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ABSTRACT Close to saturation operation of high power amplifier (HPA) leads to strong nonlinear and
dispersive characteristic of satellite channels. At the receiver, the observation signals are distorted by not only
the linear inter-symbol interference (ISI) but also the nonlinear ones, which makes it challenge to perform
optimal detection. In this paper, we study factor graph (FG)-based turbo equalization for nonlinear satellite
channels characterized by Volterra series. Factor nodes on FG are classified into belief propagation (BP)
set and variational message passing (VMP) set to enable low complexity combined message passing
implementation while with high performance. BP is used on the hard constraint nodes, such as demapping
and decoding, while VMP is employed to update messages of the likelihood function node. It is shown that,
without any approximation on the Volterra series channel model, messages can be expressed in a closed form
via canonical parameters, and the extrinsic information from equalizer to decoder is derived in an explicit
way. Simulation results demonstrate the superior performance of the proposed combined VMP-BP algorithm
with low computational complexity.

INDEX TERMS Nonlinear channel, Volterra series, turbo equalization, factor graph, belief propagation,
variational message passing.

I. INTRODUCTION
High power amplifier (HPA) is an essential component in
the transponder of satellite communication system [1]–[5].
When operating near the saturation point, HPA will lead to
strong nonlinear distortion. Together with the input demulti-
plexer (IMUX) filter and output multiplexer (OMUX) filter,
the transponder introduces both linear and nonlinear inter-
symbol interference (ISI), leading to a significant perfor-
mance degradation. At the receiver side, equalizer can be used
to eliminate the distortion [3]–[5].

Volterra series is shown to be able to model the nonlinear
satellite channels [1]. In [3], equalizer based on Volterra
filter is adopted to compensate for the distortion of satellite
communication system and the corresponding Wiener solu-
tion is achieved. In [4], the least-mean square (LMS) algo-
rithm is modified to update the coefficients of Volterra filter.
Inspired by the structure of turbo codes, turbo equalizer is

proposed in [6] for coded system, which improves the sys-
tem performance significantly. Many low-complexity turbo
equalizers are subsequently proposed for linear channels
in [7]–[11]. Turbo equalizers for nonlinear channels can be
extend from equalizers in linear channels. In [12], cancel-
lation filters for nonlinear terms are included to extend the
method in [7] to nonlinear channel. Based on [8], the filters
in [13] is designed to be excited by both the original symbols
and their nonlinear combinations. In [14]–[16], the method
in [9] is extended by taking the nonlinear ISI into consid-
eration in the standard affine transform. The distribution of
interference is assumed to be Gaussian in the above equal-
izers when calculating the extrinsic information, which are
heuristic.

Factor graph (FG) can be used to efficiently represent the
factorization of joint probability function [17]. Together with
belief propagation (BP) algorithm [18], iterative receivers for
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FIGURE 1. Block diagram of a coded satellite communication system.

linear channels can be designed in a unified way [19], [20].
FG with BP algorithm has been employed to design iterative
equalizers for linear ISI channels in [21]–[26]. For nonlinear
satellite channels, forward/backward equalizer and Markov
Chain Monte Carlo (MCMC) equalizer are proposed in [27]
based on FG. In fact, the forward/backward equalizer is
the same as the BCJR equalizer in [28], whose complexity
becomes unacceptable for high order modulations and/or
channels with large memory depth. In [27], the a posteri-
ori probability of symbols is obtained based on sampling
methods. However,‘opening node’ [29] operation is not per-
formed, i.e., the equalizer part is considered as one factor
node without any factorizations, which requires significantly
high computational complexity. In [30], by ignoring some
terms of the Volterra kernels in a continuous domain model,
the likelihood function is further factorized. Although equal-
izer with linear complexity can be obtained based on the
above FG, the approximation leads to performance degrada-
tion. Moreover, for MPSK signals, this approximation results
in a linear ISI channel.

In this paper, we study turbo equalization based on a
combined variational message passing (VMP)-BP algorithm
on FG for nonlinear satellite channels modeled by Volterra
series. Different from [27] and [30], Volterra series expres-
sion is employed without any approximation, and the nonlin-
ear observation function is factorized directly. By employing
VMP algorithm on the likelihood function node, the extrin-
sic information from equalizer is derived in a rigorous
way, which can be expressed by canonical parameters. BP
algorithm is performed on the hard constraints nodes, e.g.,
decoding and demapping. Based on the proposed combined
VMP-BP algorithm, all the messages on FG can be derived
in closed form and parametric message passing can be
performed, which significantly reduces the computational
complexity. Simulation results demonstrate the superior per-
formance of the proposed algorithm compared with the state-
of-the-art methods.

The organization of this paper is as follows. System model
is introduced in Section II. Factor graph of the probabilistic

model for nonlinear satellite channels and the message pass-
ing algorithms are given in Section III. Receiver based on a
combined VMP-BP algorithm for nonlinear satellite channel
is derived in detail in Section IV. Simulation results and
discussions are shown in Section V. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL
We consider coded linearly modulated signals transmitted
over nonlinear satellite channel as illustrated in Fig. 1.
At the transmitter, the information bit sequence b ,
[b1, b2, . . . , bK ]T is converted to coded bits by channel
encoder with coding rate R = K/M , and interleaved to bit
sequence c , [c1, c2, . . . , cM ]T. Then, the interleaved coded
bits are mapped into symbols x , [x1, x2, . . . , xN ]T, where
xn ∈ χ , andχ is the constellation set with size |χ | = 2P. After
pulse-shaping, the signal is transmitted over the nonlinear
satellite channel.

Pre-filter, power amplifier and post-filter are the three
components of transponder. Unexpected signals from adja-
cent channels are removed by pre-filter, while the extended
spectrum caused by the nonlinearity of power amplifier is
restrained by post-filter. The equivalent discrete-time base-
band model at symbol rate can be described by Volterra
series. The received signal vector after matched filter is y ,
[y1, y2, . . . , yN ]T. The relationship between the input signal
xn and the output signal yn is given as

yn =
∞∑
v=1

∑
n1

. . .
∑
n2v−1

h2v−1n1,...,n2v−1xn1,...,n2v−1 + wn, (1)

where

xn1,...,n2v−1 , xn−n1 . . . xn−nvx
∗
n−nv+1 . . . x

∗
n−n2v−1 ,

and hn1,...,n2v−1 is the kernel of Volterra series, wn is the
circularly-symmetric white Gaussian noise with variance σ 2.
Due to the bandpass nature of the channel, only odd terms are
included [2].
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Generally, a third-order Volterra series with a certain mem-
ory depth is adequate to describe practical nonlinear satellite
channels [13], [14]. In that way, (1) becomes

yn =
L∑
l=0

hlxn−l +
L∑
i=0

L∑
j≥i

L∑
k=0

hijkxn−ixn−jx∗n−k + wn

= hTxn + h′Tx′n + wn, (2)

where h , [h0, h1, . . . , hL]T, xn , [xn, xn−1, . . . , xn−L]T,
h′ , [h000, h001, . . . , h00L , . . . , hLLL]T, x′n , [xnxnx∗n ,
xnxnx∗n−1, . . . , xnxnx

∗
n−L , . . . , xn−Lxn−Lx

∗
n−L]

T and L is the
channel length. The elements in h and h′ could be zero, and
the symmetric characteristic of Volterra series has been taken
into consideration.

At the receiver side, the maximum a posteriori probability
(MAP) bit-by-bit detector is give by

b̂k = argmax
bk∈{0,1}

p(bk |y) = argmax
bk∈{0,1}

∑
∼{bk }

p(b|y), (3)

where ∼ {bk} denotes the summation over all the variables
in information bit sequence b, except bk . However, due to
the coupling between variables, the direct marginalization
in (3) is intractable. We introduce FG and message passing
algorithms to solve this problem.

III. FACTOR GRAPH AND MESSAGE
PASSING ALGORITHMS
A. FACTOR GRAPH FOR NONLINEAR SATELLITE CHANNEL
Due to the conditional independence, given the observation
vector y, the a posteriori probability of information bits b,
interleaved coded bits c and transmitted symbols x is

p(b, c, x|y) ∝ p(b)p(c|b)p(x|c)p(y|x)

=

K∏
k=1

f (bk )fc(b, c)fm(c, x)

×

N∏
n=1

fon (xn−L , . . . , xn, yn), (4)

where f (bk ) is the a priori probability of the information bit,
fc(b, c) and fm(c, x) are the coding&interleaving andmapping
functions, respectively,

fm(c, x) =
N∏
n=1

fmn (c(n−1)P+1, . . . , cnP, xn) (5)

fmn (·) = δ(G(c(n−1)P+1, . . . , cnP)− xn) (6)

with the mapping function G, and fon (·) is the likelihood
function, i.e.,

fon (·) = p(yn|xn−L , . . . , xn)

∝ exp

(
−
|yn − (hTxn + h′Tx′n)|2

σ 2

)
.

The corresponding factor graph of the probabilistic model
in (4) for nonlinear satellite channel is shown in Fig. 2.

FIGURE 2. Factor graph representation of the probabilistic model in (4).

B. MESSAGE PASSING ALGORITHM
BP and VMP are two message passing algorithms on FG.
BP is derived from the equations of the stationary points of
the constrained Bethe free energy. VMP is obtained by min-
imizing the variational free energy subject to the mean-field
approximation constraint [31]. Partitioning the FG into BP
and VMP parts, a combined VMP-BP algorithm is proposed
by minimizing the region-based free energy [32]–[34].

For a FG consisting of a set of factor nodes F and a set
of variable nodes V, according to the combined VMP-BP
algorithm, the factor nodes can be assigned to two sets: BP set
FBP and VMP set FVMP, FBP

∪FVMP
= F, FBP

∩FVMP
= ∅.

The message from factor node f ∈ F to its neighbor variable
node v ∈ N (f ) ⊆ V is denoted as mf→v(v), and the message
from variable node v to its neighbor factor node f ∈ N (v) ⊆
F is denoted as nv→f (v).

The updating rule related to the factor node fb in the BP
part on FG (fb ∈ FBP) is

mBP
fb→v(v) ∝

∑
∼{v}

fb(v)
∏

v′∈N (fb)\v

nv′→fb (v
′). (7)

The updating rule related to the factor node fa in the VMP
part on FG (fa ∈ FVMP) is

mVMP
fa→v(v) ∝ exp

∑
∼{v}

ln(fa(v))
∏

v′∈N (fa)\v

nv′→fa (v
′)

 . (8)

The updating rule related to the variable node v is

nv→fc (v)∝
∏

fa∈N (v)∩FVMP

mVMP
fa→v(v)

∏
fb∈N (v)∩FBP\fc

mBP
fb→v(v).

(9)
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(hTxn + h′Tx′n)H(hTxn + h′Tx′n) =
L∑
i=0

h∗i hix
∗
n−ixn−i −

L∑
i=0

L∑
j≥i

L∑
k=0

h∗ijkhijkx
∗
n−ix

∗
n−jxn−kxn−ixn−jx

∗
n−k

+ 2<(
L∑
i=0

L∑
o=0

L∑
p≥o

L∑
q=0

h∗i x
∗
n−ihopqxn−oxn−px

∗
n−q)+ 2<(

L∑
i=0

L∑
j>i

h∗i hjx
∗
n−ixn−j)

+ 2<(
L∑
i=0

L∑
j≥i

L∑
k=0

L∑
o≥i

L∑
p≥o,p≥j

L∑
q≥k

h∗ijkhopqx
∗
n−ix

∗
n−jxn−kxn−oxn−px

∗
n−q) (14)

The belief of variable v is

b(v) ∝
∏

fa∈N (v)∩FVMP

mVMP
fa→v(v)

∏
fb∈N (v)∩FBP

mBP
fb→v(v). (10)

IV. RECEIVER BASED ON COMBINED VMP-BP FOR
NONLINEAR SATELLITE CHANNELS
Due to the hard constraints of coding, interleaving and map-
ping, factor nodes related to these functions, i.e., fc and
fmi , are classified into the BP set, while the factor nodes of
likelihood functions, i.e., fon , are classified into the VMP set.
Although the subgraph between symbol variable nodes xi and
likelihood function nodes fon contains cycles with girth four,
the convergence is guaranteed by the VMP algorithm [35].

A. EQUALIZATION BASED ON VMP ALGORITHM
The messages from likelihood function nodes to symbol
nodes are computed as follows

mfon→xi (xi)

∝ exp

∑
∼{xi}

ln(fon (·))
∏

xj∈N (fon )\xi

nxj→fon (xj)


= exp

(
Exj∈N (fon )\xi{−

|yn − (hTxn + h′Tx′n)|2

σ 2 }

)
. (11)

The term |yn−(hTxn+h′
Tx′n)|2 in (11) can be decomposed

as

|yn − (hTxn + h′Tx′n)|2

= y∗nyn − 2<(y∗n(h
Txn + h′Tx′n))

+ (hTxn + h′Tx′n)*(hTxn + h′Tx′n), (12)

The first term y∗nyn can be considered as a constant. The sec-
ond and the third terms are expanded in (13) and (14), as
shown in top of this page, respectively.

y∗n(h
Txn + h′Tx′n)

=

L∑
i=0

y∗nhixn−i +
L∑
i=0

L∑
j≥i

L∑
k=0

y∗nhijkxn−ixn−jx
∗
n−k . (13)

The likelihood function node fon is connected to L+1 sym-
bols, i.e., xn, xn−1, . . . xn−L . When mfon→xi (xi) is calculated,

xi is considered as variable while other symbols are taken
place by their expectations, e.g.,∑
∼xn

h∗001h012x
∗
nx
∗
nxn−1xnxn−1x

∗

n−2

∏
j=n−1,n−2

nxj→fon (xj)

= h∗001h012E{xn−1xn−1}E{x
∗

n−2}x
∗
nx
∗
nxn, (15)

We can find that the messagemfon→xi (xi) belongs to the expo-
nential family. Therefore, the sufficient statistics [36] can be
chosen as the combinations of the bases of Volterra series,
which can be split into two parts, i.e., with/without real oper-
ation. They are in the form of xix∗i , xixix

∗
i x
∗
i , xixixix

∗
i x
∗
i x
∗
i ,

<(xi),<(xixi),<(xixix∗i ),<(xixixi),<(xixixix
∗
i ),<(xixixix

∗
i x
∗
i )

as in (13) and (14).1 Then, the message mfon→xi (xi) can be
written as

mfon→xi (xi) ∝ exp

−
∑
m,n

conm,nxmi x
∗
i
n
+ 2<(

∑
p,q
conp,qx

p
i x
∗
i
q)

σ 2


(16)

where conm,n and conp,q are the canonical parameters, xmi x
∗
i
n

and xpi x
∗
i
q are the sufficient statistics.2 Obviously, only the

canonical parameters [37] have to be calculated during the
message updating.

Taking a third-order Volterra series with memory depth
one as an example, the sufficient statistics and correspond-
ing canonical parameters of message mfon→xn (xn) are shown
in Table 1.

For a third-order Volterra channel with larger memory
depth, the sufficient statistics are the same as that in Table. 1,
while more terms are involved in canonical parameters.
For Volterra channel with higher order and larger mem-
ory depth, there will be more sufficient statistics and more
terms in canonical parameters. Nevertheless, the canoni-
cal parameters are calculated in a similar way. Moreover,
due to the sparsity characteristic of nonlinear satellite chan-
nels [38], many terms in the canonical parameters will be
zeros.

1The index of the conjugate symbol is set to be less than that of the original
symbol, in order to reduce the number of sufficient statistics.

2Due to the real part operation, xpi x
∗
i
q is marked as <(xpi x

∗
i
q) in Table 1
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TABLE 1. Sufficient statistics and canonical parameters of mfon →xn (xn)
for a third-order Volterra channel with memory depth 1.

Then, the messages from symbol nodes to the likelihood
function nodes, i.e., nxi→fon (xi), are calculated as follows

nxi→fon (xi) =
i+L∏
k=i

mfok→xi (xi)mfmi→xi (xi), (17)

where mfmi→xi (xi) is the information from mapping node,
which is the probability mass function (PMF) of xi, i.e.,

mfmi→xi (xi) =
∑
j

p(xi = sj)δ(xi − sj). (18)

Substituting (16) and (18) into (17), we have

nxi→fon (xi)
∝

∑
j

p(xi = sj)δ(xi − sj)

× exp

−
i+L∑
k=i

(
∑
m,n

cok ,xim,n smj s
∗
j
n
+ 2<(

∑
p,q
cok ,xip,q spj s

∗
j
q))

σ 2


(19)

where cok ,xim,n and cok ,xip,q are the canonical parameters of mes-
sage from the likelihood function node fok to symbol node xi.

It is seen from Table 1 that the (raw) moments [39] with
different orders can be used to calculate the canonical param-
eters. Due to the discrete characteristic of symbols, enumera-
tionmethod is used to obtain the correspondingmoments e.g.,

E{x2i x
∗
i
2
} =

∑
j

nxi→fon (xi = sj)s2j s
∗
j
2
. (20)

Although there are cycles with girth four between the
likelihood function nodes and symbol nodes, the convergence
is ensured by VMP algorithm.

B. DEMAPPING BASED ON BP ALGORITHM
The relationship of mapping belongs to hard con-
straint. The corresponding function node is fmn =

δ(G(c(n−1)P+1, . . . cnP)−xn), where the function is one when
there is a valid relationship between c(n−1)P+1, . . . , cnP and
xn, otherwise it is zero. Mapping factor nodes belong to BP
part, so the message nxn→fmn (xn) from symbol node xn to
mapping factor node fmn is the extrinsic information, i.e.,

nxn→fmn (xn)

=

n+L∏
i=n

mfoi→xn (xn)

∝ exp

−
n+L∑
i=n

(
∑
a,b
coi,xna,b xanx

∗
n
b
+ 2<(

∑
c,d
coi,xnc,d xcnx

∗
n
d ))

σ 2

 .
(21)

Since the message is in the same form of exponential distri-
bution as mfon→xi , only the canonical parameters are required
to be updated.

Then, the message from mapping nodes fmn to coded bit
nodes ci, i.e., mfmn→ci (ci), is given by

mfmn→ci (ci)

∝

∑
k 6=i

∫
fmn (cn, xn)nxn→fmn (xn)dxn

∏
k 6=i

nck→fmn (ck )

=

1∑
l=0

∑
sl∈γ li

nxn→fmn (xn = sl)
∏
k 6=i

nck→fmn (ck = plk )δ(ci − l),

(22)

where plk and l could be 0 or 1, when ck is plk and ci is l,
the corresponding symbol xn is sl . Usually, the log-likelihood
ratio (LLR) of coded bits are used instead of mfmn→ci (ci) for
simplicity, i.e.,

LLR(ci) = ln
mfmn→ci (ci = 0)

mfmn→ci (ci = 1)

= ln

∑
s0∈γ 0i

nxn→fmn (xn = s0)
∏
k 6=i

nck→fmn (ck = p0k )∑
s1∈γ 1i

nxn→fmn (xn = s1)
∏
k 6=i

nck→fmn (ck = p1k )
.

(23)
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The message from mapping factor nodes to symbol vari-
able nodes is

nfmn→xn (xn)

=

∑
k

δ(G(cn)− xn)
nP∏

k=(n−1)P+1

nck→fmn (ck )

=

∑
j

nP∏
k=(n−1)P+1

nck→fmn (ck = qkj )δ(xn − sj), (24)

where c(n−1)P+1, . . . .cnP are mapped to xn = sj when each
component ck is qkj .

C. DECODING BASED ON BP ALGORITHM
The coding factor node belongs to BP part due to its hard
constraints. Classical algorithms are employed, e.g., sum-
product algorithm (SPA) for LDPC code, BCJR algorithm
for convolutional code. Both SPA and BCJR can be derived
based on BP algorithm on FG [18], and we do not discuss the
decoding algorithm in this paper.

D. SCHEDULING OF MESSAGES ON FG
Obviously, the FG in Fig. 2 contains cycles. Therefore,
the proposed VMP-BP algorithm has to be performed iter-
atively. The iterative message updating within nonlinear
channel equalization is named ‘inner loop’, while the iter-
ative message updating between equalization and decoding
is named ‘outer loop’. The proposed VMP-BP algorithm is
summarized in Algorithm 1.

Algorithm 1 Turbo Equalization Based on VMP-BP
Algorithm
Require: Prior information of interleaved coded bits

nci→fmn (ci).
Ensure: Extrinsic information of interleaved coded bits

mfmn→ci (ci).
1: Initialization: nci→fmn (ci) = 1/2, nxi→fon (xi) = 1/2P,
mfmn→xn (xn) = 1/2P;

2: Update the message from the mapping factor node to the
symbol variable node nfmn→xn (xn) using (24)

3: repeat inner loop, with fixed mfmn→xn (xn)
4: Update the message from the symbol variable node

to observation factor node nxi→fon (xi) using (19)
5: Update the canonical parameters illustrated in Table 1
6: Update the message from the likelihood function

node to symbol variable node mfon→xi (xi) using (16)
7: until the number of iterations for equalization reaches its

maximum
8: Update the message from the symbol variable node to

mapping factor node nxn→fmn (xn) using (21)
9: Update the message from mapping factor node to

the interleaved coded bit variable node mfmn→ci (ci)
using (22)

E. COMPLEXITY ANALYSIS
The complexity of the proposed turbo equalization based
on VMP-BP algorithm are compared with three exsiting
methods, namely, MMSE equalizer in [9], linear MMSE-
based equalizer in [14] and forward/backward (FB) equalizer
in [27]. A third-order Volterra channel with memory length
L and L nonlinear terms is considered. The size of signal
constellation is M. A sliding window with size S is used in
[9] and [14] to reduce the complexity.

The complexity of FB equalizer depends on the number
of trellis states of the channel, which is O(ML). The cal-
culation of matrix inverse and the covariance of the obser-
vation vector dominate the complexity of equalizers in [9]
and [14]. By ignoring the nonlinear terms, the complexity of
the traditional MMSE equalizer [9] is O(S3 + SM). Taking
the nonlinear terms into consideration, the complexity of [14]
increases rapidly due to the calculation of the covariance
of nonlinear terms, which is O(S3 + L2S2M). Different
from the LMMSE based equalizers, only the expectations of
different combination of symbols are required in the proposed
algorithm. Without any operation of matrix inverse, the com-
plexity of the proposed VMP-BP equalizer is O(L2M).

V. SIMULATION RESULTS
The performance of the proposed turbo equalizer is evaluated
by Monte Carlo simulations. We consider a rate-1/2 (5,7)
convolutional code with truncated termination. The block
length of information bits is 2048. A 16-random interleaver is
employed to scramble the coded bits in order to reduce burst
error and produce the independence between symbols. QPSK
and 16QAM signals with Gray mapping are considered. For
the proposed VMP-BP equalizer, the maximum number of
iterations for the inner loop and outer loop are set to Iinner = 5
and Iouter = 10, respectively, unless otherwise specified.

The nonlinear Volterra model is yn = h0xn + h1xn−1 +
h2xn−2 + h000xnxnx∗n + h001xnxnx∗n−1 + h002xnxnx∗n−2 +
h110xn−1xn−1x∗n + h220xn−2xn−2x∗n , with coefficients given
in Table 3 [12], [27].
The convergence behavior of the proposedVMP-BP equal-

izer at different Eb/N0 is shown in Fig. 3. It is seen that

TABLE 2. Complexity analysis.

TABLE 3. Coefficients of volterra channel.
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FIGURE 3. Convergence behavior of the proposed VMP-BP equalizer.

the proposed algorithm converges well in both QPSK and
16QAM cases, but the convergence speed of QPSK signal is
much faster than that of the 16QAM. When Eb/N0 is 6dB,
only 2 iterations are required for QPSK, while 5 iterations
are required for 16QAM to converge.

Bit error rate (BER) performance of the proposed VMP-
BP equalizer is illustrated in Fig. 4. Three existing methods
are also illustrated for comparison, which are the MMSE
equalizer proposed in [9] and [40] (denoted as ‘Linear’),
LMMSE equalizer proposed in [14] (denoted as ‘LMMSE’),
and forward/backward equalizer proposed in [27] (denoted as
‘FB’). The number of iterations between decoder and equal-
izer is set to 10 to ensure that all equalizers can converge. It is
observed that, due to the ignorance of the nonlinear terms
in Volterra channels, Linear equalizer has the worst perfor-
mance as expected. The LMMSE equalizer outperforms the
Linear one by taking part of nonlinear terms into consid-
eration. However, its performance is much worse than that
of the proposed VMP-BP equalizer. This is because all the

FIGURE 4. BER performance of different algorithms for QPSK signal.

nonlinear terms are taken into consideration in the proposed
VMP-BP algorithm, and Gaussian approximation is not used
when calculating the message (extrinsic information) from
equalizer to decoder. It is seen that the proposed VMP-BP
equalizer performs very close to the FB equalizer, with much
lower computational complexity.

The performance of the proposed VMP-BP equalizer with
different number of iterations for the inner loop and outer loop
is shown in Fig. 5. The curve marked Iouter = 0 refers to
the configuration that there is no iteration between decoder
and equalizer. It can be observed that when Iouter is small,
increasing Iinner can improve the BER performance. However,
when Iouter is large, e.g., Iouter = 10, performance gap
between different Iinner is negligible, which motivates us to
set Iinner = 1 and embed the iteration of equalizer into the
iteration of decoding and equalization.

FIGURE 5. BER performance of the proposed VMP-BP equalizer with
different number of iterations.

FIGURE 6. BER performance of different algorithms for 16QAM signal.

The performance of different equalizers for 16QAM signal
are shown in Fig. 6. Due to the high complexity of calculating
the covariance matrix of observation vector, the results of
LMMSE equalizer are not included. Due to the non-constant
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modulus property of the constellations, the nonlinear distor-
tion of 16QAM signal is much more serious than that of
QPSK signal. It is seen that, due to the ignorance of the
nonlinear terms, Linear equalizer failed for 16QAM signal.
The proposed VMP-BP equalizer performs well, and the gap
between VMP-BP equalizer and FB equalizer is small when
Eb/N0 is in the range from 5dB to 7dB. Compared with FB
equalizer, the proposed VMP-BP equalizer has an acceptable
BER performance while having a much lower complexity.

VI. CONCLUSION
In this paper, turbo equalizer for nonlinear satellite channel
modeled by Volterra series was studied. The probabilistic
model of system was represented by FG without approxima-
tion on the nonlinear channels. BP was applied to the hard
constraint nodes, such as demapping and decoding, while
VMP was employed for the equalization of nonlinear chan-
nel. It was shown that messages from the equalizer belong
to the exponential family, and only the canonical parameters
have to be updated, which significantly reduced the com-
putational complexity. Simulation results demonstrated that,
for both QPSK and 16QAM signals, the proposed VMP-
BP algorithm performed very close to the forward/backword
equalizer and significantly outperformed the LMMSE equal-
izer which only considered part of the nonlinear ISI. The
iterations within channel equalization can be fully embedded
into the turbo processing between equalization and channel
decoding, which further reduced the receiver complexity.
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