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ABSTRACT Driven by the rapid growth of communication technologies and the wide applications of
intelligent mobile terminals, the scene character recognition has become a significant yet very challenging
task in people’s lives. In this paper, we design a novel feature representation scheme termed consecutive
convolutional activations (CCA) for character recognition in natural scenes. The proposed CCA could
integrate both the low-level and the high-level patterns into the global decision by learning character
representations from several successive convolutional layers. Concretely, one shallow convolutional layer
is first selected for extracting the convolutional activation features, and then, the next consecutive deep
convolutional layers are utilized to learn weight matrices for these convolutional activation features. Finally,
the Fisher vectors are employed to encode the CCA features so as to obtain the image-level representations.
Extensive experiments are conducted on two English scene character databases (ICDAR2003 and Chars74K)
and one Chinese scene character database (‘‘Pan+ChiPhoto’’), and the experimental data indicate that the
proposed method achieves a superior performance than the previous algorithms.

INDEX TERMS Consecutive convolutional activations, convolutional neural network, scene character
recognition.

I. INTRODUCTION
Characters, as the basic medium for image communication,
are ubiquitous in images and provide valuable semantic
cues for various applications like automatic geocoding [1],
product search [2], robot navigation [3], and image and video
indexing [4]–[6]. Scene characters, as the term suggests,
are the characters extracted from scene images, and they
are easily disturbed by a variety of factors, such as non-
uniform illumination, complex background, font distortion,
blur, various fonts, etc. Hence, accurately recognizing scene
characters is a particularly challenging task. In the past of
decades, scene character recognition has been a hot research
focus and many interesting scene character recognition algo-
rithms [7]–[12] have been proposed.

The design of a scene character recognition system
mainly involves two parts. Firstly, the feature representa-
tion devotes to learning discriminative feature vectors for

character images using different kinds of descriptors, feature
coding methods and pooling methods. Secondly, discrim-
inative feature vectors are transmitted into a classifier to
obtain recognition results. Early optical character recogni-
tion (OCR) based methods [13], [14] first performed bina-
rization for the input image and then the binarized image
was delivered to the OCR engine. The OCR based methods
have achieved great success in the task of scanned document
recognition, however, for the scene characters, these methods
are inapplicable. Followed by the OCR based methods,
the object recognition based methods are introduced to
recognize scene characters. De Campos et al. [8] assessed
the character classification performance by using various
features (shape contexts (SC) [15], geometric blur (GB) [16],
scale invariant feature transform (SIFT) [17], spin image [18],
maximum response of filters (MR8) [19] and patch
descriptor (PCH) [20]), and classifiers (nearest neighbor (NN)
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FIGURE 1. Visualization of the feature maps in different convolutional layers.

and support vector machine (SVM)). When the SC and
GB in conjunction with the NN classifier, better classifi-
cation performance was achieved. An elegant probabilistic
graphical model [21] was built to bring together the indi-
vidual and similar character appearance as well the lexicons
and language statistics in the character recognition process.
In [22], histograms of oriented gradients (HOG) features were
extracted to describe the characters in the wild. Furthermore,
several variants of HOG [10], [23] were proposed to represent
character images.

Since characters consist of strokes with certain struc-
tures, many researchers make attempts to incorporate the
structure or stroke information into the global decision.
We roughly divide these methods into part-based and stroke-
based methods. As for part-based methods, the characters
are first expressed as a group of parts in the training stage,
and in the test stage, part structure matching is performed
to obtain a category label for an image. For instance,
Shi et al. [24], [25] made use of part-based tree structure to
model each type of character where the local appearance and
global structure information were captured. The part-based
tree structure is utilized to characterize the co-occurrence
and spatial relationship among features. However, the part-
based tree structure is manually designed and the part model
size is limited to a single scale, which indicates that the
part-based method has its limits. The stroke-based methods
incorporate the character strokes into the character recogni-
tion progress. In [26], stroke bank was established for scene
character recognition. Specifically, the positive and negative
training samples are first collected for training stroke detec-
tors, and then the detectors’ maximal outputs in the corre-
sponding areas are regarded as features. Themethod achieved
encouraging experimental results on two English character
databases (ICDAR2003 [27] and Chars74K [8]). Inspired by

the stroke bank, the discriminative multi-scale stroke detector
based representation (DMSDR) [28] was proposed, in which
both the multi-scale stroke detectors and the discrimina-
tive stroke detector selection strategy were utilized for final
feature representation. To capture the co-occurrence among
local strokes, the concept of spatiality embedded dictio-
nary [28], [29] was proposed to incorporate more precise
spatial contextual information. Lee et al. [30] proposed amid-
level feature pooling method named region-based discrim-
inative feature pooling to integrate the low-level pixel-wise
features, so that the distinctive spatial structures were able to
effectively preserved for each individual character.

Recently, the convolutional neural network (CNN) has
been successfully applied in speech recognition [31], brain
electrical source analysis [32], [33], image classifica-
tion [34], [35], object classification [36], character recogni-
tion [37]–[39] and so on. For character recognition, there are
two main kinds of methods to learn visual representations
from CNN model. The first one directly uses the output
of fully-connected (FC) layer as the global character repre-
sentation [40], [41]. The second kind of methods apply the
convolutional activation features in the convolutional layer
to describe character images. In [42] and [43], the final
character representation was aggregated from convolutional
activation features and these methods obtain significant gain.
Zhang et al. [44] proposed a bilateral convolutional activa-
tions encoded with the Fisher vectors (BCA-FV) for scene
character recognition, in which the bilateral convolutional
activation map was injected into the Fisher vectors to encode
convolutional activation descriptors. However, most existing
approaches only utilize the activations in one convolutional
layer to describe feature representations, which neglects the
information provided by other layers. As shown in Figure 1,
we visualize feature maps in different convolutional layers.
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FIGURE 2. Visualization of the proposed CCA for scene character recognition.

From Figure 1, we can see that the convolutional activations
in shallow convolutional layers reflect low-level patterns,
such as the structural and textural information. As the layer
goes deeper which approaches to the classification layer,
the convolutional activations reflect high-level patterns.

Motivated by the above observations, in this paper,
we design a novel feature representation scheme named
consecutive convolutional activations (CCA) for character
recognition in natural scenes. The proposed CCA could inte-
grate several successive convolutional layers into character
representations. Specifically, after training a CNN model,
we first extract convolutional activation features from one
shallow convolutional layer to absorb the structural and
textural information. Meanwhile, the convolutional activa-
tions in the higher convolutional layers reflect high-level
semantic information which is particularly significant for
feature representations. Hence, we condense convolutional
activations in consecutive deep convolutional layers as the
weights of activations from the shallow convolutional layer.
Finally, we utilize the learned weights to pool the extracted
convolutional activation features so as to derive discrimina-
tive and powerful character representations. The contribu-
tions of the proposed CCA lie in: 1) In order to obtain the
completed features, we learn weights from the consecutive
convolutional layers; 2) The proposed CCA integrates low-
level and high-level patterns into the global decision.

We conduct extensive experiments on two English scene
character recognition databases (ICDAR2003 [27] and
Chars74K [8]) and one Chinese scene character recognition
database (‘‘Pan+ChiPhoto’’ [10]). Experimental data indi-
cates that our method obtains superior performance for scene
character recognition.

The paper is organized as follows. The next section gives a
detailed description of the proposed CCA for scene character
recognition. Section III presents experimental results and
analysis of the proposed CCA. Finally, we conclude the paper
in Section IV.

II. APPROACH
In this section, we elaborate the proposed CCA. Firstly,
we describe the architecture of the CNN used for scene
character representations. Then, we introduce the proposed
CCA in detail. Finally, we interpret how to obtain the final
feature representation for scene characters.

A. NETWORK ARCHITECTURE
We train a CNN for feature representations and the config-
uration of the CNN is shown in Figure 2. The input of the
CNN is a fixed-size 64× 64 image and the subtracting mean
value operation is performed for the input image. As for the
first layer, we utilize 64 filters with a receptive field of 3× 3
to convolve the input image, generating 64 feature maps
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of size 64 × 64. The 64 feature maps are then convolved
by 64 filters of size 3 × 3, generating feature maps of size
64 × 64 × 64. As for the third layer, the 64 feature maps
are taken as the input and convolved by 64 filters of size
3 × 3. Then, the output of the third layer is transmitted
into the max pooling strategy, obtaining feature maps of size
32 × 32 × 128. As for the next two layers, 256 filters with
a receptive field of 3 × 3 are used, resulting in feature maps
of size 32 × 32 × 256. After that, the max pooling strategy
is employed. The sequence proceeds by convolving with 512
filters and the receptive fields of 9×9 and 8×8, respectively,
resulting in feature maps of size 8×8×512 and 1×1×512.
Afterwards, one FC layer, which is a 256 dimensional vector,
is followed. Finally, we utilize the softmax strategy to convert
the activations into character probabilities.

The max pooling is performed within a 2× 2 window and
the stride is fixed to 2 pixels. In addition, the appropriately
zero-padded is carried out so that the resulting feature map is
the same size as the input one. We apply the back propaga-
tion gradient-descent algorithm [45] for updating parameters,
i.e., weights and biases. The size of each mini-batch is set
to 64. The gradient-descent algorithm is terminated at 90
epochs. As for the first 60 and the remaining 30 epochs,
the learning rates are empirically set to 0.001 and 0.0001,
respectively.

B. CONSECUTIVE CONVOLUTIONAL ACTIVATIONS
In the convolutional layer, the filters traverse the input image
in a manner of sliding-window. The top-left convolutional
activations are produced by the top-left image region, while
the bottom-right convolutional activations are generated by
the bottom-right image region. Hence, the rich spatial infor-
mation is embedded into the feature maps during the convo-
lution process. The feature maps in one convolutional layer
can be regarded as a set of N -dimensional convolutional
activation features extracted from W × H positions. Each
convolutional activation in a feature map depicts an image
part and high activation values indicate salient parts. Hence,
we extract convolutional activation features for character
representations.

Typically, the shallow convolutional layers capture low-
level patterns, such as specific structures and textures. These
low-level patterns are essential for feature representations.
While the higher layers, which approach to the category label,
encode high-level patterns. Hence, for obtaining powerful and
discriminative feature representations, we extract convolu-
tional activation features from feature maps in one shallow
convolutional layer and utilize the next consecutive deeper
convolutional layers to learn weights for these features.

Note that we select the t-th convolutional layer as the
shallow layer where the size of feature maps isWt × Ht × Nt .
As shown in Figure 3, we directly concatenate activation
values in the position p of all feature maps in the t-th
convolutional layer to form a feature vector, and denote it
as the convolutional activation feature xt (p) which is a Nt
dimensional feature vector. Then, we utilize feature maps

FIGURE 3. The process of extracting convolutional activation features.

in the {(t + 1), (t + 2), · · · , (t + l), · · · , (t + L − 1)}-th
convolutional layers to learn weight matrices. L is the total
number of the selected feature maps. One feature map in a
convolutional layer corresponds to one weight matrix. The j-
th weight matrix in the (t + L − 2)-th convolutional layer is
formulated as:

S j(t+L−2) =
∑
i

M j
(t+L−2) � S

i
(t+L−1), (1)

where � is the element-wise multiplication in two matrices,
M j

(t+L−2) is the j-th feature map in the (t + L − 2)-th convo-
lutional layer and S i(t+L−1) is the i-th weight matrix at the
(t + L − 1)-th convolutional layer. Note that, in Equation 1,
the prerequisite is that the two matrices must be dimen-
sional consensus. Hence, we employ the bilinear interpolation
algorithm for filling the smaller matrix. In Equation 1, with
a recursive method, the final weight matrices can be derived
from initial weight matrices which follows the principle of:

S j(t+L−1) = M j
(t+L−1), (2)

where M j
(t+L−1) is the j-th feature map in the (t + L − 1)-

th convolutional layer. According to Equation 1 and Equa-
tion 2, the {(t + L − 2), · · · , (t + l), · · · , (t + 2), (t + 1)}-th
weight matrices can be sequentially obtained. The weight
matrices in the (t + 1)-th convolutional layer, which contain
the information from the (t + 1)-th to the (t + L − 1)-th
convolutional layers, are the final weight matrices. Assume
the size of feature maps in the (t + 1)-th convolutional layer
isW(t+1)×H(t+1)×N(t+1), the final weight matrices are of the
same size as the feature maps in the (t + 1)-th convolutional
layer, i.e.,W(t+1)×H(t+1)×N(t+1). The final weight matrices
are used for encoding the extracted convolutional activation
features.

Let fj be the j-th CCA feature and it can be obtained using
the following equation:

fj =
∑
p

xt (p)S
j
(t+1)(p), (3)

where S j(t+1)(p) is the weight value at position p
in the j-th weight matrix of the final weight matrices.
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The dimensionality of fj is Nt . As a result, each character
image can be expressed by the CCA feature set F :

F = {f1, f2, · · · , fj, · · · , fN(t+1)}, (4)

where N(t+1) is the number of feature maps (weighted
matrices) in the (t + 1)-th convolutional layer.

C. IMAGE-LEVEL REPRESENTATION
We employ four approaches to these CCA features so as to
obtain powerful and discriminative image-level representa-
tion. The detail is illustrated as follows:

(1) Concat+CCA: all the CCA features are directly
concatenated into an image-level feature vector FConcat+CCA:

FConcat+CCA = (f1, f2, · · · , fj, · · · , fN(t+1) ). (5)

In addition, the principal component analysis (PCA) is
employed for dimensionality reduction.

(2) SP+CCA: we apply the sum pooling for all the CCA
features and the final image-level representation FSP+CCA is:

FSP+CCA =
∑
j

fj. (6)

(3) MP+CCA: we employ the max pooling for all the
CCA features and the final image-level representation can be
defined as:

FMP+CCA = max{f1, f2, · · · , fj, · · · , fN(t+1)}. (7)

(4) FV+CCA: we utilize the Fisher Vectors [46], [47] to
learn the high-order statistic information into the image-level
representation. The Nt dimensional CCA feature derivatives
with respect to the statistic parameters of k-th Gaussian
mixture model (GMM) are denoted as:

gµk =
1

N(t+1)
√
wk

N(t+1)∑
j=1

φj(k)(
fj − µk
σk

), (8)

gσk =
1

N(t+1)
√
wk

N(t+1)∑
j=1

φj(k)[
(fj − µk )2

σ 2
k

− 1], (9)

where wk , µk , σk are the weight, mean vector and diagonal
variance vector of the k-th Gaussian component, respectively.
φj(k) represents the soft assignment weight of fj to the k-th
Gaussian component. We concatenate gµk and gσk for all
the K Gaussian components to generate a 2NtK dimensional
final image-level representation:

FFV+CCA = (gµ1 , gσ1 , gµ2 , gσ2 ,· · ·, gµk , gσk ,· · ·, gµK , gσK ).

(10)

III. EXPERIMENTAL RESULTS
In this section, we assess the effectiveness of the proposed
method for scene character recognition. In Section III-A,
we first introduce the databases and experimental setup,
and we then analyze the effect of different convolutional
layers in the feature representation process in Section III-B.
In Section III-C, we compare the performance of proposed

FIGURE 4. Some samples from the ICDAR2003, Chars74K, and
‘‘Pan+ChiPhoto’’ databases. (a) ICDAR2003. (b) Chars74k.
(c)‘‘Pan+ChiPhoto’’.

method with other representative methods. In Section III-D,
we investigate the influence of different encoding and pooling
approaches for the proposed method.

A. DATABASES AND EXPERIMENTAL SETUP
ICDAR2003 Database: ICDAR2003 database [27] is an
English scene character database. It consists of 6,185 char-
acter images for training and 5,430 character images for
test. These images are distributed in 62 classes, i.e., A-Z,
a-z and 0-9. The character images are subjected to various
factors, such as blur, complex background, font variants,
distortions, illumination and so on. A few samples taken from
this database are shown in Figure 4 (a).

Chars74K Database: Chars74K database [8] is an English
scene character database. It includes 12,503 character images
of 62 classes, i.e., A-Z, a-z and 0-9. As in [8] and [28],
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TABLE 1. Evaluation results (%) of different convolutional layers. The Conv_x denote the x-th convolutional layer. The three accuracy numbers are the
evaluation results on the ICDAR2003, Chars74K and ‘‘Pan+ChiPhoto’’ databases, respectively.

we randomly choose 30 character samples from each
category, among which 15 samples are taken as training
images and the remaining ones are regarded as test images.
The Chars74K database is more challenging than the
ICDAR2003 database where the most of character images are
cropped from various natural scenes, such as products from
stores, advertisement signs and so on. Figure 4 (b) shows
some character samples from the Chars74K database.

‘‘Pan+ChiPhoto’’ Database: ‘‘Pan+ChiPhoto’’ database
[10] is a Chinese scene character database. It has totally
10,658 Chinese character images of 1,443 classes. In our
implementation, we apply the same database settings
as the works of [10] and [43]. These images in the
‘‘Pan+ChiPhoto’’ database are mainly captured from
outdoors of Beijing and Shanghai, China, which involve
various natural scenes like shop sign boards, road signs,
banners, etc. A few of these Chinese character samples are
shown in Figure 4 (c).

In the experiment, all images are normalized to 64 × 64.
For the concatenated image-level feature vector, we perform
PCA on the FConcat+CCA to reduce the dimensionality to
1,200 dimensions. For the FV, the number of Gaussian
components K is ultimately set to 4, 2 and 8 on the
ICDAR2003, Chars74K and ‘‘Pan+ChiPhoto’’ databases,
respectively. In addition, we utilize L2 normalization for
the final image-level feature vectors. Note that, as for
the Concat+CCA, SP+CCA, MP+CCA and FV+CCA,
the FV+CCA is optimal for the task of scene character clas-
sification. Hence, in Section III-B and Scetion III-C, we only
list the evaluation results of the FV+CCA.

B. EFFECT OF USING DIFFERENT
CONVOLUTIONAL LAYERS
In a CNN, the shallow convolutional layers encode specific
structures and textures of characters while the deeper convo-
lutional layers usually encode high-level semantic informa-
tion. In order to obtain powerful and discriminative feature
representations, we first select feature maps in one shallow
convolutional layer for extracting convolutional activation
features, and then utilize the next consecutive deeper convo-
lutional layers for learning weights.

The proposed method is evaluated from the viewpoint of
using different convolutional layers. For convolutional acti-
vation feature extraction, the convolutional layer index varies
from 1 to 4, as listed in the columns of Table 1. For weight
matrix learning, the number of the next consecutive deeper
convolutional layers varies from 1 to 4, as listed in the rows of
Table 1. FromTable 1, on the three databases, when extracting
convolutional activation features from the feature maps in the
shallow layer Conv_2 and learning weights from the feature
maps in the next for deeper layers, i.e., Conv_{3, 4, 5, 6},
the proposed method achieves the highest accuracy. Further-
more, by analyzing the experimental results, we conclude the
following three points:

First, when only learning weights from the shallow
convolutional layers, for example, choosing the Conv_{2, 3}
or Conv_{2, 3, 4}, the experimental results are unsatisfactory.
Intrinsically, the shallow convolutional layers can only reflect
the low-level patterns, and therefore the high-level patterns
are ignored.

Second, when choosing one deeper layer, such as the
Conv_4, for convolutional activation feature extraction,
the important structural and textural information are aban-
doned, which is not conducive to generate powerful and
discriminative feature vectors.

Third, it is inadequate of learning weights from only one
or two deeper layers, for instance, choosing the Conv_3,
Conv_4 orConv_{3, 4}. It is because the other important high-
level sematic cues are neglected.

C. COMPARISON TO THE STATE-OF-THE-ART METHODS
In Table 2, we compare the FV+CCA with the hand-
crafted feature, the part, the stroke and the CNN
based methods on two English scene character databases
(ICDAR2003 and Chars74K). The recognition results are
in Table 2 and the following several conclusions can be
drawn. First, the proposed method achieves the highest
accuracies of 85.82% and 76.34% on the ICDAR2003 and
Chars74K databases, respectively. Second, the proposed
method obviously outperforms the handcraft features,
i.e., HOG+SVM [28], Co-HOG [10] and ConvCoHOG [10].
These handcraft features utilize the gradient information
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TABLE 2. Recognition accuracies (%) of different methods on the
ICDAR2003 and Chars74K databases.

of one signal pixel or the co-occurrence of neighboring
pixel pairs, while the proposed method absorbs the struc-
tural, textural and the high-level sematic information with
the help of the elaborate deep learning network. Third,
compared with TSM, SED, DSEDR and FV+SVM which
directly capture part, stroke or high-order statistic infor-
mation from original character images, the advantages of
the proposed method are: 1) the proposed CCA extracts
features from convolutional layers learned by CNN; (2) the
proposed CCA contains low-level and high-level patterns
by extracting features from one shallow convolutional layer
and learning weights from the consecutive convolutional
layers. Fourth, the proposed method obtains better results
than CNN+softmax and MCA-FV. The CNN+softmax
and MCA-FV utilize the convolutional activations in one
convolutional layer to describe feature representations,
which neglects the information provided by other layers.
While different from them, the proposed method not only
captures the important textural and structural information by
extracting convolutional activation features from one shallow
convolutional layer, but also explores high-level informa-
tion by learning weights from the consecutive convolutional
layers.

Besides the two English scene character databases, we also
evaluate the FV+CCA on one Chinese scene character
database, i.e., ‘‘Pan+ChiPhoto’’ database. Table 3 lists the
recognition accuracies on the ‘‘Pan+ChiPhoto’’. It shows that
the proposedmethod outperforms other approaches and could
correctly identify 79.53% of the test samples. The results
indicate the good generalization ability and the effectiveness
of the FV+CCA on this challenging Chinese scene character
database.

D. INFLUENCE OF DIFFERENT ENCODING AND POOLING
STRATEGIES UPON CCA
We evaluate four different encoding and pooling approaches,
i.e., concatenation (Concat), sum pooling (SP), max
pooling (MP) and Fisher vectors (FV) for the proposed CCA.
We conduct experiments on the ICDAR2003, Chars74K and
‘‘Pan+ChiPhoto’’ databases to demonstrate which aggre-
gation approach is the best for feature representations.

TABLE 3. Recognition accuracies (%) of different methods on the
‘‘Pan+ChiPhoto’’ database.

TABLE 4. Recognition results(%) of different aggregation methods upon
CCA on the ICDAR2003, Chars74K, and ‘‘Pan+ChiPhoto’’ databases.

FIGURE 5. Performance of the proposed method under different K .

The experimental results of different aggregation methods
upon CCA are reported in Table 4 and show that the
FV+CCA is optimal for scene character recognition.
As for FV, the number of Gaussian components K is

a crucial parameter as it determines the dimensionality of
the final feature vector. We study the impact of K on
all three databases. Figure 5 shows the recognition results
when K = 1, 2, 4, 6, 8, 10, 12, 14, 16. From Figure 5,
we can see that larger K towards to superior performance,
however, the recognition result starts to drop when K coming
to a fixed value. As for the ICDAR2003, Chars74K and
‘‘Pan+ChiPhoto’’ databases, K is ultimately set to 4, 2 and 8,
respectively, where the proposed FV+CCA achieves the
highest accuracy.

IV. CONCLUSION
In this paper, we have presented a novel feature representa-
tion approach for scene character recognition. The proposed
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method (1) canmine the low-level patterns, such as structures,
textures and so on, by extracting features from one shallow
convolutional layer, and (2) can capture the high-level
sematic information by learningweights from the consecutive
convolutional layers. The proposed method has been vali-
dated on the ICDAR2003, Chars74k and ‘‘Pan+ChiPhoto’’
databases, and the experimental results outperform other
typical methods for character recognition in natural
scenes.
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