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ABSTRACT Broadband Internet access in the building has fundamentally changed almost every aspect of
our lives. As the growing use of indoor portable systems and devices, saving their energy consumption
becomes an interesting and important issue for smart buildings. Recently, multi-band WLAN where
2.4/5-GHz and 60-GHz bands coexist is a promising solution to offer both ultra-high speed and robust
wireless connections. For a multi-band WLAN end device, detecting the available service areas in an energy
efficient way is of great importance. In the existing systems, the RF units of device need to be turned on and
kept listening all the time, which leads to substantial energy consumption overhead. To solve this problem,
this paper proposes an energy efficient learning-based indoor multi-band WLAN system, in which the end
device predicts the distinct service areas by learning the influences of reflected waves in buildings. We have
performed extensive experiments in different indoor environments, and the evaluation results demonstrate
that the proposed mechanism could substantially improve the performance compared with the existing
approaches.

INDEX TERMS Energy efficiency, multi-band WLAN, learning mechanism, indoor environment, smart
building.

I. INTRODUCTION
In the smart buildings [1]–[3], in order to provide dedicated
services and accurate management, the energy consumption
issue [4]–[6] inside the building becomes critical. Recently,
most of the works in energy management in smart buildings
focus on the energy consumption of static sensors and actu-
ators that are embedded into the walls and ceilings. How-
ever, the energy consumption of portable user devices inside
the buildings, e.g., smartphone, tablet, wireless joystick, are
mostly ignored. In fact, when running the bandwidth-hungry
applications such as video streaming, virtual reality, or online
games, the batteries of those end devices drain very fast,
which leads to frequent charging and thus bad user expe-
rience. Since most of these portable devices connect into
the Internet by WLANs (Wireless Local Area Networks),
a smart energy efficient indoorWLAN system becomes a key
component for the energy management in buildings.

Currently, to cope with the tremendous increases of wire-
less devices and data rate requirements in smart buildings,

WLANs operating in 60GHz band are widely investi-
gated. Specifically, it has been introduced as Wireless
Gigabit (WiGig) [7], and standardized as IEEE 802.11ad [8].
WiGig aims to extend the Wi-Fi operation to the millimeter
wave (mmWave) band. By using a 2.16GHz-width channel,
it could provide bitrates upto 6.76Gbps. WiGig needs to use
directional antennas due to the large free space path loss
in 60GHz, and a countermeasure to combat severe shadowing
loss caused by moving human body [9], [10].

Research issues on 60GHz band WLANs have attracted
considerable attentions recently [11]–[14]. Theoretical anal-
ysis on the performance of IEEE 802.11ad mmWave WLAN
has been done in [11] and [12]. Kushida et al. [13]
addressed the frequent handover issue in IEEE 802.11ad
due to the nature of mmWave and thus the small coverage.
Kurniawan et al. [14] studied channel classification prob-
lem in IEEE 802.11ad system by using machine learning.
In addition, the unique problems of 60GHz bandWLAN in an
indoor environment have also been investigated in [15]–[18].
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Saha et al. [15], [16] addressed the feasibility of using
mmWave to build general purpose indoor WLANs.
Yamada et al. [17] experimentally evaluated the through-
put performance of off the shelf mmWave WLAN devices.
Chen et al. [18] studied the optimal access point deployment
problem for IEEE 802.11ad network in a cabin environment.

However, since IEEE 802.11ad is limited by small cov-
erage area, it can not completely replace but necessarily
cooperate with the legacy 2.4/5GHz WLAN, i.e., IEEE
802.11a/b/g/n/ac. As illustrated in Fig. 1, in a multi-band
WLAN [19]–[27], 2.4/5GHz and 60GHz bands coexist with
different coverage area due to distinct propagation properties.
In a multi-band WLAN, two most important issues are: how
and when to switchover between WiGig in 60GHz band
and legacy Wi-Fi in 2.4/5GHz band. The first question has
been addressed in the related work [19], [20]. In this paper,
we focus on the second question, in which the key point is to
detect or predict the 60GHz band coverage area in an energy
efficient way.

FIGURE 1. A system model of multi-band WLAN.

To achieve ultra-high data rates, connections in 60GHz
band is always preferred if it is available. However, due
to the propagation characteristics of different frequencies,
the coverage area of 60GHz band is generally smaller than
that of 2.4/5GHz band. To detect the available band in a given
location, the end device needs to sense the multiple bands
continuously. Obviously, this sensing operation needs to keep
the RF units on and listening the beacon from the access point
all the time, which results in substantial energy consump-
tion overhead. To save the energy consumption, the existing
work [25]–[27] has proposed to predict the 60GHz WLAN
coverage area based on the signal strength in 2.4/5GHz band,
e.g., by using RSSI (Received Signal Strength Indicator).
In this work, however, we demonstrate that the prediction
error of the existing approaches could be large in indoor envi-
ronment, especially in relatively small rooms where strong
reflected waves exist.

To solve the aforementioned issues, in this paper, we pro-
pose an energy efficient learning-based indoor multi-band
WLAN system for smart buildings, in which the end device
predicts the 60GHz band coverage area by learning the size
and materials of the building. As the multi-path propaga-
tion could degrade the accuracy of the prediction, we intro-
duce time, space and frequency diversities to improve

the reliability. Extensive experiments are carried out in indoor
environment and the evaluation results demonstrate that the
proposal outperforms the existing schemes in terms of accu-
racy.Moreover, the key design factors in our system, i.e., mar-
gin of the threshold, forgetting coefficient, measurement
interval and time diversity branches, are intensively evaluated
and analyzed. The key contributions of this paper are summa-
rized as follows.
• We propose an energy efficient learning-based indoor
multi-band WLAN system for smart buildings, which
could adapt to diverse indoor environment.

• To combat the negative effect of multiple reflected
waves in the building, time, space and frequency diver-
sities are all utilized and intensively evaluated.

• Based on experiments, the key design parameters
are analyzed, and extensive evaluation results show
that the proposal outperforms the existing approach
substantially.

The rest of the paper is organized as follows. We intro-
duce the generic 60GHz band detection method and its asso-
ciated problems in Section II. In Section III, we present
the proposed framework, learning mechanism and a novel
RSSI measurement method. In Section IV, we present the
experimental settings and evaluation results. We conclude
this paper in Section V.

II. 60GHZ BAND DETECTION IN MULTI-BAND WLAN
A. RSSI-BASED 60GHZ BAND DETECTION METHOD
As illustrated in Fig. 1, the access point and STA (mobile
station) ofmulti-bandWLANneed to equipt RF units for both
2.4/5GHz and 60GHz bands. Generally, the coverage area
of 2.4/5GHz band is much larger than that of 60GHz band.
Therefore, it is reasonable to assume that at a given location,
if the STA could communicate with access point through
60GHz band, then the communication in 2.4/5GHz band is
also available. For a multi-band WLAN STA, if its RF units
for 2.4/5GHz and 60GHz bands are always on, then it can
easily check the available bands based on the status of the
received beacon from access point. However, this continuous
scanning operation leads to substantial energy consumption
overhead, especially when the STA is operating outside the
coverage area of 60GHz band.

To save the energy, a straightforward solution is to turn on
the 60GHz RF unit only when the communications in 60GHz
band is available. To this end, the existing work [25], [26]
proposed to predict the 60GHz band coverage area by uti-
lizing the signal strength from 2.4/5GHz band. Specifically,
access point sends the beacon through 2.4/5GHz band to
STA periodically. And STA checks the RSSI of the beacon,
and initiates the 60GHz band transmission if the RSSI is
larger than a threshold.

In the following part, we derive the relationship of received
signal power between 2.4/5GHz band and 60GHz band in
an indoor WLAN environment. For the signal propagation in
60GHz band, the direct wave dominates, since the transceiver
in 60GHz uses directional antenna. The received power Pr60G
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could be expressed as

Pr60G = Pt60GGt60GGr60G

(
λ60G

4πr0

)2

, (1)

where Pt60G is the transmitting power, Gt60G and Gr60G are
the transceiver antenna gains, λ60G is wavelength and r0 is
the traveling distance of the direct wave (distance between
transceiver antennas). On the other hand, for the signal prop-
agation in 2.4/5GHz band, multiple reflected waves exist
besides the direct wave, since the transceiver uses omnidi-
rectional antenna. In general, the instantaneous electric field
strength could be expressed as

Er (t) =
k∑

m=0

Amejω(t−τm), (2)

where Am is the amplitude of received signal from
n−th propagation path, τm is the delay of received signal from
n−th propagation path and k is the number of reflectedwaves.
Noted that m = 0 is the direct wave, and m ≥ 1 are the
reflected waves. Therefore, the instantaneous received power
is

P =
1
2
Er (t)Er (t)∗

=

k∑
m=0

A2m
2
+

k∑
m=0

k∑
n=0

AmAnejω(τn−τm)m 6= n

=

k∑
m=0

A2m
2
+

k∑
m=0

k∑
n=0

2AmAn cosω(τn − τm)m > n, (3)

where the second terms is a variant part, which could be
averaged to 0 if enough samples are taken. Based on Eqn. (3),
we could express the received power in 2.4/5GHz band as

Pr2.4/5G = Pt2.4/5GGt2.4/5GGr2.4/5G

(
k∑

m=0

(
λ2.4/5G

4πrm

)2

R2m

)
,

(4)

where Pt2.4/5G is the transmitting power, Gt2.4/5G and
Gr2.4/5G are the transceiver antenna gains, λ2.4/5G is the
wavelength, and Rm denotes the reflection coefficient. In a
LOS (Line Of Sight) environment, it is reasonable to assume
that (

λ2.4/5G

4πr0

)2

�

(
λ2.4/5G

4πrm

)2

R2m. (5)

Therefore, Eqn. (4) could be approximated as

Pr2.4/5G ∼= Pt2.4/5GGt2.4/5GGr2.4/5G

(
λ2.4/5G

4πr0

)
. (6)

Finally, based on Eqns. (1) and (6), the received power in
60GHz band could be estimated by that in 2.4/5GHz band
as

Pr60G = Pr2.4/5G
λ260GPt60GGt60GGr60G

λ22.4/5GPt2.4/5GGt2.4/5GGr2.4/5G
. (7)

To average the variant term in Eqn. (3), multiple received
signals from different receiving status are required. To this
end, diversity techniques, e.g., space diversity and time diver-
sity, are widely utilized. Space diversity, also known as
antenna diversity, uses two or more antennas to improve the
quality and reliability of a wireless link. Currently, most of
the WLAN access point are equipped with more than two
antennas. And to obtain time diversity, the moving STA could
combine the received signals from different locations.

B. PROBLEMS IN EXISTING 60GHZ BAND DETECTION
METHOD
The aforementioned 60GHz band detection method assumes
that both 2.4/5GHz and 60GHz band signals follow the free
space path loss characteristics. However, the propagation
characteristic for transmission in 2.4/5GHz in an indoor envi-
ronment may not follow the free space path loss model, due to
themultiple strong reflectedwaves from thewalls and ceiling.
To verify this argument, we have performed experiments
(as shown in Fig. 2) in different indoor environments, i.e., a
conference room with the size of 11m×16m×2.8m, and
an auditorium with the size of 34m×22m×7.5m. We use
an IEEE 802.11n WLAN with central frequency 5.32GHz,
number of subcarrier 56, subcarrier spacing 312.5KHz, and
transmitting power 180mW.We consider that the space diver-
sity branch is 3, and set the access point’s antenna height
at 1.8m, 2.0m and 2.2m. For conference room scenario,
we measured total 1275 receiver points, in range 5m×10.2m
with 0.2m spacing. For auditorium scenario, we measured
total 1922 receiver points, in range 6.2m ×12.4m with
0.2m spacing. The used experimental equipments are sum-
marized in Table 1.

FIGURE 2. Image of the performed experiment.

Fig. 3 shows the experiment results for conference room,
i.e., a relative small indoor environment. As illustrated
in Fig. 3(a), we could find out that the the measured path
loss is smaller than the free space path loss model, due
to the existence of multiple strong reflected waves. And
Fig. 3(b) gives a direct image of the received signal power’s
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TABLE 1. Equipments in experiment.

FIGURE 3. Experiment results in conference room. (a) Received signal
strength versus Tx-Rx distance. (b) 2-D distribution of received signal
strength.

2-D distribution. We could observe that many spots that are
far away from the access point has higher received power
level than the closed ones. On the other hand, Fig. 4 shows
the experiment results for the auditorium, i.e., a relative large
indoor environment. As illustrated in Figs. 4(a) and 4(b),
we could observe that the free space path loss characteristic
basically holds for 5GHz WLAN.

Based on these experiment results, we argue that the path
loss characteristic in an indoor 2.4/5GHz WLAN would
vary according to the size of the room. Therefore, utilizing
2.4/5GHz RSSI to predict the 60GHz coverage area directly
may result in poor accuracy. An environment-aware predic-
tion method is required.

III. PROPOSED ENERGY EFFICIENT LEARNING-BASED
60GHZ BAND COVERAGE PREDICTION MECHANISM
A. PROPOSED FRAMEWORK
To solve the aforementioned problems, we propose an energy
efficient 60GHz band coverage prediction mechanism by
utilizing learningmechanism [28]–[30] in this paper.We con-
sider an indoor multi-band WLAN with access point and

FIGURE 4. Experiment results in auditorium. (a) Received signal strength
versus Tx-Rx distance. (b) 2-D distribution of received signal
strength.

mobile STA that could communicate in both 2.4/5GHz and
60GHz bands. The proposed mechanism collects multiple
sets of RSSI data from 2.4/5GHz and 60GHz signals, and
dynamically learns a correlation coefficient according to the
current indoor environment. Based on this correlation coeffi-
cient and RSSI of 2.4/5GHz, we predict the 60GHz coverage
area. To save the energy consumption, the RF unit for 60GHz
band turns on only when the current location is predicted to
be located inside the 60GHz coverage.

Fig. 5 illustrates the flow chart of the proposed mecha-
nism. Specifically, access point continuously sends beacon
by using 2.4/5GHz band, in which the learned correlation
coefficient is involved. STA keeps the 2.4/5GHz RF unit
on, receives the beacon from access point and measures its
RSSI. Based on the 2.4/5GHz RSSI and correlation coef-
ficient, STA predicts the 60GHz RSSI at current location.
If the predicted 60GHz RSSI is lower than a threshold,
the STA considers that currently it is outside the 60GHz
band coverage area, and thus keeps the 60GHz RF unit
off to save energy. Otherwise, the STA considers that the
connection in 60GHz band is available, and thus turns on
its 60GHz RF unit to pursue ultra-high speed transmission.
After that, the STA simultaneously measures the RSSI of
both 2.4/5GHz and 60GHz, and sends back these informa-
tion to the access point. Upon these information, the access
point learns and updates the correlation coefficient accord-
ingly, and encapsulates it in the next beacon as the feedback
to STA.
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FIGURE 5. Flow chart of the proposed mechanism.

B. LEARNING MECHANISM
Based on Friis’ transmission equation, the RSSI of 2.4/5GHz
signal can be expressed as

RSSI2.4/5G = Pt + Gt/r + 20 log10
(
λ2.4/5G/4π

)
− 10 log10 (di)

n , (8)

where Pt is the transmitting power, Gt/r is the transceiver
antenna gain, λ2.4/5G is the 2.4/5GHz wavelength, di is the
distance between transceiver antennas, and n is the attenua-
tion coefficient. In Eqn. (8), the first three terms are system
design parameters, which can be denoted as a constant K .
Then Eqn. (8) could be rewritten as

RSSI2.4/5G = −n× 10 log10 (di)+ K2.4/5G. (9)

Similarly, since the signal propagation in 60GHz band
WLAN follows the free space path loss model with n = 2,
we have

RSSI60G = −2× 10 log10 (di)+ K60G. (10)

Based on Eqns. (9) and (10), we can calculate the correlation
coefficient ai using the i-th set of 2.4/5GHz band RSSI and
60GHz band RSSI at a given location as follows.

ai =
RSSI60G − K60G

RSSI2.4/5G − K2.4/5G
. (11)

Based on the i-th measured correlation coefficient ai, and
the previous (i− 1)-th predicted correlation coefficient Ai−1,
we can calculate the current i-th predicted correlation coeffi-
cient as

Ai = (1− η)Ai−1 + ηai, (12)

where η is a forgetting coefficient with range 0 ≤ η ≤ 1.
Ai will always use the initial value when η = 0, and use the
current measured value when η = 1.

We set the initial value A0 = 1 by assuming the free
space path loss model. And the correlation coefficient Ai will
be updated by learning the effect of reflected waves in the
current indoor environment, and finally converges to some
value that larger than 1. Access point will send this environ-
ment aware correlation coefficient Ai to STA for predicting
the 60GHz band coverage area.

C. RSSI MEASUREMENT
As we mentioned previously, space and time diversity tech-
niques are adopted to suppress the variance of received power.
Since the 2.4/5GHz WLAN utilizes OFDM (Orthogonal
Frequency DivisionMultiplexing) to transmit data, we intend
to further mitigate the received power variance by obtaining
frequency diversity. Specifically, the average power (AP)
method which calculates the average power of all subcarriers
and, the peak power (PP)methodwhich utilizes themaximum
power spectrum in all subcarriers are investigated. Noted
that the normal RSSI measurement method is equivalent to
AP method.

Considering multiple reflected waves, the normalized
impulse response h(t) and corresponding transfer func-
tion T (f ) could be expressed as follows.

h(t) = ρ0δ(t)+
N−1∑
k=1

ρkδ(t − τk ), (13)

T (f ) = ρ0 +
N−1∑
k=1

ρke−jω(t−τk ), (14)

where δ(t) is delta function, ρ is relative strength, and
N is the number of direct wave and reflected waves. Based
on Eqn. (14), the received signal strength by AP and
PP methods could be calculated as follows, respectively.

Paverage =
1
M

M−1∑
i=0

(
|T (fi)|2

)
, (15)

Ppeak = max
0≤i≤M−1

(
|T (fi)|2

)
, (16)

where M is the sampling number.
Fig. 6 illustrates the correlation between 2.4/5GHz RSSI

and 60GHz RSSI, which is based on our experiment results in
the conference room scenario with space diversity branch 3.
The approximation line is calculated by using Eqn. (11).
Specifically, ai is calculated from all the pairs of 2.4/5GHz
and 60GHz RSSI data by using least squares method.
The standard deviation of 2.4/5GHz RSSI, and the RMS
(Root Mean Square) of error between 60GHz RSSI and
estimation line are summarized in Table 2. We find out that
PP method outperforms APmethod in terms of achieving low
variance in 2.4/5GHz RSSI, and thus low estimation error for
60GHz RSSI. The reason is that the AP method cannot sup-
press the variance of received power when there exists strong
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FIGURE 6. Correlation between 2.4/5GHz RSSI and 60GHz RSSI by
different RSSI measurement methods.

TABLE 2. Standard deviation of 2.4/5GHz RSSI & RMS of error between
60GHz RSSI and estimation line.

TABLE 3. Average and median of 2.4/5GHz RSSI.

reflected wave with relatively small delay. However, com-
pared to AP method, PP method tends to be biased towards
the high RSSI value. Therefore, a compensation KOFFSET is
required to be added to parameter K2.4/5G, when we estimate
the 60GHz RSSI using Eqn. (11). Based on the average and
median value of 2.4/5GHz RSSI shown in Table 3, we use
KOFFSET = 4.3dB in the following parts for PP method.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
To evaluate the performance of the proposed mechanism,
we use the similar experimental settings in Section II-B.
Specifically, experiments are performed in two indoor envi-
ronments with different sizes, i.e., a conference room with
the size of 11m×16m×2.8m, and an auditorium with the size
of 34m×22m×7.5m.
To combat the multipath fading, space, time and frequency

diversity techniques are all considered. To obtain space diver-
sity gain, we use the access point with 3 antennas and
the heights are set to 1.8m, 2.0m and 2.2m. For the time
diversity, we adopt the mobility model for the end-user as
shown in Fig. 7. In generally, the user moves in a room with
some purposes. Therefore, we assume the STA has several

FIGURE 7. Mobility model of the end user. (a) Mobility model. (b) Time
diversity with branches = 3.

destinations, and moves from the current location to the
destinations by the shortest path sequentially. For instance,
as shown in Fig. 7(a), STA moves from the current location S
to destinations G1, G2, G3 one after another. Based on this
mobility model, the time diversity gain is obtained by using
the RSSI from past locations. For instance, in Fig. 7(b), STA
moves with 1.0m/s, and the RSSI is recorded every 0.2s.
Assuming the time diversity branch is set to 3, then the RSSI
of the current location C is calculated by averaging that of
3 locations, i.e., current location, location of 0.2s ago, and
location of 0.4s ago. For the frequency diversity, we measure
the RSSI by using both AP and PP methods that introduced
in Section III-C.

For the learning algorithm, we use the 2.4/5GHz band
beacon data whose relative RSSI is below −35dB, with the
purpose of avoiding the influence of directivity in the ver-
tical plane of the dipole antenna when the RSSI is higher
than −35dB. In addition, we assume that the communication
in 60GHz band is available when its signal strength is larger
than a given threshold, which is set to −45dB. Other experi-
mental setting parameters are summarized in Table 4.

B. EVALUATION RESULTS
In this section, we evaluate the impacts of some key param-
eters of the proposed mechanism, and compare it with the
existing scheme that without learning.

TABLE 4. Experimental settings.

1) SERVICE AREA PREDICTION
Firstly, we use Fig. 8 to illustrate the 60GHz band
service area prediction by utilizing the received signal
strength of 2.4/5GHz. Based on the intersection of 60GHz
RSSI = −45dB line and prediction line that obtained by
learning, we could divide the predicted 60GHz band service
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FIGURE 8. 60GHz band service area prediction.

area into 4 areas. Specifically, we have false negative area
that the 60GHz communication prediction result is unavail-
able while in fact it is available; true positive area that the
prediction result is correct about the 60GHz communication
is available; true negative area that the prediction result is
correct about the 60GHz communication is unavailable; and
false positive area that the prediction results is available
while in fact it is not. Obviously, false positive area results
in additional energy consumption which is the case that we
try to avoid. To save the energy consumption, as shown
in Fig. 8, we set a margin of threshold to reduce the false
positive area. However, the false negative area increases as
the margin of threshold rises. Therefore, there is a tradeoff
between the 60GHz band communication opportunity and
energy consumption overhead saving.

2) IMPACTS OF FORGETTING COEFFICIENT
In the proposed learning based mechanism, the forgetting
coefficient η affects both the convergence time and RSSI
prediction error substantially. We try to find the optimal
forgetting coefficient η for the learning mechanism. Fig. 9
illustrates the impacts of η on the needed number of data for
convergence, and RMS of prediction error. The convergence
is defined as the status that the correlation coefficient Ai’s
variance is smaller than 7.7% of the convergence value when
error’s RMS equals 0.5dB. Noted that this result is based on
the space diversity with branch 3, and normal AP method for
measuring RSSI.

From the result we find that as η rises, the 60GHz band
RSSI prediction error’s RMS increases, however, the required
number of data for convergence reduces, i.e., convergence
time is shortened. On the contrary, small η leads to large
number of data for convergence but better RMS of predic-
tion error. Therefore, we could conclude that there exists

FIGURE 9. The impacts of forgetting coefficient on convergence time and
prediction error by using AP method.

a tradeoff for convergence speed and prediction accuracy.
In order to achieve low prediction error at fast convergence
speed, it is reasonable to set η in range 0.1 ≤ η ≤ 0.2.
In the following evaluation parts, the forgetting coefficient η
is set to 0.15.Moreover, the prediction error increases sharply
when η < 0.1, the reason is that within the simulation time,
the defined convergence status is reached but the convergence
value cannot converge to a constant.

3) IMPROVEMENT OF PP MEASUREMENT METHOD
As we introduced in Section III-C, besides the normal
AP method to measure the RSSI, we propose PP method
which has the potential to suppress the variance of mul-
tiple received signal power. Fig. 10 shows the evaluation
results in terms of convergence time and prediction error by
using PP method. Similar to Fig. 9, large forgetting coef-
ficient leads to short convergence time but large prediction
error’s RMS. Compared to the results of using AP method
in Fig. 9, PP method could substantially reduce the prediction
error’s RMS, andmeanwhile, maintain the convergence speed
level.

4) IMPACTS OF TIME DIVERSITY
Next, we investigate the impacts of time diversity when the
STA moves randomly in the indoor environment. As shown
in Fig. 11, we can observe that the variance trend of con-
vergence data is not evident as the time diversity branch
and RSSI measurement interval change. Therefore, we can
conclude that the convergence time of the learning scheme
is irrelevant to either the time diversity branches or time
interval of RSSI measurement, and it is only affected by
forgetting coefficient. In addition, by comparing the results
in Figs. 11(a) and 11(b), we find out that PP method still
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FIGURE 10. The impacts of forgetting coefficient on convergence time
and prediction error by using PP method.

FIGURE 11. Convergence data versus time interval of RSSI measurement:
50th percentile. (a) AP method. (b) PP method.

slightly outperforms APmethod in terms of convergence data
in the mobile STA scenario.

Furthermore, we investigate the variance of 60GHz band
RSSI prediction error’s RMS with different time diversity
branches and RSSI measurement time interval. From Fig. 12,
we find out generally, for the same time diversity, the predic-
tion error increases as the RSSI measurement time interval
rises, due to the used RSSI data is measured from the loca-
tions that are far away from the current one. And the optimal
RSSI measurement time interval changes at different time
diversity branches. Specifically, it would be appropriate to
set the time interval at 0.4s for diversity branches 2 and 3,
and 0.2s for diversity branches that are higher than 4. And the
minimum prediction error is achieved at RSSI measurement

FIGURE 12. 60GHz band RSSI prediction error’s RMS versus time interval
of RSSI measurement: 50th percentile. (a) AP method. (b) PP method.

time interval 0.2s with time diversity branches 7. Similar to
the results of convergence data, PP method slightly outper-
forms AP method also in terms of prediction error as shown
in Figs. 12(a) and 12(b).

5) FALSE POSITIVE RATE
Fig. 13 compares the proposed approach with the existing
method (without learning) with space diversity branch 3.
We investigate the relationship between false positive rate and
margin of threshold. As expected, as the margin of threshold
increases, the false positive rate for both approaches could be
reduced. However, increasing the margin of threshold leads
to the loss of 60GHz band usage opportunities, which is the
scenario that we try to avoid. From Fig. 13, we could observe
that compared to the existing scheme, the proposed learning-
based approach is able to reduce the margin of threshold from
7.4dB and 7.9dB to 0.1dB and 0.6dB, respectively, when the
required false positive rates are 0.05 and 0.02. In addition,
almost the same improvement could be observed for both the

FIGURE 13. Comparison between proposal and existing scheme in terms
of false positive rate and margin of threshold.
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AP and PP methods, which implies that the improvement by
learning mechanism on false positive rate is not sensitive to
the RSSI measurement method.

Finally, Fig. 14 illustrates the false positive rate of the
proposed scheme with changing RSSI measurement time
interval, when both the space and time diversities are consid-
ered. It is straightforward that the false positive rate decreases
as the measurement time interval becomes larger, since the
RSSI data are collected from the locations that are far from the
current one. Andwe find out that increasing the time diversity
branch cannot improve the false positive rate significantly.
For both settings, i.e., false positive rates equal 0.05 and 0.02,
the PP method outperforms AP method by achieving low
false positive rate.

FIGURE 14. False positive rate variance versus RSSI measurement time
interval. (a) AP method with false positive rate 0.05. (b) PP method with
false positive rate 0.05. (c) AP method with false positive rate 0.02.
(d) PP method with false positive rate 0.02.

V. CONCLUSIONS
In this paper, we have proposed an energy efficient learning-
based indoor multi-band WLAN system for smart buildings.
The proposed mechanism could adapt to different indoor
environment by learning the influences of reflected waves.
To eliminate the negative effect of multiple reflected waves,

we propose PP method to measure the RSSI value instead
of the traditional AP method. We have performed extensive
experiments to evaluate the effects of key design parameters
in our mechanism, e.g., forgetting coefficient, time diversity
branch and measurement time interval. The evaluation results
demonstrate that compared to existing scheme, the proposed
mechanism could reduce the margin of threshold by 7.3dB at
the same false positive rate requirement, which leads to a sub-
stantially reduced 60GHz band usage opportunity wastage.
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