
Received April 24, 2018, accepted June 5, 2018, date of publication June 21, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2849439

Parallel and High Speed Hashing in GPU
for Telemedicine Applications
WAI-KONG LEE 1, (Member, IEEE), RAPHAËL C.-W. PHAN2, (Member, IEEE),
BOK-MIN GOI1, (Senior Member, IEEE), LANXIANG CHEN 3, (Member, IEEE),
XIUJUN ZHANG4, (Member, IEEE), AND NAIXUE N. XIONG 5,6, (Senior Member, IEEE)
1Centre of Cyber Security, Universiti Tunku Abdul Rahman, Petaling Jaya 31900, Malaysia
2Research Institute for Digital Security and the Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia
3Fujian Provincial Key Laboratory of Network Security and Cryptology, College of Mathematics and Informatics,
Fujian Normal University, Fuzhou 350007, China
4School of Information Science and Engineering, Chengdu University, Chengdu 610106, China
5School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
6Department of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA

Corresponding authors: Lanxiang Chen (lxiangchen@fjnu.edu.cn), Xiujun Zhang (woodszhang@cdu.edu.cn),
and Naixue N. Xiong (xiongnaixue@gmail.com)

This work was supported in part by the Natural Science Foundation of China under Grant 61602118, Grant 61572010, and
Grant 61472074, in part by the Fujian Normal University Innovative Research Team under Grant IRTL1207, in part by the Natural Science
Foundation of Fujian Province under Grant 2017J01738, in part by the key project of the Sichuan Provincial Department of Education
under Grant 17ZA0079 and in part by the Applied Basic Research (Key Project) of Sichuan Province under Grant 2017JY0095.

ABSTRACT With the advent of a telemedicine technology, many medical services can be provided
remotely, which greatly enhances the welfare of our mankind. However, security and privacy of medical
data transmitted through telecommunication systems remain a serious issue to be resolved when deploying
such services. In particular, the medical images and data are stored in the cloud or transmitted over an
insecure channel, may suffer from unauthorized modifications by malicious attackers. Hence, integrity of
such medical data is of utmost importance for the telemedicine applications. Cryptographic hash functions
(e.g., SHA-3) can be used to ensure the integrity of medical data communicated over the insecure channel.
However, when the volume and size of medical data grow (e.g., high resolution medical image), it is difficult
for conventional CPU-based system to hash these data in timely manner. In view of that, we are motivated
to research on improved implementation techniques of the Keccak hash function in massively parallel
platforms, as the result of such work can be used in improving the speed performance of the telemedicine
applications. Graphical processing unit (GPU) is one of the emerging platforms with massively parallel
processing power that can be harnessed to solve computational problems much faster than conventional
CPUs. In this paper, we present the efficient implementation of tree-mode Keccak-f(1600) in GPU and
investigate the effect of parallel granularities by hashing one copy of Keccak permutation function using
1 thread, 5 threads, and 25 threads, respectively. We also proposed a new technique to implement the tree-
mode Keccak-f(1600) based on dynamic parallelism offered in new NVIDIA GPU. Our experimental results
show that the parallel granularity of one thread produces the highest hash throughput at 28.51 Gb/s. The high
hash rate of such implementation can greatly enhance the integrity check for medical data in the telemedicine
applications.

INDEX TERMS Security, telemedicine, GPU, SHA-3.

I. INTRODUCTION
Telemedicine is able to enhance the quality of life for
mankind, as medical data can be communicated remotely
through high speed Internet connections [1], [2]. Patients can
now receive professional treatments or medical services from
medical experts from distance, which is especially crucial
for people living in remote area or facing emergency situ-

ations. However, security concern is an important facet of
telemedicne which receives a lot of attentions recently, due to
the privacy concern from patients. One of the most important
security aspects is the integrity of medical data, which can be
protected through cryptographic hash function.

Considering some well deployed cryptographic hash func-
tions like MD5 and SHA-1 are under threat in recent years

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

37991

https://orcid.org/0000-0003-4659-8979
https://orcid.org/0000-0002-5232-7801
https://orcid.org/0000-0002-0394-4635


W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

due to advancement in cryptanalysis [3]–[5], the US National
Institute of Standards and Technology (NIST) started a new
public competition in 2007 to select a SHA-3 algorithm
for standardization. The competition started with 64 first
round candidates, with 14 of them advancing to the sec-
ond round. The five finalists that remained after that were
namely Keccak [6], BLAKE [7], JH [9], Skein [8] and
Grøstl [10]. In October 2012, Keccak was selected as the
new SHA-3 standard. Since Keccak is able to provide high
security properties and is likely to be adopted by the industry
in near future, we have selectedKeccak to protect the integrity
of medical data used in telemedicine applications.

Although hash function like Keccak can be used to check
the integrity of medical data to prevent malicious modifica-
tions, adopting it in telemedicine applications may not be
straightforward, due to the sheer volume and size of the
data involved. For example, transmission of high resolution
medical images and videos are often required to provide
medical services to the patients. In such cases, conventional
CPU-based systems may not be able to complete the protec-
tion (hashing the original data) and integrity check (hashing
the received data) in timely manner. This may deteriorate the
user experience (affecting the quality of service [38]) as well
as causing delay in curing the patients. This motivates us to
research on the fast implementation techniques for Keccak in
Graphical ProcessingUnit (GPU), which ismassively parallel
platform with high computational capability.

Keccak is a hash function based on the sponge construc-
tion, which is inherently a sequential process. Although
the internal permutation function can be implemented in
parallel, this alone is still insufficient to harness the mas-
sively parallel computing power of GPUs. More aggres-
sive design requires the hash function to be implemented in
tree structure [11], [12]. The authors of Keccak outlined two
approaches for implementing tree-mode Keccak [13]–[16],
namely Final Node Growing (FNG) and Leaf Interleav-
ing (LI). FNG mode allows the tree nodes to grow with
increasing input file size, while LI mode has a fixed tree
structure. Considering that GPU has finite memory resources,
it is more appropriate to implement a hash function that has
a fixed tree structure, i.e. LI mode in this case. For the rest of
this paper, we will focus on LI tree-mode Keccak and present
our implementation design techniques for this.

Although general purpose microprocessors can naturally
be used for implementing cryptographic algorithms, dedi-
cated hardware implementation remains attractive because
cryptographic algorithms involve operationswhich are poorly
supported by general purpose processors. FPGA and ASIC
are popular hardware platforms to implement advanced
cryptographic algorithms (e.g. AES & ECC [23]). For
instance, Koziel et al. [25] proposed a hardware architec-
ture to accelerate isogeny-based cryptography, which is
a candidate for post-quantum cryptography. On the other
hand, Dai et al. [36] presented an FFT based exponentiation
hardware architecture for RSA. Kerckhof et al. [27] pre-
sented the compact implementation in FPGA of five finalists

of the SHA-3 competition. Although hardware implementa-
tion enjoys performance boosts compared to general purpose
processors, it also suffers from a few drawbacks. Notably,
hardware implementation is inflexible, difficult for subse-
quent upgrade and maintenance. Hardware implementation
like ASIC often involves expensive fabrication cost and
requires specialized design skill which is in turn causing
longer development period.

GPUs have emerged as one of the most promising plat-
forms for scientific computing. Since the introduction of
general purpose API for programming graphic processors
(e.g. CUDA from NVIDIA and Stream from ATI), GPU
is widely used in scientific simulations [28], [29], model
buildings and algorithm implementations. A GPU consists of
multiple StreamingMulti-processors (SM); each SM consists
of many cores. A GPU typically consists of tens to hundreds
of cores (GTX780 from NVIDIA has 12 SMs with a total
of 2304 cores).Withmany cores operating concurrently, GPU
is an ideal candidate for applications that need to execute
relatively simple programs on many data. GPU is also widely
used in accelerating the implementation of advanced crypto-
graphic algorithms in recent years [30]–[36].

In general, the basic idea to keep in mind is that the
GPU is used as a co-processor executing parallelizable codes,
while the CPU will handle sequential tasks and manage-
ment. Careful design therefore on the GPU algorithm, data
transfer between CPU and GPU, and smart usage of various
GPU memories are needed to obtain high performance. This
indicates that the gist of a successful implementation should
consider all major components in the heterogeneous platform
instead of focusing on the GPU alone. Detailed programming
model for this heterogeneous platform will be discussed in
Section 3.

There are five other GPU implementations ofKeccak avail-
able in the literature [18]–[22]. Bos et al. [18] implemented
the Leaf Interleaving (LI) tree-mode Keccak-256, based on
GTX295 with 30 SMs (GTX295). Since its source code is
closed, we only use their result as a benchmark. The work
done by Sevestre [19] also implements LI tree-mode Keccak
with the heterogeneous programming model, but it is based
on Keccak-f(800) which uses less memory and has smaller
value of r and c compare to ours. Since capacity c is the
security parameter, reducing this parameter also reduces the
security level.

Keccak-f(1600) has 25 internal states, each of the state
can be represented by a 64-bit word. Chindemi et al. [20]
implemented Keccak-f(1600) by using 25 threads to com-
pute 25 Keccak internal states concurrently, but they do not
implement tree-mode Keccak. Cayrel et al. [21] is the most
relevant related work. They explored the idea to construct a
LI tree-mode Keccak with variable height (H=0 to H=4).
The basic kernel uses 25 threads to compute 25 Keccak
internal states concurrently. By using shared memory and
some lookup tables stored in GPU constant memory, they
manage to implement a compact kernel with a minimum
for loops. However, the main drawback is that their work

37992 VOLUME 6, 2018



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

suffers from bank conflicts due to the memory access pattern
of the Keccak algorithm, which was an open problem high-
lighted by Cayrel et al. [21] in their paper. Lowden et al. [22]
evaluated various ways to optimize the tree-mode Keccak
implementation inGPU, but they did not explore theDynamic
Parallelism feature to improve the speed performance.

The straightforward way to construct a tree-mode hash
function is to slice input data into multiple copies, and run
multiple threads concurrentlywith each thread hashing a copy
of the sliced data. For certain hash functions, a copy of sliced
data can be actually hashed by multiple threads instead of
a single thread; Keccak is one of the hash functions that
falls into this category. In this paper, we focus on investigat-
ing the effect of parallel granularity of Keccak permutation
function in GPU platform. Specifically, we implemented the
three plausible versions specific to the Keccak permutation
function, namely single thread version (we call it 1T-Keccak),
five threads version (5T-Keccak) and 25 threads version
(25T-Keccak) on our GPU system. The choice of 25 threads
is due to the fact that Keccak-f(1600) state can be represented
by 25 lanes of 64-bit words, each lane can be hashed simul-
taneously. On the other hand, 5T-Keccak hashes a plane or a
sheet of Keccak state using one thread, so five threads can
hash the entire Keccak state simultaneously. We discuss on
the performance yield by these three parallel granularities and
the design considerations that should be taken care of.

The conventional way to implement tree-mode hash func-
tion is to launch a kernel for each level of tree height sequen-
tially, and the upper tree level needs to wait for the lower tree
level to complete before it can progress. This process required
explicit control from CPU. In order to address this limitation,
we proposed a better approach by utilizing Dynamic Paral-
lelism feature in recent NVIDIA GPU to manage the kernel
launches of each tree level. With this approach, we offload
the kernel launch management task to GPU and free up the
CPU computing resources for other tasks. This is especially
important for server applications as the CPU cores are usually
busy in serving various requests from the network

Towards our aims, we also propose specific optimiza-
tion techniques for Keccak implementation on GPU. These
include asynchronous memory copy, overlapping CPU and
GPU execution, configuration setting to avoid shared mem-
ory bank conflicts, data pre-fetch and loop optimizations
(unroll and inversion). The organization of this manuscript is
presented below. Firstly, we give an overview to the Keccak
hash function and its tree structure for parallel implementa-
tion in Section II. Then, we introduce the hardware architec-
ture and programming model for GPU in Section III, follow
by the details of GPU implementation in Section IV. After
that, the experimental results are presented in Section V, and
the conclusions is presented in Section VI.

II. KECCAK HASH FUNCTION AND TREE BASED
STRUCTURES
Keccak is constructed based on sponge construction with
seven modes, indicated by Keccak-f[b], where b = 25 × 2l

TABLE 1. Permutation function of Keccak-f[b].

and l can be 0–7. The state inKeccak permutation is organized
as an array of 5×5 lanes of lengthw ∈ {1, 2, 4, 8, 16, 32, 64}.
For a platform with 64-bit, the permutation state b can be
expressed as 25 x 64 bit word; hence, the permutation state
can also be expressed in the form of b = 25w where w
represents the permutation width in specific platform.

The permutation f is applied repeatedly to the state
b = r + c with fixed length, where r is the bit rate and c is
the capacity. Bit rate r determines the implementation speed
while c determines the security strength. InsideKeccak-f[b] is
a sequence of same round operations, where the total number
of round Nr = 12+ 2l1. Each round of permutation consists
of five steps, namely θ , ρ, π , χ and ι, shown in Table 1.

We implemented the default Keccak mode, Keccak-
f[1600] with r= 1024 and c= 576. The recommended num-
ber of round for Keccak-f[1600] is 24 and the permutation
width w is 64 bit.

Keccak-f[b] is an iterated process that is divided into two
phases: Absorb and Squeeze. The process is briefly described
below:

i) Initialize the state to 0.
ii) Pad the input message with multi-rate padding rule

(pad10*1) [13]
iii) In the absorbing phase, input data blocks are sent into

the permutation function iteratively. The permutation
state is first XORed with r-bits input data, followed by
the permutation process.

iv) The squeezing phase takes place after all data blocks
are absorbed. The first r-bits of the state from the
absorbing phase are returned as the output block. If the
user requires more output blocks of r-bits, permutation
is applied to the state repeatedly to provide the next
output block of r-bits.

Figure 2 shows the naming convention for the parts of the
Keccak internal state. In a 64-bit system, the internal state

VOLUME 6, 2018 37993



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

FIGURE 1. The sponge construction [15].

FIGURE 2. Naming convention for the parts of Keccak-f state [13].

FIGURE 3. Leaf interleaving tree structure for Keccak-f.

for Keccak-f(1600) can be naturally represented by 25 words,
each word represent a lane. This shows possibility for inter-
nal parallelism in the Keccak permutation function. Besides,
it is also possible to run Keccak with five processes running
concurrently, each hashing a plane or a sheet.

Keccak hash function is naturally a sequential process,
hence it is difficult to implement this directly into GPU and
expect performance speed up from it. One of the possible
ways to utilize parallel execution in GPU is to use tree-mode
implementation. In [13], Bertoni et al. proposed two ways to
implement tree-mode Keccak: Final Node Growing (FNG)
and Leave Interleaving [LI]. For FNG, the number of leaves
and degree of the top node grow as a function of input
data size. For LI, the structure of the tree is fixed, but the
input data are interleaved (hashed serially) into the leafs.
Figure 3 shows an example of LI tree structure for Keccak,
with height H=2 and degree D=2. For a detail explanation
on the tree structure for Keccak, please refer to [13].

III. OVERVIEW OF THE TARGET PLATFORM
This section describes the main points about the GPU plat-
form, in particular its programming model, memory hier-
archy and the architecture of the specific GPU we run on.
A proper understanding of these matters is crucial to ensuring
an optimized implementation strategy for tree-mode Keccak
on GPUs.

A. CUDA HETEROGENEOUS PROGRAMMING MODEL
Compute Unified Device Architecture (CUDA) is the
software technology developed by NVIDIA to allow pro-
grammers to utilize the GPU for non-graphic purposes
of computations. The CUDA API reduces effort to pro-
gram the GPU for general purposes with extension to
C and FORTRAN programming language. However,
a deeper knowledge of the GPU’s architecture, particularly
memory, threads andblocks, is crucial in order to harness its
great computational power.

Besides C and FORTRAN, CUDA provides the user
the flexibility to code in low level Parallel Thread Execu-
tion (PTX) language. PTX provides an instruction set for
general purpose parallel programming, which is regarded as
‘‘pseudo-assembly code’’ for NVIDIA GPU. It also aims
to provide a machine-independent instruction set architec-
ture (ISA) for C/C++ and other compilers to target. PTX
instructions can be added into standard C/C++ program via
inline assembly.

GPUs can execute many threads in parallel; each thread
will execute the same instructions on different data sets. The
thread level codes that a programmer writes are called the
kernel. Each streaming multiprocessor (SM) within a GPU
partitions every 32 threads into a warp. All 32 threads in
a warp execute the same instruction at the same time; as a
result, full efficiency is realized when all 32 threads of a warp
have same execution path. Branch divergence will seriously
degrade the performance; hence it should be avoided if possi-
ble. The warp scheduler schedules as many warps as possible
in order to hide any memory access or instruction latency.
So it is important to maintain a large active thread pool to
achieve high occupancy and keep all the warps busy. Multi-
ple threads form a block, multiple blocks then form a grid.
Figure 4 shows the relationship between grid, block and

37994 VOLUME 6, 2018



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

FIGURE 4. Relationship between grid, block and thread inside a SM.

thread inside a SM. There is a maximum limit for threads per
block and number of blocks per SM, depending on its Com-
pute Capability. For example, the GTX780 GPU with Com-
pute Capability of 3.5, can house a maximum of 16 thread
blocks and maximum 2048 threads per SM.

CUDA assumes that the CPU and GPU have their own
memory space, referred to as host memory and device mem-
ory respectively. A typical CUDA program will follow the
steps below:

i) Allocate and initialize host and device memory.
ii) Copy input data from host memory to device memory.
iii) Launch kernel for computation. The pointer for the

device memory and some other parameters are passed
to the kernel. In the meantime, control is passed back
to the CPU even though the kernel is still being com-
puted on the GPU. Store the final data from the kernel
computation in device memory.

iv) While waiting for the GPU to complete its execution,
CPU can perform other tasks.

v) Copy data from device memory back to the host when
all GPU executions are completed.

More advanced GPU programming model involves the use of
streams [17]. A stream is a sequence of commands that exe-
cute in order. Different streams may execute their commands
out of order with respect to one another or concurrently. Since
NVIDIAGPU has separate copy and kernel engines, a stream
can be used to overlap the process of memory copy and kernel
execution. Some GPU devices with two copy engines can
even overlap memory copy from host to device and device
to host. Devices with Compute Capability 2.0 and above are
capable of running multiple copies of kernels concurrently,
which greatly improves the parallelism if it is used together
with streams. However, the use of streams is limited by
several factors like data dependency and instructions issue
order.

B. MEMORY HIERACHY
Global memory is the largest off-chip memory in the GPU,
but it is also the slowest. It is used to store the data trans-
ferred from the host, accessible by all threads in all SM.
Global memory needs to be accessed in coalesced man-
ner (128 bytes), or else it will suffer great performance
degradation.
Constant memory is cached memory that allows the user

to store read-only data. It is an ideal choice to store and
broadcast read only data to all threads on the GPU.
Texture memory is bound to global memory and provides

cache functionality. It is optimized for 2D spatial access
patterns.
Shared memory is accessible by all threads within the

same thread block. It is commonly used to hold temporal
data so that threads within the same block can cooperate.
Shared memory is organized in banks that are 32-bits. If mul-
tiple requests are made by different threads to the same
address or to different addresses in the same bank, bank
conflicts will occur. Bank conflicts will seriously degrade
performance as the memory access is serialized now. How-
ever, if it is designed carefully to avoid bank conflicts, shared
memory can provide very fast access speed.
Registers are the fastest memory in GPU, and only acces-

sible locally by each thread. Latest NVIDIA GPU with
Compute Capability 3.5 have 64KB registers per SM, and
maximum 255 registers per thread. Since registers are the
most precious resource in GPU that enable us to deliver peak
performance, they should be used carefully. Register use can
affect the maximum threads that can run simultaneously. For
example, if the SM is running 2048 threads, only 32 registers
can be used. If a kernel uses more registers than its maximally
allowed limit, the compiler will spill extra register usage into
‘‘local memory’’. CUDA API does not allow programmers
to have explicit control on which variables to reside in the
register, it is determined by the compiler. Even PTX itself
is not a real assembly language; it is just an intermediate
description. To the best of our knowledge, the only way to
fully control register allocation process is to develop a new
assembler [10].
Local memory resides in global memory, but it is cached

at L1 cache. Register spilling effect is determined by the
compiler; the programmer does not have explicit control over
this aspect.

C. GTX780 AND GTX295
In this paper, we have chosen two platforms for implementing
the Keccak hash function. GTX780 was chosen because it
has the Dynamic Parallelism feature that is useful to reduce
the time to manage the hash tree; this technique is applicable
to all future GPU that supports Dynamic Parallelism. On the
other hand, GTX295 was used to provide a fair benchmark
against earlier implementation. GTX780 is a device with
Compute Capability 3.5. It has 12 SMs, each of the SMs
consists of 192 cores, running at 900Mhz. It is equipped with

VOLUME 6, 2018 37995



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

3GB global memory, 64KB register file per SM, configurable
L1 and shared memory (total 64KB). The shared memory and
L1 cache can be configured in four ways:

i) 16KB Shared Memory, 48KB L1 cache
ii) 48KB Shared Memory, 16KB L1 cache
iii) 32KB Shared Memory, 32KB L1 cache
iv) No preference (default)

Shared memory can also be configured to 64-bits address-
ing mode. With this addressing mode, a shared memory
request for a warp does not generate a bank conflict between
two threads that access any sub-word within the same 64-bit
word (even though the addresses of the two sub-words fall
in the same bank). This feature is very useful for Keccak-
f(1600) implementation as its internal state is 64-bit wide.
By configuring shared memory to this addressing mode, bank
conflicts can be minimized [17].

GTX295 is a device with Compute Capability 1.3. It has
30 SMs, each of the SMs consists of 16 cores, running
at 1242Mhz. It is equipped with 1.792GB global memory,
16KB register file per SM and 16KB shared memory. The
shared memory size and addressing mode in this device is
not configurable.

IV. KECCAK IMPLEMENTATION DESIGN ON GPU
We implemented LI tree-mode Keccak-f(1600) with
r=1024 and c=576 on GPU platform, based on the tech-
niques discussed in the following subsections.

A. PARALLEL GRANULARITY
We implemented the three plausible versions of LI tree-mode
to investigate the effect of parallel granularity in Keccak
permutation function.

1) 1-THREAD KECCAK (1T-KECCAK)
In this mode, one thread is used to hash a copy of Keccak.
The kernel is completely unrolled to minimize the use of for
loops and lookup tables. The only lookup table used is the
round constant, which is stored in constant memory. Since
no thread cooperation is needed, no shared memory is used.
This implementation has an advantage that it does not need
any synchronization and data sharing between threads. The
entire permutation process take place in a thread, hence no
parallelism occurred within the thread. This granularity only
utilizes parallelism in the tree structure.

2) 5-THREAD KECCAK (5T-KECCAK)
In this mode, five threads cooperatively hash a copy of
Keccak, with each thread hashing a plane or a sheet.
We implemented both the plane and sheet version of
5T-Keccak. This implementation need shared memory to
share intermediate state values and variables across multiple
threads. The calculation in Keccak is based on modulo-5,
which is an expensive operation. Hence, this kernel uses
lookup tables to avoid computing expensive modulo cal-
culations on the fly. These tables are stored in constant

FIGURE 5. Without dynamic parallelsim.

memory. This granularity utilizes both parallelism within
the Keccak permutation function and parallelism in the tree
structure.

3) 25-THREAD KECCAK (25T-KECCAK)
In this mode, 25 threads cooperatively hash a copy of Keccak,
with each thread hashing a lane of the internal state. This
implementation also needs to use shared memory and lookup
tables for the same reason as 5T-Keccak. The NVIDIA warp
scheduler will always group 32 threads into a warp, and all
threads within the same warp must run common instructions
at a time to avoid warp divergence. As a result, we need to
launch 32 threads for this kernel to avoid warp divergence.
25 threads will be doing the actual work of hashing while
seven other threads will be idle. This granularity utilizes both
parallelism within Keccak permutation function and paral-
lelism in the tree structure.

B. KERNEL LAUNCH MANAGEMENT
Recent NVIDIA GPU with Compute Capability 3.5 offer
an advanced feature named Dynamic Parallelism, whereby
the GPU kernel can launch another kernel by itself. In con-
ventional GPU, the kernel can only be launched by CPU,
so the algorithms that need multiple kernels to complete
require full control from CPU to manage the kernel launches.
With Dynamic Parallelism, the CPU only needs to launch the
kernel once, then this GPU kernel can manage subsequence
kernel launches within GPU, which eventually free up CPU
resources for other tasks. Dynamic Parallelism also benefit
algorithms that require recursive function call (e.g. quick
sort). Figure 5 and 6 illustrate how this advanced feature
works.

We exploited this feature by launching a manager kernel
from CPU, and let this manager kernel keep track the execu-
tion of each Keccak tree levels. When a tree level complete
its execution, the manager kernel will launch the next tree
level and this process will continue until it reached the top tree
level. With this approach, the CPU do not involve explicitly
in controlling the kernel launch at each tree levels; hence it is
freed up to handle other tasks.

37996 VOLUME 6, 2018



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

FIGURE 6. With dynamic parallelsim.

FIGURE 7. Example of tree-based Keccak implementation with dynamic
parallelism (H=3).

C. PREFETCH DATA
During the absorbing phase, the input data are sent to the
Keccak permutation function and XORed with the current
internal state. The conventional way to perform this is as
below:
1: for i← 0 to (r/w)− 1 do
2: state[i]← state[i]⊕ data[i]
3: end for

In NVIDIA GPU, arithmetic instructions and memory
load/store instructions can be executed concurrently, as long
as there is no dependency between the executing instruction
and data being load/store. To utilize this feature, we prefetch
the input data before XORing it into the state, so that address
calculation and bit-wise XOR operation can run in parallel
with the memory copy operations. The generic syntax is as
below:
1: for i← 0 to (r/w)− 1 do
2: temp_var ← prefetch_data
3: data← data+ 1
4: prefetch_data← data[i]
5: state[i]← data[i]⊕ temp_var
6: end for
Line two is the step to copy prefetched data into a tem-

porary variable. Line three perform address calculation con-
currently with previous instruction. Line four prefetch next
data item into the variable prefetch_data. Line five describe
the step to XOR current data into Keccak state concurrently
while prefetching next data.

D. LOOP OPTIMIZATION
We also apply two loop optimization techniques in the
Keccak permutation function. For 1T-Keccak, we manually

unroll the entire kernel. For 5T-Keccak and 25T-Keccak,
we utilize the loop inversion technique by replacing a while
loop with if block containing a do...while loop to reduce
jump instruction, as jump instructions by nature introduce
pipeline stalls.
The benefit of using loop inversion is illustrated below.

Consider the execution of a while loop with 10 iterations,
it will execute 11 jump instructions (GOTO) before escaping
the loop:
1: i← 0
2: B1:
3: if i ≥ 10 then GOTO B2:
4: end if
5: a[i]← 0
6: i← i+ 1
7: GOTO B1:
8: B2:

However, with loop inversion the jump instruction is
reduced to only 9.
1: i← 0
2: if i ≥ 10 then GOTO B2:
3: end if
4: B1:
5: a[i]← 0
6: i← i+ 1
7: if i < 10 then GOTO B1:
8: end if
9: B2:

E. AVOIDING SHARED MEMORY BANK CONFLICT
For 5T-Keccak and 25T-Keccak, we use shared memory to
store internal state and temporary variables. The variables we
used to store internal state are 64-bit wide, which means that
access to shared memory should be done in 64-bit as well.
In GPUwith Compute Capability lesser than 3.0, a 64-bit data
access is done in two separate 32-bit accesses, which increase
the chances for multiple threads to access the same memory
bank. This in turn creates high chances for bank conflicts to
occur and slow down the memory access performance.
The target platform we use (GTX780) is a device with

Compute Capability 3.5; it offers a useful feature to config-
ure the shared memory to 64-bits addressing mode. By doing
this, the 64-bit access to shared memory is done with only
single access, which in turn avoids bank conflict. Our imple-
mentation adopted this configuration and able to eliminate
the bank conflict problem that Cayrel et al. [21] are facing.
For another target platform GTX295, it does not allow user
to configure shared memory addressing mode, so we are not
able to apply this technique.

F. CONCURRENT EXECUTION
CUDA not only provides thread level parallelism, it also
allows multiple streams of kernels to run concurrently [24],
and it can overlap memory copy with kernel and CPU execu-
tion. To illustrate this idea, we refer to Figure 8 and Figure 9.

VOLUME 6, 2018 37997



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

FIGURE 8. Serial execution with only one stream.

FIGURE 9. Concurrent execution with multiple streams and CPU.

Figure 8 shows a typical CUDA program with only one
stream, where memory copy from host to device, kernel
execution and memory copy from device to host are executed
serially.

Figure 9 shows an example where the memory copy and
kernel execution are overlapped, with the CPU doing other
tasks concurrently. In this example, the kernel is divided into
three parts (Kx.1 to Kx.3), while memory copy from host
to device (HD1 to HD7) and device to host (DH1 to DH7)
are divided into six parts to further improve the overlapping
effect.

In order to utilize this programming model, we break the
input data into multiple sections (depending on how many
streams we use), each of the streams will hash one section of
the data. We only apply this to the Keccak tree leaf (bottom
level of tree) as it is themost time consuming process. Kernels
for internal tree level are launched consecutively after the tree
leaf kernels complete execution. The top root level is hashed
by the CPU.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS.
We implemented LI tree-mode Keccak based on the
three granularities and optimization techniques detailed in
Section IV. We executed the experiments in a workstation
system comprising an Eight Cores 4 GHz CPU, 16 GB of
RAM, CUDA SDK 5.5, GTX780 with Compute Capability
3.5 andGTX295with compute capability 1.3. The first exper-
iment examine the effect of tree heights (varies from H=1 to
H=7 ) to the hash throughput in GTX780 and GTX295, while
the second experiment examine the effect of various input
data size (range from 4KB to 256MB) to the hash througput
in same platform. For a fair comparison, we did not use
Dynamic Parallelism in this experiment setting for GTX780,
because GTX295 does not support this feature. The range
of input size was chosen to cover small file (KB) and large
size (MB).

The tree degree is fixed at D=4 so that we can perform
a direct comparison with the work done by Cayrel et al. [21].
The main difference between our work and Cayrel et al. [21].

FIGURE 10. Throughput in GTX295 and GTX780, with varying tree height.
The work in GTX780 was implemented without Dynamic Parallelism.

is that we configured the shared memory to operate on 64-bit
addressing mode to avoid bank conflict. We do not imple-
ment H=0 as it is equivalent to hashing in serial form. Hash
throughput is almost stable when tree height H≥6, so our
experiment stops at H=7. For 25T-Keccak, 25 threads hash
one leaf; for 5T-Keccak, five threads hash one leaf, while
1T-Keccak uses one thread to hash one leaf. For 5T-Keccak,
we only present the results of sheet version, as the plane
version also shows very similar results.

Figure 10 shows that 5T-Keccak and 25T-Keccak are hav-
ing close hash performance in both GTX780 and GTX295.
The main reason for this is that they share the same fine grain
parallelism design that uses multiple threads to hash a copy of
Keccak. The only difference is that 25T-Keccak requiresmore
shared memory access to hash a copy of Keccak compare
to 5T-Keccak. On the other hand, 5T-Keccak reuse more
intermediate values to hash a plane or sheet of Keccak in
one thread, hence it requires lesser shared memory access.
When the tree height is greater, more tree leafs are hashed in
parallel (L=DH ) [4], the shared memory traffic is also higher
at this point. This explains why 5T-Keccak is slightly faster
than 25T-Keccak when the tree height H>5, since it suffer
lesser from the intensive shared memorry access.

Meanwhile, 1T-Keccak exhibit the fastest hash throughput
compare to 5T-Keccak and 25T-Keccak. Since 1T-Keccak is
hashing the entire Keccak within one thread, many interme-
diate state values and variables can be reused, which greatly
reduced the memory read/write operations. In contrast, 5T-
Keccak and 25T-Keccak need to use shared memory for
sharing intermediate state values. Although sharedmemory is
considered the second fastest memory in GPU after register,
the additional read/write operations introduced by these two
implementation techniques involved a lot of overhead; hence
it slows down the overall performance. It is also noted that
1T-Keccak only outperform the other two implementations
when the tree height reach certain level. This is due to the fact

37998 VOLUME 6, 2018



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

FIGURE 11. Throughput in GTX295 and GTX780, with varying data sizes.
The tree height was fixed at H=6. The work in GTX780 was implemented
without dynamic parallelism.

that when the tree height is low, 5T-Keccak and 25T-Keccak
are able to launch more threads to hash concurrently, so the
performance tends to be better compare to 1T-Keccak. When
the tree height increases, the threads pool laucned also
increases, memory access speed becomes the dominant factor
that determine hash throughput, so 1T-Keccak that perform
all computation locally will have the upper hand in this case.

Second experiment hash a single file with the various
file size ranging from 4KB to 256MB. Figure 11 shows the
effect of varying file size to the hash throughput. Since we
are implementing LI tree-mode Keccak, the tree structure is
fixed, so we need sufficiently large data size to fully load the
tree strucuture. With our experimental setting of H=6 and
D=4, there will be 4096 of leafs (L=DH ), each leaf hash at
least a copy of Keccak (1024 bit). As a result, we can see
the hash throughput is near to maximum when the file size is
greater than 512KB. Further increasing the file size does not
yield great performance improvement, as the tree structure is
already fully loaded.

The results of using Dynamic Parallelism to manage the
kernel launch for each tree levels is shown in Figure 12.
By using Dynamic Parallelism, we are able to offload the
kernel launch management to GPU itself, thus free up CPU
to perform other tasks (e.g. hashing the top level). The maxi-
mum throughput achieved with this technique is 28.51 Gbps.
A slight improvement can be seen in the implementation
using Dynamic Parallelism compare to the one without
Dynamic Parallelism. However, we should be aware that
the implementation using Dynamic Parallelism reduced the
CPU workload in managing kernel launches, so it is useful
in applications that demand more CPU computation. Hence,
this technique is particularly useful for high traffic server
environment where CPU may need to handle multiple tasks
and heavy requests from clients.

From these experiments, we can conclude that in order
to harness the GPU’s parallel computing power, we need to

FIGURE 12. Throughput in GTX780, implementation with and without
dynamic parallelism.

provide sufficiently large data set for hashing. To achieve this,
we can either hash a single large file in GPU, or group mul-
tiple smaller files into one large array in CPU before hashing
it in GPU. For the latter case, we need to launch multiple tree
structures to handle different small files with varying file size,
which introduces additional overhead. Hence, the overall per-
formance for hashing multiple small files may not be as good
as hashing a large file. Another interesting implementation is
to hash multiple files in batch mode [21], where each thread
is assigned to hash a file. The actual implementation of this
may need to consider the latency of launching multiple tree
structures, queuing system of multiple files and the memory
available in GPU. However, this is beyond the scope of this
paper.

When comparing the hash throughput of our work with
other researchers in Table 3, our implementation is able
to achieve 18.69 Gbps hash throughput in GTX295, which
is 6% faster compare to the previously best known result
by Bos et al. [18] that used the same platform. Our imple-
mentation in GTX780 utilizing Dynamic Parallelism is able
to achieve 28.51 Gbps. On the other hand, Lowden et al.
presented an optimized tree mode Keccak which is able to
achieve 24 Gbps on a K20c GPU with Kepler architecture.
Our 1T-Keccak implemented in GTX 780 is able to achieve
28.51 Gbps peak throughput, which is 18.8% faster than
the implementation by Lowden et al. [22]. Moreover, both
K20c and GTX 780 are from Kepler architecture, but K20c
has 13 SMs (2496 cores) but GTX 780 only have 12 SMs
(2304 cores); this implies that our proposed 1T-Keccak
implementation can be even faster if implemented in K20c
used by Lowden et al. [22].

VI. CASE STUDY: HIGH SPEED HASHING FOR
TELEMEDICINE APPLICATIONS
In telemedicine applications, we often need to transmit large
video data over Internet, either offline (as a file) or online

VOLUME 6, 2018 37999



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

TABLE 2. Comparison of our work with the work in [18], [19], and [21].

FIGURE 13. Hashing a large video file.

(real time video conferencing). The size of medical video
data can be very large (multiple GB range [40]); hashing
such a large file is time consuming if it is performed using
CPU. In such scenario, we can hash the large video data
with GPU by using the techniques proposed earlier to achieve
reasonable speed performance. For example, given the hash
rate of GTX780 is 28.51 Gbps or 3.56 GBps (Table 2), a video
file of 2GB can be hashed within 0.56s only. Figure 13 shows
that the large video file is first padded with ‘0’ so that it’s
size is in multiple of 128 bytes; then the large padded file is
divided into several smaller parts P0,P1, ...,Pn−1 where n is
the number of leafs in a tree structure. The large video file
can now be hashed in parallel using GPU.

On the other hand, medical images are usually smaller in
size (several MB to several hundreds MB). To hash these
smaller images, we can group them into a single binary file,
then hash this file in parallel using the tree-mode Keccak in
GPU, just like the case in video file. Besides that, we can
also hash multiple medical images independently, which is
illustrated in Figure 14. The medical images are first padded
to multiple of 128 bytes, then hashed in parallel by tree-mode
Keccak.

To hash the telemedicine files (video, audio, image) in
high speed, the sender first retrieve the data from database
and transfer them to the GPU for parallel hashing using
the techniques (1T-Keccak) described in Section IV. Once
the hashing is completed, these files together with the top
hash value, can be sent over to the receiver. The memory
copy between CPU and GPU can be overlapped with parallel
hashing in GPU (See Section V.F) to improve the overall
performance. Upon receiving the files, the receiver can start
computing the top hash value of all the received files and
compare it against the received hash value. If any of the files
was tampered or corrupted, the computed hash value is will
be different with the received hash value and this can be

FIGURE 14. Hashing multiple small image files.

detected immediately. Note that the files need to be hashed
and transmitted in batches in order to fully utilize the mas-
sively parallel computational power in GPU. On top of that,
Dynamic Parallelism can be useful in such application, as the
hash tree kernel launch is nowmanaged by GPU entirely (See
Section V.B), leaving CPU free to execute other tasks.

VII. CONCLUSION
In this work, we presented techniques to implement parallel
and high speed hashing in GPU, which can be used to check
the integrity of medical data transmitted over Internet for
telemedicine applications. We first investigated the parallel
granularity to implement LI tree-mode Keccak hash function
in GPU, and demonstrated that one thread hashing one copy
of Keccak is the best parallel granularity in GPU. Although
other granularities (five threads per Keccak and 25 threads
per Keccak) are able to exploit the inner parallelism of the
Keccak hash function, they require the use of shared memory
to share intermediate state and variables, hence increasing the
memory read/write operations. In contrast, granularity of one
thread per Keccak is able to reuse the intermediate state and
variables during calculation, hence it is able to achieve faster
hashing. By utilizing Dynamic Parallelism, the latest feature
offered by NVIDIA GPU, we are able to offload the kernel
launch management task to GPU, and free up CPU for other
work. Although Dynamic Parallelism does not provide a very
significant contribution to the overall performance, it does
provide a framework to design applications that require high
CPU computation in conjunction with GPU co-processing.
We also proposed new optimization method to avoid bank
conflicts when accessing shared memory. At the same time,
data pre-fetch and loop optimizations (unroll and inversion)
are used in our implementation, which can further improve
the performance for GPU tree based implementation of Kec-

38000 VOLUME 6, 2018



W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

cak. Our implementation result is also faster than all prior
works from the literature.

The developed implementation techniques presented in
this paper can also be used to protect other new form of
networking topologies [39], including edge computing, fog
computing and etc. Enhancing the hash rate under these new
networking topologies (involving various hardware architec-
tures) would be an interesting future direction we wish to
pursue.

REFERENCES
[1] N. Xiong, X. Jia, L. T. Yang, A. V. Vasilakos, Y. Li, and Y. Pan,

‘‘A distributed efficient flow control scheme for multirate multicast net-
works,’’ IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 9, pp. 1254–1266,
Sep. 2010.

[2] N. Xiong et al., ‘‘A novel self-tuning feedback controller for active
queue management supporting TCP flows,’’ Inf. Sci., vol. 180, no. 11,
pp. 2249–2263, Jun. 2010.

[3] M. Stevens, ‘‘Cryptanalysis of MD5 & SHA-1,’’ in Proc. Special-Purpose
Hardw. Attacking Cryptograph. Syst. (SHARCS), 2012, pp. 1–37.

[4] T. Xie, D. Feng, and F. Liu, ‘‘A new collision differential for MD5 with
its full differential path,’’ Int. Assoc. Cryptol. Res. Cryptol. ePrint Arch.,
Tech. Rep. 2008/230, 2008.

[5] X. Wang and H. Yu, ‘‘How to break MD5 and other hash functions,’’
in Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer
Science), vol. 3494. Berlin, Germany: Springer, 2005, p. 561.

[6] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, ‘‘Keccak, a SHA-3
candidate,’’ Nat. Inst. Standards Technol., Gaithersburg, MD, USA, 2009.

[7] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, ‘‘‘BLAKE, a
SHA-3 candidate,’’ Nat. Inst. Standards Technol., Gaithersburg,MD,USA,
2008.

[8] N. Ferguson et al., ‘‘Hash function family, a SHA-3 candidate,’’ Nat. Inst.
Standards Technol., Gaithersburg, MD, USA, 2009.

[9] H. Wu, ‘‘The hash function JH, a SHA-3 candidate,’’ Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, 2009.

[10] P. Gauravaram et al., ‘‘A SHA-3 candidate,’’ Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, 2008.

[11] R. C. Merkle, ‘‘Secrecy, authentication, and public key systems,’’
Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA,
1979.

[12] P. Sarkar and P. J. Schellenberg, ‘‘A parallelizable design principle for
cryptographic hash functions,’’ Int. Assoc. Cryptol. Res. Cryptol. ePrint
Arch., Tech. Rep. 2002/031, 2002.

[13] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, ‘‘Keccak implemen-
tation overview version 3.2,’’ Nat. Inst. Standards Technol., Gaithersburg,
MD, USA, 2012.

[14] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche.
Cryptographic Sponges. Accessed: Jul. 11, 2018. [Online]. Available:
http://sponge.noekeon.org

[15] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, ‘‘The keccak refer-
ence version 3.0,’’ Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
2011.

[16] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, Keccak Sponge
Function Family Main Document, document version 2.1, Jun. 2010.

[17] CUDA Programming Guide 8.0. Accessed: Jun. 1, 2017. [Online]. Avail-
able: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[18] J. W. Bos and D. Stefan, ‘‘Performance analysis of the SHA-3 candidates
on exotic multi-core architectures,’’ in Proc. 12th Int. Conf. Cryptograph.
Hardw. Embedded Syst. (CHES), 2010, pp. 279–293.

[19] G. Sevestre. (2010). Implementation of Keccak Hash Function in
Tree Hashing Mode on Nvidia GPU. [Online]. Available: http://
hgpu.org/?p=6833

[20] G. Chindemi and N. Crovetti. (2011). Cuda-Keccak. [Online]. Available:
http://code.google.com/p/cuda-keccak

[21] P. Cayrel, G. Hoffmann, and M. Schneider, ‘‘GPU implementation of the
Keccak hash function family,’’ in Proc. 5th Int. Conf. Inf. Secur. Assurance,
Aug. 2011, pp. 33–42.

[22] J. Lowden,M. Łukowiak, and A. S. Lopez, ‘‘Design and performance anal-
ysis of efficient Keccak tree hashing on GPU architectures,’’ J. Comput.
Secur., vol. 23, no. 5, pp. 541–562, 2015.

[23] D. J. Bernstein et al., ‘‘ECC2K-130 on NVIDIA GPUs,’’ in Progress
in Cryptology—INDOCRYPT. Berlin, Germany: Springer-Verlag, 2010,
pp. 328–346.

[24] S. Rennich. (2011). CUDA C/C++ Streams and Concurrency.
[Online]. Available: http://developer.download.nvidia.com/CUDA/
training/StreamsAndConcurrencyWebinar.pdf

[25] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, ‘‘A
high-performance and scalable hardware architecture for isogeny-
based cryptography,’’ IEEE Trans. Comput., to be published, doi:
10.1109/TC.2018.2815605.

[26] W. Dai, D. D. Chen, R. Cheung, and C. K. Koc, ‘‘FFT-based McLaughlin’s
Montgomery exponentiation without conditional selections,’’ IEEE Trans.
Comput., to be published, doi: 10.1109/TC.2018.2811466.

[27] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni,
G. M. de Dormale, and F.-X. Standaert, ‘‘Compact FPGA implementations
of the five SHA-3 finalists,’’ in Proc. Int. Conf. Smart Card Res. Adv.
Appl. (CARDIS), 2011, pp. 217–233.

[28] A. Khajeh-Saeed and J. B. Perot, ‘‘Computational fluid dynamics simula-
tions using many graphics processors,’’ IEEE Comput. Sci. Eng., vol. 14,
no. 3, pp. 10–19, May/Jun. 2012.

[29] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and
A. Veidenbaum, ‘‘Efficient simulation of large-scale spiking neural
networks using CUDA graphics processors,’’ in Proc. Int. Joint Conf.
Neural Netw., Jun. 2009, pp. 2145–2152.

[30] P. Carpenter. (Aug. 2012). Accelerating Cryptographic Primitives With
GPUs. [Online]. Available: http://www.auburn.edu/~carpept/security.pdf

[31] J. Won, S.-H. Seo, and E. Bertino, ‘‘Certificateless cryptographic protocols
for efficient drone-based smart city applications,’’ IEEE Access, vol. 5,
pp. 3721–3749, 2017.

[32] J. W. Bos, D. A. Osvik, and D. Stefan, ‘‘Fast implementations of AES
on various platforms,’’ Int. Assoc. Cryptol. Res. Cryptol. ePrint Arch.,
Tech. Rep. 2009/501, 2009.

[33] V. Migliore, M. M. Real, V. Lapotre, A. Tisserand, C. Fontaine, and
G. Gogniat, ‘‘Hardware/software Co-design of an accelerator for FV
homomorphic encryption scheme using Karatsuba algorithm,’’ IEEE
Trans. Comput., vol. 67, no. 3, pp. 335–347, Mar. 2018.

[34] W. Pan, F. Zheng, Y. Zhao, W.-T. Zhu, and J. Jing, ‘‘An efficient elliptic
curve cryptography signature server with GPU acceleration,’’ IEEE Trans.
Inf. Forensics Security, vol. 12, no. 1, pp. 111–122, Jan. 2017.

[35] P. Martins, J. Eynard, J.-C. Bajard, and L. Sousa, ‘‘Arithmetical improve-
ment of the round-off for cryptosystems in high-dimensional lattices,’’
IEEE Trans. Comput., vol. 66, no. 12, pp. 2005–2018, Dec. 2017.

[36] W. Dai et al., ‘‘Implementation and evaluation of a lattice-based key-
policy ABE scheme,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 5,
pp. 1169–1184, May 2018.

[37] X. Fei, K. Li, W. Yang, and K. Li, ‘‘A secure and efficient file protecting
system based on SHA3 and parallel AES,’’ Parallel Comput., vol. 52,
pp. 106–132, Feb. 2016.

[38] N. Xiong et al., ‘‘Comparative analysis of quality of service and memory
usage for adaptive failure detectors in healthcare systems,’’ IEEE J. Sel.
Areas Commun., vol. 27, no. 4, pp. 495–509, May 2009.

[39] Y. Zhou, D. Zhang, and N. Xiong, ‘‘Post-cloud computing paradigms:
A survey and comparison,’’ Tsinghua Sci. Technol., vol. 22, no. 6,
pp. 714–732, Dec. 2017.

[40] W. Xiang, G. Wang, M. Pickering, and Y. Zhang, ‘‘Big video data for
light-field-based 3D telemedicine,’’ IEEE Netw., vol. 30, no. 3, pp. 30–38,
May/Jun. 2016.

WAI-KONG LEE received the B.Eng. degree in
electronics and the M.Sc. degree fromMultimedia
University in 2006 and 2009, respectively, and
the Ph.D. degree in engineering from Universiti
Tunku Abdul Rahman, Malaysia, in 2018. He
was a Visiting Scholar with Carleton University,
Canada, in 2017, Feng Chia University, Taiwan,
in 2016 and 2018, and OTH Regensburg, Ger-
many, in 2015. His research interests are in the
areas of cryptography, numerical algorithms, GPU

computing, Internet of Things, and energy harvesting. He has served as a
Reviewer for several international journals, such as the IEEE TRANSACTIONS

ON DEPENDABLE AND SECURE COMPUTING (2016 and 2017) and Computer and
Electrical Engineering (2017).

VOLUME 6, 2018 38001

http://dx.doi.org/10.1109/TC.2018.2815605
http://dx.doi.org/10.1109/TC.2018.2811466


W.-K. Lee et al.: Parallel and High Speed Hashing in GPU for Telemedicine Applications

RAPHAËL C.-W. PHAN held academic positions
at Australian, Swiss, and British universities. He
currently holds the Chair in security engineering
with Multimedia University. He has led research
projects funded by the U.K. and Malaysian gov-
ernments, as well as the U.K. Ministry of Defence.
His research interests include diverse areas of
security and privacy with a recent focus on invisi-
ble motions, hidden emotions, and fake fingers.

Mr. Phan was the General Chair of Mycrypt
05 andAsiacrypt 07 and the ProgramChair of ISH 05 andMycrypt 16. He has
been serving on the technical program committees of over 120 international
security conferences since 2005. He is currently guest editing a special issue
of the IEEETRANSACTIONSONDEPENDABLEAND SECURECOMPUTING on paradigm
shifting cryptographic engineering.

He is a Co-Designer of BLAKE, one of the five hash function finalists of
the NIST SHA-3 competition and the underlying primitive for the Blakecoin
crypto currency. He has an Erdős number of 2.

BOK-MIN GOI (SM’13) received the B.Eng.
degree from the University of Malaya in 1998, and
theM.Eng.Sc. and Ph.D. degrees fromMultimedia
University, Malaysia, in 2002 and 2006, respec-
tively. He is currently the Dean and a Professor
with the Lee Kong Chian Faculty of Engineer-
ing and Science, Universiti Tunku Abdul Rahman,
Malaysia. His research interests include cryptol-
ogy, security protocols, information security and
biometrics, digital watermarking, computer net-

working, and embedded systems design. He was elected as an Academy of
Science Malaysia Fellow in 2018. He is a Corporate Member of the Institu-
tion of Engineers, Malaysia. He was a TPC member of many crypto/security
conferences and the General Chair of ProvSec 2010 and CANS 2010,
the ProgramChair of the IEEE-STUDENT2012 andCryptology 2014–2016.

LANXIANG CHEN received the M.S. and
Ph.D. degrees in computer architecture from the
Huazhong University of Science and Technology,
China. She is currently an Associate Professor
with Fujian Normal University. Her research inter-
ests include big data security, cloud computing,
and cloud storage security. She is a member of the
Computer Society of China.

XIUJUN ZHANG received the M.S. degree in
engineering from Zhejiang University in 2003. He
is currently an Associate Professor of computer
science with Chengdu University. His research
interests include graph theory, combinatorial opti-
mization, and algorithm design.

NAIXUE N. XIONG received the Ph.D. degree in
sensor system engineering from Wuhan Univer-
sity and the Ph.D. degree in dependable sensor
networks from the Japan Advanced Institute of
Science and Technology, respectively. Hewaswith
Georgia State University, the Wentworth Institu-
tion of Technology, and Colorado Technical Uni-
versity (a Full Professor about 5 years) about
10 years. He is current an Associate Professor with
the Department of Mathematics and Computer

Science, Northeastern State University, OK, USA. His research interests
include cloud computing, security and dependability, parallel and distributed
computing, networks, and optimization theory.

He published over 200 international journal papers and over 100 inter-
national conference papers. Some of his works were published in the
IEEE JSAC, IEEE or ACM TRANSACTIONS, the ACM SIGCOMMWorkshop,
the IEEE INFOCOM, ICDCS, and IPDPS. He received the Best Paper Award
in the 10th IEEE International Conference on High Performance Computing
and Communications (2008) and the Best student Paper Award in the 28th
North American Fuzzy Information Processing Society Annual Conference
(2009). He has been a General Chair, Program Chair, Publicity Chair, PC
member, and OC member of over 100 international conferences, and as a
Reviewer of about 100 international journals, including IEEE JSAC, IEEE
SMC (Park: A/B/C), the IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE
TRANSACTIONSONMOBILECOMPUTING, and the IEEE TRANSSCTIONSON PARALLEL

AND DISTRIBUTED SYSTEMS. He is serving as the Editor-in-Chief, an Associate
Editor or an Editorial Member for over 10 international journals, includ-
ing an Associate Editor for the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS: SYSTEMS, an Associate Editor for Information Science, and the
Editor-in-Chief for the Journal of Internet Technology and the Journal of
Parallel and Cloud Computing, and a Guest Editor for over 10 international
journals, including Sensor Journal, WINET, and MONET.

Dr. Xiong is a Senior Member of the IEEE Computer Society. He is
the Chair of the Trusted Cloud Computing Task Force, IEEE Computa-
tional Intelligence Society, and the Industry System Applications Technical
Committee.

38002 VOLUME 6, 2018


	INTRODUCTION
	KECCAK HASH FUNCTION AND TREE BASED STRUCTURES
	OVERVIEW OF THE TARGET PLATFORM
	CUDA HETEROGENEOUS PROGRAMMING MODEL
	MEMORY HIERACHY
	GTX780 AND GTX295

	KECCAK IMPLEMENTATION DESIGN ON GPU
	PARALLEL GRANULARITY
	1-THREAD KECCAK (1T-KECCAK)
	5-THREAD KECCAK (5T-KECCAK)
	25-THREAD KECCAK (25T-KECCAK)

	KERNEL LAUNCH MANAGEMENT
	PREFETCH DATA
	LOOP OPTIMIZATION
	AVOIDING SHARED MEMORY BANK CONFLICT
	CONCURRENT EXECUTION

	EXPERIMENTAL RESULTS AND DISCUSSIONS.
	CASE STUDY: HIGH SPEED HASHING FOR TELEMEDICINE APPLICATIONS
	CONCLUSION
	REFERENCES
	Biographies
	WAI-KONG LEE
	RAPHAËL C.-W. PHAN
	BOK-MIN GOI
	LANXIANG CHEN
	XIUJUN ZHANG
	NAIXUE N. XIONG


