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ABSTRACT Semitransparent photovoltaic (STPV) can be employed in a wide application range to provide
sunlight permeability for supplying solar electrical energy with some shading, which is preferable in hot
areas. To predict the output power and formulate the performance of this type of photovoltaic (PV) system,
the proposed approach analyzes a Thin-Film solar cadmium telluride-type module and develops a custom
neural network (CNN) formodeling its generated power expressed by its mathematical formula. Experiments
for single and multilayer installation topologies are conducted for performance analysis. The coefficients of
themodel equation are investigated based on a set of power-current curves. The developedmodel adopts three
factors: a minimum number of hidden neurons, the use of all measured data to train the network weights, and
a linear output activation function to reduce the complexity of solving the network equations. The results
specify the limit at which this type of PV starts generating power from the experimental measurements
and the comparison with its equivalent normal PV module. The CNN-based STPV module is verified
by comparing with the experimental measurements results, which shows a reasonable R-square, while its
performance is evaluated on the silicon-based PV by comparing its behavior with the two-diode model PV
in the MATLAB-based simulation.

INDEX TERMS Artificial neural network, modeling, measurements, semitransparent PV.

I. INTRODUCTION
The rapid evolution of PV as an alternative means of energy
generation is bringing it closer to making a significant contri-
bution to addressing the challenges posed by the rapid growth
of worldwide energy demand and associated environmental
issues. Together with the main existing technology, which
is based on silicon (Si), the growth of this field is inter-
twined with the development of new materials and fabrica-
tion methods [1]. Thin-Film solar cells based on cadmium
telluride (CdTe) are complex devices that have great potential
for achieving high conversion efficiencies [2]. Improvements
in the performance of Thin-Film solar cells need to be acceler-
ated. Although some energy conversion losses are inevitable,
the origins of the remaining electrical and optical losses
and corresponding solutions need to be clearly identified for
Thin-Film PV technologies. Many photovoltaic (PV) devices
exhibit poor performance in the field (i.e., actual use condi-
tions). A significant part of this loss of performance is due to
variations in sunlight [3].

Recently, semitransparent photovoltaic (STPV) systems
have been employed in a wide application range as resources
to supply solar electrical energy with some sunlight perme-
ability and shading. The generated electricity represents a
major advantage over movable shading devices for adjust-
ing the transmitted sunlight. Available commercial STPV
modules comprise encapsulated crystalline/silicon PV cells
between two layers of glass or a transparent plastic film.
The energy efficiency improvement and the high utilization
of renewable energy are important targets for sustainable
green energy productions. Few experimental measurements
of such PV types have been carried out. In a greenhouse
application, the installation of two STPV prototypes in the
greenhouse roof and the annual attained electrical energy for
the greenhouse land area showed that these modules could be
sufficient for such applications in high irradiation areas [4].
Thin-Film and organic STPV technologies are now being
adopted as low-cost solutions for greenhouse applications
because of their power generation and transparent, flexible
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FIGURE 1. Building Integrated Photovoltaic.

properties [5]. For organic and Thin-Film STPV modules,
the transparency replaces the normal PV area ratio to express
the sunlight amount that is interspersed through the glazing.
Their main drawback is that they cannot generate power
on cloudy days or in winter. Building Integrated Photo-
voltaic (BIPV) is a new type of building material, which
provides green energy as well as building preservation as in
FIGURE 1. Apart from generating electricity, BIPV modules
can be customized in a different dimension, thickness, shape,
and color [6].

Literature models predict the I–V characteristic of a PV
system as a function of irradiance, angle of incidence of solar
radiation, the spectrum of sunlight, and temperature [7]. For
the last few years, a substantial amount of work has been
performed to develop simulation models and extract model
parameters of photovoltaic (PV) systems [7]–[10]. The PV
model plays an important role in the accuracy of the time sim-
ulation of the PV cell model.Modeling of the PV cell involves
the estimation of the I–V and P–V characteristic curves to
emulate the real cell under various environmental conditions.
This performance assessment will aid an understanding of
the I–V curves for forecasting PV system output power under
inconsistent input conditions [11].

Mathematical modeling of solar cells is essential for any
operation yield optimization. In general, the PV module is
represented by an equivalent circuit in which the param-
eters are calculated using the experimental current-voltage
characteristic. These parameters are generally quantities that
are neither measurable nor included in the manufacturing
data. As a consequence, they must be determined from the
systems of the I-V equations (current-voltage) for diverse
points of a function given by the manufacturer or from direct
measurements on the module [12]. Modeling and simulation
of PV modules would help provide a better understanding
of their behavior and characteristics. These methods can be
effectively used to predict the variations in the behavior of the
PV module with environmental conditions [13]–[15]. Some
data are required to predict a solar panel’s generated power.

However, such data might not be available due to a lack of
related databases [16]. The artificial neural network (ANN)
has widely used for solar data prediction [17]. The harvested
energy for single or multiple panels is relatively accepted
compared with the equivalent silicon-based solar panel and
can be improved by considering the tilt angle in the installa-
tion process. Since the solar tracker has the ability to track
the sun even on overcast days, in contrast to a fixed-tilted
PV system, it could be efficient during practical weather
conditions over the year, which include a sequential mixture
of sunny, cloudy and overcast days [18]. Along with the
weather data, the sun’s positional variations during the day
were also taken into account. Finally, four models using
linear regression, logarithmic regression, polynomial regres-
sion, and ANN were constructed [19]. Several analytical
modeling techniques based on complex mathematical expres-
sions for estimating the behavior of solar cells have been
reported in the literature. Several models for solar cells utilize
non-linear lumped parameter equivalent circuits, and their
parameters are determined by experimental current-voltage
characteristics using analytical or numerical extraction
techniques [20], [21].

A Comparison table summarizes the common and the sim-
ilarities between the proposed and the previous related works
can be listed in Table 1, where the proposed work recognized
with a dark color to show the common points with other
related work in the same color.

In PV measurements, there is a lack of information about
the power pattern, efficiency, and limitations of Thin-Film PV
modules. Moreover, it is not clear if the power modeling of
Thin-Film PVmodules provides information that can help PV
system users identify the daily energy that can be harvested
from this multi-purpose product or avoid potential degrada-
tion of power.

The key contributions of this paper are as follows:
• customizing the ANN architecture to synthesize its
topology for providing an output formula through solv-
able nonlinear algebraic equations. This is accomplished
by; acquiring data with a high rate of sampling, nor-
malizing the data set, selecting one hidden layer with
no more than 6 neurons and a non-linear activation
function, and using output neurons with linear activation
function.

• Predicting the output power and formulate the perfor-
mance of a PV system with mathematical equations
derived from the proposed CNN.

• Proposing an approach analyzes a Thin-Film solar cad-
mium telluride (CdTe)-type module and developing a
model for its behavior.

In this paper, we present a modeling approach for the
STPV module based on custom neural network (CNN) and
extract the power formula of such system. The key objec-
tives of this research are to analyze, model and simulate
Thin-Film PVmodules under different installation topologies
and under uneven row shadings to enhance the maximum
power, analyze the output characteristics and compare the
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TABLE 1. Comparison table summarizes the common and the similarities between the proposed and the previous related works.

performance evaluation of these topologies under normal
shading conditions. These analyses will provide an opportu-
nity to select the best PV array topology in designing grid-
connected and stand-alone PV systems.

A wireless, simple, low-cost monitoring system is also
employed for a 6 × 50Wp laboratory scale STPV Module.
The temperature, irradiance, voltage, and current of the array
are acquired, processed and then transmitted to review the
performance of the generation side. The acquired data are
transmitted by a wireless method using an RF XBee signal
(IEEE 802.15.4 standard) to control the acquisition system
process without an extra microcontroller, unlike conventional
systems. A MATLAB application program is built to graphi-
cally display the acquired data.

The remainder of this paper is organized into four sections.
The first section presents a general review of the utiliza-
tion of ANN to model the PV module. The second section
briefly describes the procedure conducted to obtain the data
points experimentally. The third section describes how the
PV solar is modeled using experimental test data via the
custom neural network coding fromMATLAB R©. The fourth
section presents the results and discussions regarding the new
formula of the Thin-Film PV system.

II. MODELING CONCEPT
Generally, the parameters of the equivalent circuit of a PV
module primarily depend on the temperature and solar irra-
diance as well as the load variation, which is represented
by the current. The dependence of the circuit parameters on
environmental factors is investigated by using a set of current-
voltage curves. The relationship between them is nonlinear
and cannot be easily expressed by an analytical equation.
Therefore, a neural network is utilized to overcome these
difficulties [32]. The number of electronic applications using

ANN-based solutions has increased considerably in the last
few years. However, applications in PV systems have been
very limited [27], [33].

In order to model a Thin-Film STPV performance and
formulate its power output pattern, CNN-based modeling has
been adopted. Surface temperature, solar irradiance, the load
current, and the related power output are parameters concern
the Thin-Film STPV that this work addresses for modeling
and mathematically represents them.

III. CNN AND ITS LEARNING SCHEME
CNN is just a customized configuration of ANN, this work
proposes CNN-based modeling as an algorithm to control the
solutions of the ANN mathematical formulas and its network
elements. With CNN, the selection of a number of neurons
and their activation functions in the hidden layer is possible,
which determines the number of the multivariable algebraic
equations. The complexity of solving those equations reflect
the computation time required to extract the power pattern
equation of the PV system. Therefore, customize the network
to achieve the goal of getting the power output modeling
equation is the underlying cause to use CNN topology. It is
a supervised ANN with a back-propagation learning rule
(FIGURE 2.). This type of ANN is excellent at prediction
tasks.

A single-layer perceptron is developed in terms of struc-
ture, weights, and learning process for the proposed model-
ing. The network weights are tuned via the learning process
in which the network is trained. This algorithm iteratively
continues for updating the weights until a specific condition
is verified, which in this application stops when the error
between the desired and the calculated CNN outputs reaches
a predefined small value. The error is updated by optimizing
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FIGURE 2. Modeling procedure diagram and CNN training algorithm for extracting the power model equation.

the weights and biases. After that, the developed CNN can
be used to predict the power output as a function of the input
parameters.

When the CNN generates the required output which means
that it is trained to a satisfactory level, all the links between the
units are stored. Those links or the weights are later used as an
analytical expression tool to predict power output (P) for new
input data set of irradiance (G), Temperature (Temp), and load
current (I). Thus, the network model equation can be written
as P = f(G,Temp, I). The associated training algorithm is
presented in Algorithm 1.

A Thin-Filmmodule with dimensions of (1200×600) mm,
48W peak power, and transparency of 40% is examined in
this work. The modeling concept in a flowchart form of the
proposed algorithm is shown in FIGURE 2.

IV. MATHEMATICAL MODELING-BASED CNN
Significant growth has been made in neural network knowl-
edge, thus enlarging the range of potential applications in
different areas due to the black box functionality of the
neural network. ANN can offer very good mapping if taught
properly [37]. The ANN structure is a significant factor in
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Algorithm 1 Training Algorithm of the Proposed CNN
Input: Training set, irradiance dataset (G11)
temperature dataset (T11), Load Current (Current), Power
Input← [G11;T11;Current]; %
Target← Power;
Process: set a customized Feed forward net

Net← newff(minmax(input),[4
1],{‘logsig’,‘purelin’},‘trainlm’);

net.trainparam.epochs← 10000;
net.trainparam.goal← 1e-25;
net.trainparam.lr← 0.001;
net.trainparam.min_grad← 8e-06;
[net,tr]← train(net,input,Target);

Output: plotting the performance of the network and after
the network has been trained, verify the input data set with
the trained network by simulating the input dataset
plotperf(tr)
figure, Y← sim(net,input); % P is some input data
plot(Y,‘r-.’,‘LineWidth’,2)
hold on
plot(Target,‘b-’,‘LineWidth’,2)
hold off
%% Viewing and extracting the weights of the network
view(net)
Iw← cell2mat(net.IW);
b1← cell2mat(net.b(1))
Lw← cell2mat(net.Lw)
b2← cell2mat(net.b(2))
Verification: testing the network by computing the network
outputs
output← net(Current);
%errors and overall performance.
errors← gsubtract(Target,output);
performance← perform(net,Target,output)
Saving the network parameters: saving the network
parameters and results
netA31=net;
save netA31

manipulating the learning performance of networks, and the
aim should be to utilize as small in structure as possible that
meets the performance necessities under the environment.
Experience has shown that using theminimum network that is
able to learn the task is better for both theoretical and practical
reasons.

Referring to Fig. 3, the input of the ANN module is
represented by three components: irradiance, temperature,
and the current as an expression for the load variation. The
training set is used to adjust the weights during training.
The testing or validation set is used to decide when to stop
training. The root means square value (R) on the train-
ing set increases with successive training iterations, simi-
lar to the R on the test sets, up to a given point to avoid
overtraining.

FIGURE 3. Configurations of the proposed ANN Model.

In this work, the Log-Sigmoid function is the activation
formula that is used for the four hidden layer neurons,
whereas a linear function is used in the output layer neuron,
as in Fig. 4. The pure linear activation function is employed
for the output layer to reduce the resulting computations.

FIGURE 4. ANN PV module model.

To obtain the power output of the proposed network,
the input layer is configured as a vector in three-dimensional
space which includes three columns; irradiance Gk , temper-
ature Tk , and current Ik . The data samples are represented by
the index (k): where k = (k1, k2, k3 . . . kR). Thus, the input
vector components areGk , Tk, and Ik , while the hidden layer,
which has four neurons can be written as n11,4. The output of
the neurons in the hidden layer given by A11_4. Thus:

f1 (n) = logsig (n) , logsig
(
A14
)
=

1

1+ e−n
1
1_4

where

n11 = G ∗ Iw(1,1) + T ∗ Iw(1,2) + I ∗ Iw(1,3) + b1(1,1) (1)

A1 = 1
/(

1+ e
(
−n11

))
(2)

n12 = G ∗ Iw(2,1) + T ∗ Iw(2,2) + I ∗ Iw(2,3) + b1(2,1) (3)

A2 = 1
/(

1+ e
(
−n12

))
(4)

n13 = G ∗ Iw(3,1) + T ∗ Iw(3,2) + I ∗ Iw(3,3) + b1(3,1) (5)

A3 = 1
/(

1+ e
(
−n13

))
(6)

n14 = G ∗ Iw(4,1) + T ∗ Iw(4,2) + I ∗ Iw(4,3) + b1(4,1) (7)

A4 = 1
/(

1+ e
(
−n14

))
(8)
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FIGURE 5. Laboratory experimental setup to extract the P-V characteristic
curves between two equivalent PVs (STPV & silicon-based PV) by
measuring 4 parameters.

The net input to the neurons in the output layer, which has
one layer A21_1, is given by:

A21_1 = f 2

(
n21
)
= pureline

(
n21
)
= 1

The output of the neural network ANNoutput resulting from
data training is given by Eq. (9):

ANN output = A1 ∗ Lw(1,1) + A2 ∗ Lw(1,2) + A3 ∗ Lw(1,3)

+A4 ∗ Lw(1,3) + A
2
1_1 ∗ b

2
(1,1) (9)

Iw, Lw, b1, b2 are the weight matrices of the associated
input, hidden and bias layers, respectively. The solving of four
symbolic equations are described in Algorithm 2.

V. EXPERIMENTAL SETUP
The power output of PV modules can be predicted from
the behavior of the current-voltage, I-V, and power-voltage,
P-V, characteristic curves [34]. The P-V characteristic curve
of a PV panel at standard conditions (1000 W/m2 irradia-
tion and ambient temperature, 25◦C) is provided with the
manufacturer specification sheet. Therefore, the P-V char-
acteristic curves at conditions other than standard can be
measured experimentally by connecting the PV module to
a high-power, variable resistor representing the load and
continuously measuring both the voltage and current for
each individual step of the module surface temperature and
irradiance.

Thin-Film modules with the same dimensions
(1200 × 600) mm, but different power values of 48W,
64W, and 72W with their associated transparencies of 40%,
20%, and 10%, respectively, are examined. Two types of
experimental measurements are implemented: laboratory-
and field-based experiments.

A. LAB-BASED EXPERIMENTAL SETUP
Since the study objective is to highlight the power output and
the module behavior under a variety of weather conditions,
the measurements of the STPV are presented by comparing
each P-V curve under a constant irradiance/temperature pair
with its equivalent silicon-based PV module.

Algorithm 2 Solving of Four Symbolic Equations of the
Proposed CNN
Input: Reload the network parameters, that have the name
(netA31)
load netA31
Process: Solving the symbolic equations
I← Current;
G← G11;
T← T11;
Defining: Syms← G, T, I
% 1st hidden neuron equations
N1← G∗Iw(1,1) + T∗Iw(1,2)+I∗Iw(1,3)+b1(1,1)
A1← 1 / (1+exp (− N1))
N2← G∗Iw(2,1)+T∗Iw(2,2)+I∗Iw(2,3)+b1(2,1)
A2← 1 / (1+exp (− N2))
N3← G∗Iw(3,1)+T∗Iw(3,2)+I∗Iw(3,3)+b1(3,1)
A3← 1 / (1+exp (− N3))
N4← G∗Iw(4,1) + T∗Iw(4,2)+I∗Iw(4,3)+b1(4,1)
A4← 1 / (1+exp (− N4))
% calculate the network output power
Powers← vpa(Lw(1,1)∗A1+Lw(1,2)∗A2+Lw(1,3)∗A3+
Lw(1,4)∗A4+b2(1,1))
% simplify and substitute the variables
powG← subs(powers,G,500);
powT← subs(powG,T,20);
powers← subs(powT,I,0.2949);
Output: The simplified power output
R← vpa(powerss)

FIGURE 6. Multilayer setup for semitransparent Thin-Film PV.

The lab experimental tests were conducted on Thin-Film
type PV CdTe with 48W/40% transparency. An irradiance
range of 0-1000 W/m2 was applied to two values of mod-
ule temperature (30 and 45 ◦C). For comparison, the same
conditions were applied on an equivalent silicon-based blind
PV module with the same power and open circuit voltage
Voc. The experimental setup can be described by the diagram
in Fig. 5.
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FIGURE 7. A monitoring system for the experimental measurements for the Thin-Film PV.

FIGURE 8. P-V curves of the lab experimental measurements for two equivalent modules, (a) STPV and (b) Silicon-based PV, under various
irradiation values at temperatures of 30 ◦C (a) and 45 ◦C (b).

B. FIELD-BASED EXPERIMENTAL SETUP
Amultilayer installation categorywas conducted for analysis,
and the attained data were processed individually. To facili-
tate the gathering of information from the panels, a wireless
RF remote node represented by the XBee module was uti-
lized. XBee modules were chosen because they are easy to
work with and have demonstrated adequate performance in

different types of applications [35], [36]. A monitoring center
attached to central computer stores and displays relevant data
from the PV panel. The monitoring center is aware of the
solar panel structure and thus can aggregate the acquired
information from the remote node.

Three layers configuration of Thin-Film STPV modules,
started with the higher transparency modules from the top,
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were connected in series for power analysis purposes. The
setup of the experiment is shown in Fig. 6.

A low cost and low consumption wireless monitoring sys-
tem, which is published in a previous effort [30], [31]. This
hardware includes an ACS754 current sensor, which had a
maximum current limit of 5Amp and sensitivity of 3.8mV/A,
to measure the PV array, which had a maximum current
of 3Amp. The circuit has only a couple of XBee RF modules
as active components and other passive components, resis-
tors, and capacitors, for measuring the PV current, voltage.
The irradiance was measured by an (LDR) sensor placed
in parallel with the panels, and a temperature sensor was
placed in contact with the down surface of one panel from
the array via LM35. A temperature sensor with a sensitivity
of 10 mV/◦C was used to measure the surface temperature
of the solar panel. The system has four channels with the
adjustable sampling frequency, up to 14 sample/sec in some
application cases of short period data logging. For voltage
acquisition, a 1k� voltage divider was used, corresponding to
10mV for every one volt of DC output. The remote node com-
prises single RF XBee module, which is configured to access
the 4 analog signals, that mentioned above, for processing
via the built-in ADC and transmitting the data wirelessly to a
base station node, which in turn was linked directly to a PC.
The experimental setup for monitoring the PV data is shown
in Fig. 7.

Measurements of both the electrical (voltage and current)
and environmental (irradiance and temperature) values were
received by the base/central node via an IEEE 802.15.4 low-
rate wireless standard.

VI. RESULTS AND DISCUSSION
A. SINGLE-PANEL ANALYSIS
1) LAB-BASED EXPERIMENTAL RESULTS
Fig. 8 (a and b) shows the P-V curves for the lab exper-
imental measurements for two equivalent modules, STPV,
and Silicon-based PV, under various irradiation values at
temperatures of 30 ◦C (a) and 45 ◦C (b).
A significant difference is clear between the two equivalent

tested modules, which indicates the threshold value at which
the STPV starts generating power. The analysis shows similar
influences of the weather conditions (irradiance and tempera-
ture) on the power pattern. For example, the maximum power
point at 1000W/m2 and 45oC for the STPV is approximately
22W, in contrast, a value of approximately 48W is measured
for the equivalent silicon-based PV, as indicated in Fig. 8 (b).

As in the silicon-based PV behavior, Fig. 8 shows the
dependence of the module current and voltage on irradi-
ance and temperature. Irradiance affects the module current;
the higher the irradiance, the higher the current drawn by the
PV module. The temperature affects the module voltage; the
higher the temperature, the lower the voltage on the module
terminal. Both figures show the point where the product
of the PV array voltage and current reaches the maximum
value, i.e., the maximum power point (MPP), in which the

PV module operates with maximum efficiency and produces
maximum output power. The variation of the irradiance and
temperature in the PV module is characterized as a short
time fluctuation that follows the behavior of atmospheric
conditions around the module during that time. The effect
of this variation is the unpredictable variation of the power
output, current, and voltage of the module.

Fig. 8 also shows that the voltage Voc changes slightly with
irradiation. The values of Isc and Voc with solar irradiance
are similar to those for the different types of Thin-Film
PV panels. The surface temperature of the panel has a sig-
nificant effect on Voc, which decreases as the temperature
increases. Therefore, thermal equilibrium of PV surface must
be achieved during the P-V test for the results to be accurate.

The most significant behavior that can be clearly observed
is that this type of PV begins electrical generation at a level
higher than 500W/m2. However, the other characteristics tend
to be similar to those of the equivalent silicon-based PV, as
will be demonstrated in the field-measurement experimental
test.

The temperature decreases linearly with the output voltage,
in contrast to the current. As a result, the reduction of the
voltage lowers the power output of the PV panel at constant
solar irradiation. The effect of temperature on the short circuit
current is small but increases with increasing irradiance.

2) FIELD-BASED EXPERIMENTAL RESULTS
Referring to Fig. 7, the measurement and gathering processes
are conducted by the sensor remote node with a configurable
sample time. The configuration of the proposed solution is
highly flexible and depends on the number of PV mod-
ules, strings, arrays, and the layout of the PV installation.
A comparison-basedmeasurement was conducted to discover
the behavior of the Thin-Film STPV module. The measure-
ments started at approximately 7:00 am and ended at 7:00 pm.
The same power was used for both (48W) PVmodules, which
were tested under the same weather conditions, as shown
in Fig. 9.

FIGURE 9. Field-based experimental measurements for one Thin-Film
STPV and its equivalent silicon-based modules.

VOLUME 6, 2018 34941



Y. H. Sabri et al.: Measurement-Based Modeling of a Semitransparent CdTe Thin-Film PV Module

FIGURE 10. The daily measurements of 3 parameters and comparison with the equivalent silicon module on 4/7/2017.

FIGURE 11. The daily measurements of three parameters for the multilayer configuration on 2/7/2017.

Cloudy daymeasurements were selected to present the data
showing the effect of shading on both modules. To compare
their behaviors, the two weather parameters with the gener-
ated power for the Thin-Film and silicon modules are shown
in Fig. 10.

Although the power patterns of both tested PV modules
were relatively similar, the results showed a significant dif-
ference in output power between the two modules. The
silicon-based module can generate power starting at very low

irradiance levels, whereas the Thin-Film STPV module starts
generation at approximately 600W/m2. This drawback limits
the generated power for the Thin-Film STPV to a certain level
of irradiance compared to the blind PV.

B. MULTILAYER ANALYSIS
Referring to Fig. 6, and to study the effect of shading
and multilayer installation of the STPV system, a series
of 6 connected PV modules was used. The top layer included
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FIGURE 12. Harvested energy on 5 July 2018: (a) for a single module and
(b) for a multilayer module.

two modules with 48W and 40% transparency, the middle
layer contained a second pair with 62W and 20% trans-
parency, and the bottom layer included a pair of modules with
72W and 10% transparency. One sample of daily measure-
ments of three parameters for the multilayer configuration on
2/7/2017 is shown in Fig 11.

The solar power output was calculated according to Ohm’s
law given by equation (10):

Powerout (W ) = V ∗ I (10)

The quantity of energy E_out (Wh), which represents the
area under the power rate curve, is given by Eq. (11):

Eout (Wh) =
∫ 7pm

7am
P (t) dt (11)

The harvested (Wh) energy attained from single and multi-
layer configurations are calculated either by using the above
integration formula or numerically by applying the trape-
zoidal method. Therefore, for simplicity, a MATLAB func-
tion is utilized to obtain the area under the power rate curve
based on the results of the trapezoidal integration method.
Using this monitoring system to collect the energy data, the
results for 5 July 2018 for the single and multilayer installa-
tion are presented in Fig. 12 (a and b).

FIGURE 13. The proposed CNN (a) Training performance, (b) Training
state.

The daily harvested energy is 190.01Wh for a single mod-
ule and 218.48Wh for the multilayer configuration. These
negative results indicate that there it is infeasible to employ
this configuration at PV installation. Furthermore, since each
individual Thin-Film module can only generate power at a
specific high level of irradiance, natural shading or that due
to the multilayer will block the energy generation. Therefore,
in this study, the modeling concept considers only the single-
layer configuration which is represented by one module.

C. NEURAL NETWORK TRAINING RESULTS
The maximal sum of epochs was fixed at 1000, which is the
default number. Accordingly, the training scale was also fixed
to the default number and allowed to modify accordingly
as the training process increased. The relationship between
the developed CNN model and the measured data harvested
experimentally can be expressed with the correlation coeffi-
cient as shown in Fig. 13 (a) and (b), where the best validation
performance is 2.2859 at epoch 62.

To evaluate the network performance, the correlation coef-
ficient (R2) is adopted according to the equation given in (12):

R2 = 1−

[ ∑kR
k=1 (f (xK )−yK )

2∑kR
k=1 (f (xK )−[

1
KR

∑KR
k f (xk )])2

]
(12)
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FIGURE 14. The correlation coefficient results for CNN training.

FIGURE 15. The comparison curves under a wide range of input data.

whereKR denotes the data points that are required to calculate
the sum of squares and xK and yK refer to the experimental
and simulated data, respectively.

Because the value of the correlation coefficient has a rela-
tively excellent value as it approaches unity, we can simulate
a wide range of input data for the proposed model as values of
irradiance G, temperature T and current I. To create the neural
network model, a series of input data were used, including
vectors of irradiance (G), temperature (T) and current (I),
on which the neural network was based to train the weights.
The number of hidden neurons specifies the complexity of
the generated mathematical formula. The four neurons in the
hidden layer are fully connected to the inputs and participate
in the estimated output. Sigmoid activation functions are used

FIGURE 16. Comparison of daily measurements and the developed CNN
model for Thin-Film STPV.

FIGURE 17. Simulation diagram of the two diode-based PV model with
experimental input data set for comparison purpose with CNN-based PV.

for the hidden neurons, while a pure linear activation function
is used for the output neuron.

The results show a significant convergence between the
experimental and CNN outcomes, as is clearly evident in the
correlation coefficient in Fig. 14 and the comparison curves
under a wide range of input data shown in Fig. 15.

After substituting, solving, and simplifying the network
symbolic equations, the formula corresponding to the mathe-
matical model that is generated by the neural network can be
given in Eq. (13):

Power =
3.1746(

2990039237.2 ∗ e6.37G ∗ e0.05∗T ∗ e−7.6264I+0.1
)

−
11.12268(

39.51557 ∗ e2.579∗T ∗ e12.962I + 0.1
)

−
5051.904(

344.26 ∗ e1.012G ∗ e−1717.263∗I + 0.1
)

−
150.811(

1.3667 ∗ e3.092∗I + 0.1
) + 63.2961 (13)
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FIGURE 18. Comparison between the power output of the two- diode MATLAB Simulation and the proposed CNN models with the variation of
irradiance, and Panel temperature along with time on a normal day.

Since the sampling frequency was approximately one sam-
ple per second, the input matrix dimension was (43200, 3) for
logging 12 hours of data. Each row of input data was sim-
ply composed of (solar radiation and ambient temperature,
current) for use during the training process of the CNN. The
obtained correlation coefficient was 0.986. Thus, once the
proposed CNN has been trained, it can estimate the module
power outcome even for the data that is not used during the
training process with acceptable accuracy.

Fig. 16 shows a comparison of a full daytime logging
of Thin-Film data between the measurements and the CNN
model power. There is obviously a good fit between the
measured data and modeled data.

Additional training experimental data for a different day
were processed to present another power pattern of the PV
module with the power formula given by Eq. (14):

Power

=
19.7307

(exp (10.6576 ∗ G− 9.44 ∗ I+5.74 ∗ T − 2.202)+1.0)

−
79.6

(exp (0.032 ∗ G+0.035 ∗ T − 3.429)+1.0)
+ 76.514

(14)

The smaller sampling time improves the accuracy of
modeling and captures the potential surge of power.

D. CNN MODEL EVALUATION
Since there is no equivalent model for STPV module
to compare, the performance evaluation for the proposed

CNN-based PV system is performed via comparing its effec-
tiveness on the silicon-based PV with the two-diode model
PV in the MATLAB-based simulation. The same experimen-
tal data set for the irradiance and the temperature have been
applied to both models. The simulation diagram is shown
in Fig.17.

Those weather parameters were varying along with the
daytime at about 1 sample/sec. The two power output for both
simulation-based and CNN-based models are displayed with
variations of the panel temperature and irradiance are shown
in Fig. 18.

It is clear that the power output of proposed CNN-based
model verified that of the simulation outcome, which proves
the success of the developed CNN as modeling expression for
STPV system, and the possibility to implement CNN-model
PV system in real-life applications to enhance PV energy
extraction, and the power quality for the modeling of PV
power systems.

VII. CONCLUSIONS
This work developed a CNN as a customized ANN to for-
mulate the power output pattern of a Thin-Film STPV mod-
ule. The accuracy and generalization of the proposed model
were validated by comparing measurements with a proposed
CNN module on different logging days. The most significant
contributions are the following: (a) a limit at which this type
of PV can start generating power is assigned; (b) based on
CNN modeling, a mathematical expression is provided for
the power profile that depends only on the experimentally
measured parameters and can be used as a reference
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supporting the manufacturer datasheet; (c) the P-V and
I-V curves of the STPV module are similar in shape but not
values to those of a silicon-based solar module; (d) since each
individual Thin-Film module can only generate power at a
specific high level of irradiance, natural shading or that due
to the multilayer will block energy generation.
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