via bidirectional converter
is maintained by the system controller or energy management
system (in this study CC and LF strategies). The multiyear
electrical parametric results (directly obtained in PNG for-
mat from HOMER PRO) for other scenarios (2“‘]l — 12th) in
CC and LF dispatch has been given in the supplementary
material (section A).

B. ECONOMIC RESULTS

Table 4 presents the summary of the total cost of the opti-
mized microgrid scenarios incurred over the project lifetime
in the LF and CC dispatch strategy. The NPC in the case of
off-grid scenarios (1%t — 8™) varies from 6450 to 9009 million
INR for CC dispatch and 5835 to 9009 million INR for LF
dispatch respectively. This variation can also be observed in
the CPC (4119-7290 million INR for CC and 4882-7290 mil-
lion INR for LF), O & M cost (998-1756 million INR for CC
and 1100-1756 million INR for LF), fuel cost (18-755 million
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FIGURE 24. Levelized cost of electricity for 12 microgrid scenarios
(a) LCOE of microgrid scenarios when optimized using load following
dispatch (b) LCOE of microgrid scenarios when optimized using cycle
charging dispatch.

INR for CC and 3-47 million INR for LF) and LCOE
(12.51-18.47 INR/kWh for CC and 11.96-18.47 INR/kWh
for LF) respectively. This variation in cost is solely based
on the calculation of component sizes and prices in CC and
LF strategy by HOMER optimizer. Only for the 1% and
5th off-grid scenario the CPC, NPC, O & M cost and LCOE
are same for both LF and CC dispatch due to the sim-
ilar component sizes obtained after simulation as illus-
trated in Table 3. It is also observed from the Table 4
that, the CPC, NPC, O & M cost and LCOE are same
for the grid-connected microgrid scenarios (9" — 12%) in
both the dispatch (LF and CC). The annualized cost is
detailed in the attached supplementary material in section B.
Figures 22 (a, b) and 23 (a, b) illustrate the various cost
(CPC, NPC, O & M) incurred in obtaining the optimal sizes
of the components in 12 microgrid scenarios using both the
dispatch strategy (LF and CC). Out of 12 microgrid sce-
narios, 1% microgrid scenario is the most expensive option
with a very high CPC of 7290 million INR and a NPC of
9009 million INR followed by the 5" microgrid scenario
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TABLE 4. Various total cost of the optimized energy systems in different microgrid scenarios.

Microgrid Design Dispatch Algorithm CPC NPC o&M Fuel Cost LCOE
Scenario (Millions INR) | (Millions INR) (Millions INR) (Millions INR) (INR/kWh)
13 CcC 7290 9009 1756 0 18.47

LF 7290 9009 1756 0 18.47
2 CcC 5278 6344 1134 18 13.01
LF 6158 7110 1427 3 14.57
3¢ CcC 6432 7344 1465 0 15.05
LF 6432 7340 1465 0 15.05
4" CcC 4471 6450 1034 662 13.22
LF 5234 6150 1136 8 12.61
5t CcC 6888 8653 1719 0 17.74
LF 6888 8653 1719 0 17.74
6" cc 4825 6051 1101 283 12.40
LF 5705 6709 1392 47 13.75
7" CcC 6084 7013 1428 0 14.38
LF 6089 7894 1428 0 16.18
8" CcC 4119 6450 998 755 12.51
LF 4882 5835 1100 15 11.96
9 CcC 1515 169 1050 0 0.18
LF 1515 169 1050 0 0.18
10" CcC 1010 1004 191 0 1.39
LF 1010 1004 191 0 1.39
u" CcC 1804 327 1251 0 0.31
LF 1804 327 1251 0 0.31
12° CcC 1066 714 353 0 0.94
LF 1066 714 353 0 0.94

having a CPC of 6888 million INR and NPC of 8653 million

the off-grid

scenarios (1%

8y as illustrated in

INR in both the dispatch (LF and CC) respectively.

Even the LCOE for the 1% microgrid scenario
(18.47 INR/kWh) is highest followed by the 5 option
(17.74 INR/kWh) when compared to all scenarios in LF and
CC dispatch. Figure 24 (a, b) shows the cost of electricity for
all the scenarios in LF and CC dispatch.

A comparative representation of the scenarios involv-
ing various costs in both the dispatch (LF and CC) has
been presented in Figure 25 (a-d). The LCOE of the grid
scenarios (9 — 12™) is very low in comparison to all

VOLUME 6, 2018

Figure 24 (a, b) and Figure 25 (d) respectively. The 9" micro-
grid scenario has the lowest LCOE (0.18 INR/kWh) followed
with 11" (0.3076 INR/kWh) and 12% (0.9421 INR/kWh) in
comparison to all the off-grid microgrid scenarios. Consider-
ing both the technical and economic results for the optimal
solution for 12 microgrid scenarios, 4™ and 8" microgrid
scenarios in off-grid mode have best optimal solutions with
a higher renewable fraction (93-97 % for 4™ and 92-95 %
for 8" and 11™ scenario in grid-connected mode with 80 %
renewable fraction.
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FIGURE 25. Comparative illustrations of various cost for optimal systems
in 12 microgrid scenarios (a) CPC of microgrid scenarios when optimized
using CC and LF dispatch (b) NPC of microgrid scenarios when optimized
using CC and LF dispatch (c) O & M of microgrid scenarios when
optimized using CC and LF dispatch (d) LCOE of microgrid

scenarios when optimized using CC and LF dispatch.

The NPC of 4" and 8" is lowest when compared to the
off-grid scenario (1%t — 8M), however, when comparing all
the microgrid scenarios (1%t — 12™), the 9™ scenario has the
least NPC and LCOE respectively. However, the renewable
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fraction (RF), in this case, is 72 % which is less when
compared to other microgrid scenarios (18 — 8 in isolated
and 11%-12 in the grid-connected system). Excess electrical
production is observed till the 9" year of project lifetime
as shown in Fig. 12 for the 1% scenario. Similarly, excess
productions are also observed in the case of all other off-
grid microgrid scenarios (2"4-8") shown in the technical
results given in the supplementary material (Section B).
In grid-connected scenarios with DGs (10" and 12%),
the load demand is met either by SPV with grid electric-
ity or SPV and BG with grid power as it is more economical
to meet the demand without operating the DG (technical
results profiles in the supplementary material). Hence, for
isolated solutions 4" and 8t scenarios with SPV, BG, DG and
LAB are better solutions with a green microgrid perspective
with a higher share of renewable fraction and utilization of
locally available resources. Overall, 11" scenario in grid-
connected mode is excellent choice considering low cost
and a significant RF share (80 %) along with higher excess
power selling to the grid with the optimum exploitation of
SPV and BG.

VI. CONCLUSIONS

The primary purpose of this study is to outline the research
gaps present in the existing literature on feasibility evaluation
and design of microgrids based on the renewable energy
technologies. Moreover, in this work, a hybrid energy system
based on SPV, BG, DG and taking 12 microgrid design sce-
narios (isolated and grid connected) considering an account
of yearly electrical load growth in two dispatch strategies
(LF and CC) with a case study for a real physical loca-
tion (/IT GHY) is implemented. The biogas resource from
the kitchen waste of the IIT GHY is utilized for electricity
generation using BG which proves to be an efficient waste
management strategy. The results obtained illustrate that,
in off-grid scenario (1%-8™), the NPC (5835 million INR)
and LCOE (11.96 INR/kWh) is lowest for the 8! scenario
with LF dispatch algorithm. But, in CC dispatch strategy the
NPC (6450 million INR) and LCOE (12.51 INR/kWh) of the
8t scenario becomes higher as compared to LF. The RFof
the 8™ scenario is more in LF (95 %) when compared to
CC (92 %) dispatch strategy. For grid-connected scenarios
(9t-12t) 9t gcenario has the lowest NPC (169 million INR)
and LCOE (0.18 INR/kWh) followed by 11% scenario with a
NPC of 327 million INR and LCOE of 0.31 INR/kWh respec-
tively in both the dispatch strategy (LF and CC). However,
the RF of 11" scenario (80 %) is more in comparison to
9th scenario (72 %). Also, the amount of energy sold back
to the grid is more for 11" scenario (55031308 kWh) as
compared to the 9" scenario (42565188 kWh). The system
dispatch algorithms (LF and CC) gives similar results for
all the grid-connected scenarios (9th-12t) as illustrated in
technical and financial results. However, variations in com-
ponent sizes (technical results) and cost (economic results)
is observed in the results obtained for the off-grid scenarios
(18-81) in CC and LF. In all the off-grid energy scenarios
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TABLE 5. Various microgrid design scenarios in different architecture.

Microgrid Components Configuration Microgrid Architecture
Design
Scenario
SPV | BG | DG | BCon. | LAB | Grid
St .
1 v x x v v x Off-grid ACBUS DC BUS
SPV LAB
BCon
ond v x v v v x Off-grid AC BUS DC BUS
SPV LAB
3rd v v | x v v x Off-grid ACBUS DCBUS
4 v v v v v x Off-grid ACBUS DC BUS
LOAD
(o]
[ BG e Boon |«
5t v x | x v v x Off-grid ACBUS DC BUS
6" v o |x | v |V v | x | Off-grid
7" v Vo x v v x Off-grid ACBUS DC BUS
-BG
BCon LAB
gt v v v oY v oo x Off-grid
9! v x x x x 4 With Grid ACBUS
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TABLE 5. (Continued.) Various microgrid design scenarios in different architecture.

10® v v | x x x v With Grid ACBUS
SPV

11" v x v x x v With Grid ACBUS

120 v v | v x x v With Grid ACBUS
SPV

the excess electricity production is observed from the results
till the 9N year of project lifetime. Hence grid-connected
microgrid solutions must be preferred which can sell back
the excess energy production to the grid. Based on the
results, as the fraction of electricity generated from BG is
around 2-3%, it is suggested to use the biogas produced for
cooking and heating purpose rather than for the production
of electricity. This study not only points out the importance
of taking into account the future load growth projections but
also suitable dispatch strategies while designing renewable
energy systems which will undoubtedly help in avoiding
technical as well as financial errors. In the future works,
the design scenarios can be extended to a component level
design while considering weather uncertainties and change
in climatic conditions.

APPENDIX
See Table 5.
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