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ABSTRACT Clothing image recognition has recently received considerable attention from many commu-
nities, such as multimedia information processing and computer vision, due to its commercial and social
applications. However, the large variations in clothing images’ appearances and styles and their complicated
formation conditions make the problem challenging. In addition, a generic treatment with convolutional
neural networks (CNNs) cannot provide a satisfactory solution considering the training time and recognition
performance. Therefore, how to balance those two factors for clothing image recognition is an interest-
ing problem. Motivated by the fast training and straightforward solutions exhibited by extreme learning
machines (ELMs), in this paper, we propose a recognition framework that is based on multiple sources of
features and ELM neural networks. In this framework, three types of features are first extracted, including
CNN features with pre-trained networks, histograms of oriented gradients and color histograms. Second,
those low-level features are concatenated and taken as the inputs to an autoencoder version of the ELM for
deep feature-level fusion. Third, we propose an ensemble of adaptive ELMs for decision-level fusion using
the previously obtained feature-level fusion representations. Extensive experiments are conducted on an
up-to-date large-scale clothing image data set. Those experimental results show that the proposed framework
is competitive and efficient.

INDEX TERMS Clothing image recognition, extreme learning machines, feature fusion, autoencoder ELM,
ensemble learning.

I. INTRODUCTION
Abundant clothing images are easily available from
e-commercial platforms, such as amazon.com in the USA
and taobao.com in China. Analyzing clothing images has
attracted researchers from multimedia information process-
ing and computer vision for the past several years [1]–[3]
due to this analysis’ primary importance for commercial
and social applications. For example, clothing recognition is
beneficial for identifying an individual in a personal photo
collection. As another example, he or she could automati-
cally annotate his or her travel photo with recognized cloth-
ing types and detailed attributes and later share them with
his or her friends. One of those important clothing-related
analysis tasks, clothing image recognition has received con-
sidertalbe attention.

The clothing image recognition problem can technically
be formulated as a classification problem. However, different
from the generic task of object classification or recognition,
clothing recognition from still images has its own character-
istics, which makes this task even more challenging. To be
specific, the clothing appearances have large variations in tex-
ture, color, and style. Additionally, the clothing is usually not
rigid, and it could show different geometric appearances, even
for the same clothes. In addition, the formation conditions of
clothing images could largely vary, such as from outdoors to
professional indoor shootings.

In general, the approaches to recognizing clothing images
can be grouped into two categories. Earlier work [1], [4] on
clothing recognition has mainly depended on hand-crafted
features, such as histograms of oriented gradients (HOG) [5],
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scale-invariant feature transforms (SIFT) [6], and color his-
tograms. Although some advances have been achieved by
those methods, there is still room for improvement. Recently,
since 2012 deep learning especially, convolutional neural
networks (CNNs) have been proposed. Those networks have
been widely applied in tasks of large-scale image classifica-
tion and have achieved significant performance [7]. Generic
neural networks for clothing image recognition could give a
solution with high accuracy. However, the features learned
from those neural networks are not easily understandable.
Furthermore, the training for such deep neural networks is
time-consuming, and the tuning of the network parameters
could be highly difficult. Therefore, despite the remarkable
progress that has been made in clothing recognition, the train-
ing time and recognition performance still have room for
improvement.

In this paper, we explore multiple features and pro-
pose a framework for clothing image classification that
is based on a type of random neural network, extreme
learning machines [8] (ELMs, to be introduced in detail
in Section III). In this framework, for an image, three types of
features are first extracted, which are the CNN features from
pre-trained networks, HOG features, and color histograms.
Second, those low-level representations are concatenated
and are taken as the inputs to an Autoencoder variant of
ELM (AE-ELM) to obtain a type of high-level fusion fea-
ture. Third, we propose an ensemble strategy with ELMs,
known as Ada-ELMs, to classify clothing images with pre-
viously obtained high-level image representations through
the AE-ELM. To evaluate our framework, we conduct exten-
sive experiments on an up-to-date and publicly available
dataset, DeepFashion [2]. The experimental results demon-
strate that our proposed framework is competitive and fast in
the task of clothing image recognition.

The remainder of this article is organized as follows.
We first review the related work in Section II. Next,
in Section III we propose our framework for recogniz-
ing clothing from still images, including our designed
CNN feature extraction, HOG feature extraction, and color
histogram extraction. In addition, the general ELM, its
variant AE-ELM, and our proposed Ada-ELMs are illustrated
in detail. In Section IV, we report our experiments and their
results. Lastly, we present the study’s conclusions and outline
several future research directions in Section V.

II. RELATED WORK
Due to the increasingly large business value of the fashion
and shopping industry, automatic clothing image analysis has
received considerable attention. One trend is to use attribute
learning to give a fine-grained description of a clothing
image, which has recently been widely applied in the com-
puter vision community [1], [9]–[16].

However, one of the major challenges that is faced with
attribute learning is the lack of well-labeled training data
because of the heavy cost of the labor and time. In addition,
setting up these attributes usually requires domain-specific

knowledge, which can then be used to label the data. To over-
come this difficulty, Berg et al. [11] proposed to discover
the attributes and visual appearance by mining the descrip-
tive text of images from the Internet. For clothing images,
Chen et al. [1] focus on learning the visual attributes
of clothing on the human upper body only. Recently,
Shankar et al. [13] proposed to discover all of the attributes
that are present in an image in a weakly supervised scenario
based on deep neural networks. In general, those studies
take attribute learning as a separate task. However, for large-
scale clothing images, the attributes are highly related to the
clothing category, and those categories cannot be ignored
while detecting attributes.

Another line of research on analyzing clothing images
is based on methods from pose estimation and person
detection [17]–[21]. Clothing parsing, a recently proposed
task, is to predict a semantic category, such as shirt, skirt,
and shoes, for each pixel in an image. The parsing results
could then be further used for the clothing recognition. Most
notably, Liu et al. [17] address the cross-scenario appli-
cation problem in which a daily human photo is consid-
ered to retrieve a clothing shop photo. They alleviate the
discrepancy of those two distributions by using a sparsely
coded transfer matrix. Kalantidis et al. [19] also consider
a similar cross-scenario approach, where they start from
pose estimation and then utilize clothing parsing. Recently,
Yamaguchi et al. [20] propose an unconstrained clothing
parsing without user-provided tag information for clothing
retrieval. The insight obtained from those methods is the
use of body pose estimation for clothing parsing. However,
the performances of those approaches largely rely on an accu-
rate pose estimation and human parts detection and cannot
easily extend to the large-scale clothing parsing and recogni-
tion problem.

Over past several years, deep learning, which is moti-
vated by the biological deep and distributed structure of
the human brain, has been proposed to learn hierarchical
and effective representations to facilitate various tasks in
computer vision, from the year 2006 [22], [23]. The basic
idea of deep learning methods is that they use some simple
non-linear neural neurons to compositionally build a very
complex fitting function. To name a few such methods, deep
learning methods, especially supervised convolutional neu-
ral networks (CNNs) [24], [25], unsupervised autoencoders,
restricted Boltzmann machines, and generative adversarial
networks [26] have been successfully applied due to the
availability of computational power and the volume of data
in large-scale image classification [7], [27], [28], multi-modal
information processing [29]–[32], and object detection [33].

Deep learning also has an advantage for multi-task learn-
ing, which aims to achieve better performance by simultane-
ously exploring multiple closely related tasks. Deep learning
methods can learn deep representations that capture those
underlying factors. Because of this natural connection, multi-
task learning could then be a possible means for large-
scale clothing image analysis. Very recently, several methods
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based on deep learning for multi-task learning have been
proposed [34]–[38]. Notably, Zhang et al. [34] proposed
to combine parts-based models and CNNs for deep feature
representation, to obtain an attribute description for peo-
ple under the framework of a multi-task problem. However,
this PANDA framework is specifically designed for rela-
tively small-scale datasets and cannot easily be extended to
large-scale problems in the real world. Bai et al. [35] pro-
posed multi-task deep neural networks for text-based image
retrieval. In the proposed framework, query-sharing layers for
image representation and query-specific layers for relevance
estimation are learned jointly. In general, the representation
power of CNNs compared with the shallow hand-crafted
visual features, such as HoG and SIFT, provides insights
into how to make learning multiple tasks possible. However,
the performance of those partly or fully connected neural
networks heavily relies on the quality of the data labels.
In addition, those CNN-based methods do not consider the
correlation between attributes or the cross category of visual
attributes, especially for large-scale clothing datasets that
require high-speed computational power.

III. PROPOSED FRAMEWORK
We describe our proposed framework for clothing image
recognition in this section. First, the key components,
ELMs and AE-ELMs, including their concepts and
basic ideas and learning algorithms, are reviewed in
sections III-A and III-B. Second, three adopted features are
introduced. Third, our framework, which uses those three
features and ELMs, is described.

A. EXTREME LEARNING MACHINES
An Extreme Learning Machine (ELM) [8], [39]–[44] is orig-
inally proposed for learning single hidden layer feedforward
networks (SLFNs). Specifically, the output of an SLFN with
L̃ hidden units can be represented as

fL̃(x) =
L̃∑
l=1

β ihi(x) = h(x)β (1)

in which the input vector x resides in a D dimensional space,
i.e., x ∈ RD, and hi(x) is the output of the i-th hidden
unit. Compactly, the network outputs h(x) are vectorized
as
[
h1(x), · · · , hL̃(x)

]
, and the weights β between the hid-

den units and the output units are represented as a matrix[
β1, · · · ,β L̃

]T . Note that the superscript T stands for the
operation of matrix transpose. Significantly, an ELM differs
from the traditional multi-layer perceptron (MLP) as follows.
Each hidden unit has the activation function h(x) = h(x; a, b).
With regard to the additive units, the activation function is
defined as h(a·x+b), in which the parameters a and b are kept
fixed once they are randomly initialized. Other functions,
such as the radial basis function h(b||x − a||), can also be
used for constructing the neural hidden units.

Moreover, the learning for the weights β usually does
not adopt an iterative process but instead has a direct

single-step solution. To be specific, when given a training
set {(xi, yi)}

N
i=1, in which the data vector xi ∈ RD and its

target vector yi ∈ Rd , an ordinary ELM attempts to solve
the following optimization objective,

argmin
β
||β||22 + λ||Hβ − Y ||22 (2)

where || · ||2 stands for `2-norm, and the λ is a positive con-
stant used for achieving better stability and generalization.
Moreover, the matrix H of its hidden layer outputs is

H =

 h(x1)
...

h(xN )

 =
 h1(x1) · · · hL̃(x1)

...
. . .

...

h1(xN ) · · · hL̃(xN )

 . (3)

And the target matrix Y is

Y =

 yT1
...

yTN

 =
 y11 · · · y1m

...
. . .

...

yN1 · · · yNm

 . (4)

According to the theory of ELM [40], when the parame-
ter λ is infinitely large, the above objective function (2) can
be solved as using the minimal norm least square method.
Thus, the output weight matrix

β = H†Y (5)

in which H† is the Moore-Penrose generalized inverse of
matrix H . Furthermore, through the orthogonal projection
method, the Moore-Penrose generalized inverse is calculated
as H†

= HT (HHT )−1, if the matrix HHT is nonsingular.

Otherwise, the inverse matrix H†
=
(
HTH

)−1
HT , if the

matrix HTH is nonsingular.
With the minimum norm of its output weights β, this ELM

achieves better generalization performance. The weights
from the hidden layer to the output layer can then be given
as

β = HT
(
I
λ
+HHT

)−1
Y (6)

or

β =

(
I
λ
+HTH

)−1
HTY . (7)

To summarize, the algorithm on ELM learning for a general
SLFN is given in Algorithm 1. Huang et. al. [39] show
that for an ELM, the solutions given by equation (6) and
equation (7) provide a unified learning for regression and
classification problems. Additionally, the ELM gains a higher
generalization performance and faster learning speed.

B. AUTOENCODER EXTREME LEARNING
MACHINES (AE-ELMs)
The autoencoder is a special version of multi-layer percep-
tron [45]. The aim of the autoencoder network is to learn a
compact or a sparse representation of a set of data in an unsu-
pervised fashion. In this setting, the output and input layers
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Algorithm 1 The ELM Learning Algorithm
1: Generate the weights and biases between the input layer

and hidden layer with some continuous distribution, e.g.,
the standard Gaussian distribution N (0, 1);

2: Calculate the output matrix H of the hidden layer using
equation (3);

3: Estimate the weights β of the output layer using
equation (6) or equation (7).

are set to the same values. Next, a general back-propagation
algorithm is applied for training this network.

To extend the representation capacity of the ELM,
Kasun et al. [46] proposes a simple but effective method for
obtaining the autoencoder version of the unsupervised ELM,
known as AE-ELMs. Specifically, the general ELM is mod-
ified as follows. 1) The output neurons are set to the same
values as the input neurons. 2) The random weights and
biases of the hidden neurons are intentionally chosen to be
orthogonal. Next, we formalize the AE-ELMs.

In an AE-ELM, the orthogonal weights and biases project
the input data into a representation space with dimensionality
L and are computed as follows

h(x) = g(aT x+ b). (8)

Note that the weights and biases are subjected to aT a = I and
bT b = 1. Here, I is the identity matrix. The weight matrix
a = [a1, · · · , aL] is composed of L orthogonal random
vectors. The bias vector b = [b1, · · · , bL] is an orthogonal
random vector. Note that the function g(·) operates on each
element of a vector. According to the Johnson-Lindenstrauss
lemma, the characteristic of being universal approximators
are guaranteed and proven for AE-ELMs. Then, the output
weights β of the AE-ELMs form the mapping from the
representation space to the input space. For a compact and
sparse representation space, the weights β of AE-ELM can
be calculated as in equation (6) and (7) but with the target
matrix Y is replaced with the input matrix X . In other words,
the input matrix X equals [x1, · · · , xN ], which is also the
output of those data as a general autoencoder.

Furthermore, through singular value decomposition,
i.e., SVD we have the following equation,

Hβ =

N∑
i=1

ui
d2i

d2i + λ
uTi X (9)

in which, the vector ui is the ith eigenvector of matrix HHT

with the corresponding eigenvalue di. Evidently, the projec-
tion from the input space X to the representation space H is
performed through a sigmoid activation function. Therefore,
the output weight vector β represents the features that are
hidden in the data by singular values. To summarize, we note
that the output weights in an AE-ELM can be determined
analytically, unlike traditional autoencoders, which require
some iterative algorithms. In addition, an AE-ELM learns
to represent features via singular values, unlike traditional

autoencoders, where the actual representation of the data is
obtained.

C. FEATURE EXTRACTION
1) CNN FEATURE EXTRACTION
We use the following CNN network for feature extraction.
The features extracted from this network are used as our first
type of feature. This network has ten layers. An image is
taken as input to two consecutive convolution operations with
a convolutional kernel size of 3 × 3 and 64 kernels. Next,
a max-pooling operation with the pooling size of 2 × 2 is
applied. Subsequently, the same architecture of two consecu-
tive convolution operations and a max-pooling operation is
applied. In this instance, the convolutional kernel has size
3 × 3 with 128 kernels. Subsequently, this network consists
of two fully connected layers with 512 units. The dropout
operation is applied for those fully connected layers, with
a dropout probability of 0.5. The final output takes on the
softmax function with output probabilities to which each
category belongs. After being trained, the output of the eighth
layer being fully connected in this CNN network is chosen as
the features of the input image. The extracted features possess
the dimensionality of 512. This CNN model is taken as our
baseline for experimental evaluations. In addition, based on
this CNN model, we will build other models with multiple
feature fusion and decision fusion.

2) HOG FEATURE EXTRACTION
The second feature type adopted in our framework is the
HOG features. Historically, the HOG descriptor was orig-
inally proposed for the task of human detection [5]. The
HOG descriptor has been extensively applied in computer
vision and image processing. In this section, we merely
review the basic idea and illustrate its motivation for our task
of clothing image recognition.

The basic idea of the HOG descriptor is that the appearance
and shape of local objects within an image can effectively
be captured by the distribution of intensity gradients. The
procedure for extracting HOG descriptors usually contains
the following steps. The image is first divided into cells
with small connected regions. Next, a histogram of gradi-
ent directions is collected for all of the pixels of the small
cell. Lastly, those histograms are concatenated to obtain the
HOG descriptor. The HOG descriptor has certain character-
istics, that are beneficial to clothing image recognition. The
HOG extraction is performed on local cells, which makes
it invariant to photometric and geometric transformations.
Furthermore, the three improvements, coarse spatial sam-
pling, fine orientation sampling, and strong local photometric
normalization, enhance the robustness of the recognition.

In our experiments, after having been preprocessed to be
50 × 50, each of the images undergoes the procedure of
HOG extraction. During this process, the three parameters are
set as follows. The size of a cell is set to 6×6. The cell size of
the block is set to 3×3, and the number of orientation classes
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is fixed to eight. Subsequently, we obtain the HOG descriptor
with the dimensionality of 628.

3) COLOR HISTOGRAM EXTRACTION
The third feature type adopted in our framework is the color
histogram. The color histogram represents the distribution of
colors in an image. It represents not only the object color
and illumination but also relates to the surface roughness and
image geometry. Thus, the histogram provides an improved
estimate of the illumination and object color. Practically,
the histogram is merely obtained by counting pixels that
have each possible color. That color information is faster
to compute and be applied in a real-time system. In our
experiments, we use the histogram of the grayscale image
conversion, v = 0.3r+0.59g+0.11b. This mapping from the
RGB space obtains a histogram of dimensionality 256 within
the range of [0, 255].

D. ADA-ELMs
The proposed framework is shown in Figure 1. The input
image is processed in the following steps. We cropped out
the clothing part of each image using the annotation infor-
mation in the dataset. Then, three types of features, CNN,
HOG and Color histogram, are extracted in parallel. For the
CNN feature, we extract them from the pre-trained networks.
Next, a naive feature-level fusion by concatenation is applied.
To acquire the deep fusion, we adopt the AE-ELMwith unsu-
pervised learning. Then, the fusion representation of those
three features is input to an ensemble classifier, Ada-ELMs.
Lastly, the category of the considered image is given by this
system.

FIGURE 1. The proposed Framework for Clothing Image Classification.

In the previous sections, we have illustrated those three
feature extraction methods and the fusion model, AE-ELM.
Next, we will describe our ensemble model, Ada-ELMs.
Specifically, we fuse the decision results of multiple ELM
classifiers. An adaptive fusion algorithm, called Ada-ELMs,
is proposed. The idea is to train simultaneously multiple
ELM classifiers and assign adaptively the decision weights
of those trained ELM classifiers by taking advantage of ELM
high-speed learning. The fusion decision based on multiple
classifiers can increase the accuracy of the final decision.
Specifically, the Ada-ELMs is composed of K independent
ELMs with the same number of hidden neurons and with
the same activation function. Therefore, the hyper-plane for
the training set is optimal. The biases and weights are ran-
domly initialized at the input layer, and the weights at the

Algorithm 2 Our Ada-ELMs Learning Algorithm
Require: Total samples,N ; Total categories,C ; Total ELMs,

K ; Number of hidden neurons of ELMs, L; Activation
function of ELMs, g(x; a, b);Weight vectorFw for ELMs
with the dimensionality of K ; Weight vector Sw for sam-
ples with the dimensionality of N , initialized with 1
vector.

Ensure: Multiple ELM classifiers with assigned decision
weights.

1: Assign initial value for the counter k = 1.
2: repeat
3: Initialize the kth ELM.
4: Collect the training samples for the kth ELM as fol-

lows. IF k equals 1, all samples in the training set are
used, ELSE obtain the misclassified E (k−1) samples
using the (k − 1)th ELM, and then obtain the train-
ing set T (k) by mixing E (k−1) samples with randomly
chosen ρN−E (k−1) samples from the training set. The
coefficient ρ is set to 0.8 in our experiments.

5: Train the kth ELM.
6: Update the sample weights as follows. For every sam-

ple in the training set, IF the error occurs with nth sam-
ple using the kth ELM, THEN its weight is updated
with S(n)w = S(n)w +

η
K . The coefficient η is set to 5.0 in

our experiments.
7: Compute the decision weight F (k)

w for the kth ELM
with the ratio, sum weight of correctly classified sam-
ples to that of all samples.

8: Update the counter k = k + 1.
9: until the counter k > K .

output layer are calculated directly from a matrix computa-
tion. Therefore, for the same training set, the obtainedweights
differ from one another. It should be noted that the solution of
an ELM is globally optimal. Different training sets will result
in different solutions. In other words, for an ELM that uses N
samples for training, we obtain the first trained ELM.We then
train another ELM from those misclassified samples, and
the second ELM is optimal for those misclassified samples.
If we assign weights for those two ELMs when making
a decision, better results could be obtained by correcting
some errors that occurs with the first trained ELM classifier.
To summarize, the learning algorithm of Ada-ELMs is given
in Algorithm 2.

Next, during the test phase, for an unknown sample the
learned ensemble Ada-ELM gives its final decision by choos-
ing the category that has the largest score. The formula for this
fusion decision is shown as follows,

argmax
c

K∑
k=1

F (k)
w O(k)

c (10)

in which, O(k) is the output of the kth ELM, the subscript c
is for the category, and Fw is the decision weight of
the ELMs.
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FIGURE 2. Example images from eight categories, ‘‘Dress’’, ‘‘Jeans’’, ‘‘Joggers’’, ‘‘Shorts’’, ‘‘Skirts’’, ‘‘Sweaters’’, ‘‘Tank’’, and ‘‘Tee’’ in the DeepFashion Dataset.
Each column is corresponding to each category.

IV. EXPERIMENTS
To show the effectiveness of our proposed framework for
clothing image classification, we conducted extensive experi-
ments on an up-to-date clothing image dataset, DeepFashion.
In this section, we will first introduce this publicly available
DeepFashion dataset. Thereafter, the results of those methods
compared in our experiments are given. Finally, the experi-
mental results and their computational time are reported.

A. DATASET
We evaluate our methods on a publicly available dataset.
The up-to-date DeepFashion dataset [2] has been recently
collected and organized by the Chinese Hong Kong Univer-
sity.1 DeepFashion provides the largest number of images and
their corresponding annotations. Generally, the DeepFash-
ion dataset is composed of four subsets, each of which is
specifically collected and cleaned for some tasks related to
analyzing clothing images. One of those four subsets, called
Category and Attribute Prediction, can be used for category
prediction on clothing images. This image subset has fifty
categories and 300,000 clothing images. In addition, each
image is annotated with the position by four coordinates of
its contained clothing. This facilitates our task of clothing
classification without an additional algorithm for clothing

1http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html

detection. Additionally, note that the data in all of those
fifty categories are extremely imbalanced. Some categories
have more than fifty thousand images, and some categories
have no more than hundreds or only a few dozens. The class
imbalance problem is out of our focus and is not consid-
ered in this paper. Therefore, we choose eight categories
from the DeepFashion dataset for our experiments. Those
eight categories and their respective quantities of samples are
listed as follows: ‘‘Dress’’, ‘‘Jeans’’, ‘‘Joggers’’, ‘‘Shorts’’,
‘‘Skirts’’, ‘‘Sweaters’’, ‘‘Tank’’, and ‘‘Tee’’. Four other cat-
egories, including ‘‘Cape’’, ‘‘Nightdress’’, ‘‘Shirtdress’’ and
‘‘Sundress’’, have been merged into ‘‘Dress’’ by the Deep-
Fashion creators. Examples from those eight categories in the
subset of DeepFashion are shown in Figure 2. In this figure,
the annotated coordinates are not shown. Those images have
different sizes. In addition, we have resized each image into
50 × 50 pixels. We then follow the evaluation annotation of
this dataset. On average, we have a total of 20,167 images
for each category, 16,948 for training and 3,219 for testing.
The data split on the training and testing distribution for the
DeepFashion Dataset is summarized in Table 1.

B. METHODS AND SETTINGS
We adopt the extracted features using CNN networks com-
bined with a multi-layer perceptron, i.e., MLP as the baseline.
The categorial cross-entropy function is utilized as the loss
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TABLE 1. Class labels and train-test distribution of samples for the
deepfashion dataset.

function for training. Experimentally, we set the parameters
as follows: the learning rate is 0.01, the momentum 0.95,
the decay of the learning rate 0.00018, and the batch size 50.
The nesterov is chosen as the momentum method. We record
the changing losses and accuracies during the training pro-
cedure in the DeepFashion dataset. After being trained with
40 epochs, the loss decreases to 0.644, and the accuracy
achieves 76.5%. The training curve of the losses and accu-
racies are shown in sub-figures 3a and 3b, respectively.

In general, we compare four groups of methods, which
are described as follows. The first group of methods com-
pared comprises the original three features independently
associated with two neural classifiers, MLP and ELM.
Those two classifiers with different hidden neurons are
evaluated. The second group of methods compared com-
prises naive fusion of three features with an MLP clas-
sifier. Neural networks with different hidden neurons are
evaluated. The third group of methods compared com-
prises fusions of three features using AE-ELM with two
neural classifiers, MLP and ELM. Those two classifiers
with different hidden neurons are evaluated. The fourth
group of methods compared comprises fusions of three
features based on an AE-ELM with the Ada-ELMs clas-
sifier. Different numbers of ELMs in the ensemble learn-
ing method of Ada-ELMs are evaluated. We then report
the classification accuracy, confusion matrix, and computa-
tional time in the following sections. The implementation
of ELM-related algorithms is based on High Performance
toolbox for Extreme Learning Machines contributed by
Akusok et al. [47].2

C. RESULTS AND ANALYSIS
We first perform experiments on the three types of features
with an ELM classifier. The sigmoid function is used as the
activation function. We choose a hidden layer with different
numbers. Different sizes of neurons, from 256, 512, 1,024,
2,048, 4,096 to 8,192, were used. And those experiments with
different settings were conducted ten times. Then, the best
performances were chosen and are shown in Table 2. Evi-
dently, the best performance in all of the settings is achieved
using CNN features by the ELM classifier with 4,096 hidden
neurons among all three features. The accuracy achieved

2https://pypi.python.org/pypi/hpelm

TABLE 2. Results (%) on a single feature with an ELM classifier.

in the test set is 80.6%. When using HOG as the features,
the best performance is achieved by the ELM classifier with
8,192 hidden neurons. The accuracy achieved in the test
set is 71.8%. When using color histograms as the features,
the best performance is achieved by the ELM classifier with
4,096 hidden neurons. The accuracy achieved in the test set
is 41.6%. In addition, we note that for all of those three
features the accuracy increases with the number of neurons
in the ELM classifier.

Next, we perform experiments on the three types of fea-
tures, taking one at a time, with an MLP classifier. The Recti-
fied Linear Unit (ReLU) is adopted as the activation function.
We set the learning rate to 0.01, the momentum to 0.95,
the decay of the learning rate to 0.00018, and the batch size
to 50. Besides, the momentum method is set as nesterov.
We train the MLP classifier with 50 epochs. The results are
shown in Table 3. Evidently, the best performance in all of
the settings is achieved using CNN features, compared with
the ELM classifier, by the MLP classifier with 2,048 hidden
neurons. The accuracy achieved in the test set is 80.8%
using 2,048 hidden neurons. When using the HOG features,
the best performance is achieved by the MLP classifier with
512 hidden neurons. The accuracy achieved in the test set
is 73.8% using 512 hidden neurons. When using a color
histogram as the features, the best performance is achieved by
the MLP classifier with 1,024 hidden neurons. The accuracy
achieved in the test set is 43.5% using 1,024 hidden neu-
rons. To summarize, using the MLP, the best performance
is achieved with an accuracy of 80.8%. In contrast, using
the ELM classifier, the best performance is achieved with an
accuracy of 80.6%. Slightly better performance is achieved
using an MLP classifier compared with an ELM classifier.
Comparatively, the number of hidden neurons affects the
performance of an MLP classifier more slightly than that of
an ELM classifier.

TABLE 3. Results (%) on a single feature with an MLP classifier.

Moreover, we combine those features for clothing clas-
sification. The experimental results are shown in Table 4.
Evidently, the fusion of two of those feature types achieves
better performance than that of using a single type of fea-
tures alone. The best accuracy in the test set is 81.8% with
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FIGURE 3. Training Procedure of the CNN Model on the DeepFashion Dataset. (a) Training Loss Changes with Epochs. (b) Training Accuracy
Changes with Epochs.

TABLE 4. Results (%) using Naive fusion with an MLP classifier.

256 hidden neurons. And with an increment in the number of
hidden units, the accuracy on the test set slightly decreases.
This findings differs from those using a single feature with
an ELM or an MLP classifier shown as above. To conclude,
by combining different features, especially CNN and HOG,
the accuracy achieved on the test set, compared with using the
CNN features alone increases from 80.8% with 2,048 hidden
neurons to 81.8% with 256 hidden neurons. Note that the
fusion of three features, denoted with the triple in Table 4,
does not shows improvement in the results. The fusion of sim-
ple concatenation does not work, which ismost likely because
those features belong to different representation spaces and
will be deteriorated by simple concatenation.

In previous experiments, we performed fusion on two of
those three features by simple concatenation. Next, we con-
sider making deep fusion with the AE-ELM. The aim of the
AE-ELM is to attempt to capture the intrinsic nature of the
inputs with a compressed random projection by setting the
output to the same as the input. The reconstruction errors of
the AE-ELMs with different neurons are shown in Table 5.
The error is averaged over the number of samples and the
dimensionality of the features. Through the results shown
in this table, we set the threshold to 0.10 and choose the
AE-ELM with 1,024 hidden neurons.

Next, using the features by random projection with
AE-ELM, MLP classifiers with different neurons are trained
with 50 training epochs. The experimental results are shown
in Table 6. Evidently, the fusion using AE-ELM based on
the CNN and HOG features and the MLP classifier with
2,048 hidden neurons achieves the best performance. The
best accuracies achieved in the test set is 82.0% with CNN

TABLE 5. The AE-ELM reconstruction errors.

TABLE 6. Results (%) using an AE-ELM with an MLP classifier.

and HOG features. For the fusion with CNN and Hist fea-
tures, the best accuracies in the test set is 74.4%. And for
the fusion with the CNN and Hist features, the best accu-
racy achieved is 80.6%. Compared with naive fusion, The
accuracy increases from 80.8% with the CNN features alone
to 82.0% with AE-ELM based fusion methods. Those find-
ings show that by capturing the intrinsic representations,
the fusion using the AE-ELM model with the random pro-
jection increases the generalization capability.

Similarly, we perform experiments using AE-ELM fusion
and an ELM classifier. The results with different neurons are
reported in Table 7. The best accuracies achieved in the test
set is 80.7% with CNN and HOG features. However, this
accuracy is lower than that using AE-ELM with an MLP
classifier. As previously shown in Table 6, the results of
the fusion of CNN and HOG features outperform those of
using the CNN or HOG features alone, separately. Addition-
ally, the results of the fusion of the HOG and Hist features
outperform those of using the HOG or Hist features alone,
separately.

Next, we show the performance of ensemble learning Ada-
ELMs combined with those features. The number of ELMs
adopted in ensemble learning is evaluated. First, we run
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TABLE 7. Results (%) using an AE-ELM with an ELM classifier.

the CNN features and Ada-ELMs with different numbers of
primitives, i.e., base classifiers. Additionally, the number of
neurons is set to be from 512 to 4,096. The experimental
results are reported in Table 8. The best accuracy achieved
is 80.9%. Evidently, the performance is not satisfactory.
We further evaluate the ensemble classifier Ada-ELMs, using
AE-ELMwith fusion of CNN andHOGas the features. Those
results are reported in Table 9. Compared with the previous
experiments, the performance is slightly improved using the
ensemble learning, Ada-ELMs.

TABLE 8. Performance with Ada-ELMs using the CNN feature.

TABLE 9. Performance with Ada-ELMs using the CNN and HOG features.

To further investigate the performance of the Ada-ELMs,
the confusion matrix for those two methods is also given
in Figure 4 and Figure 5, respectively. In those two figures,
the denser of the block is, the higher score of that has.
We observe that the Dress class is relatively easy to classify
and obtains the highest score. The Skirt class is the hardest
for recognition and has the lowest score. The Skirt class
is mostly above 30%, with misclassifications for Sweater
and Tank. Identically, we observe that Jeans and Joggers are
mostly misclassified as Shorts and Dress. In general, those
two methods have some similar bottlenecks.

D. COMPUTATIONAL TIME
Finally, we show the training time that is required for
those methods. Our experiments are conducted on a Dell
R720 server with a dual Intel E5-2650 CPU @ 2.00 GHz
and 128 GB Memory. In our framework, the time consump-
tion is mainly due to the following modules: AE-ELM and
Ada-ELMs. We record the time required for training those
two modules on the DeepFashion dataset. As a comparison,

FIGURE 4. The Confusion Matrix Using the CNN Feature with Ada-ELMs.

FIGURE 5. The Confusion Matrix Using Triple Features with Ada-ELMs.

TABLE 10. The typical training time (sec.) comparison.

the time for training two classifiers, MLP and ELM, is also
recorded. The time consumption is shown in Table 10. Specif-
ically, if we use theMLPmethod for classification, we require
2,289 seconds on average for training with 1,024 hidden
units. For the ELM classifier, we need only less than ten sec-
onds. Usually, for an AE-ELM with 1,024 hidden units,
we also have less than ten seconds. For the Ada-ELMs with
ten primitive ELMs and in which each has 1,024 hidden units,
we use approximately 238 seconds. This time consumption
with Ada-ELM is one tenth that of anMLP. Notably, if we use
only the AE-ELM and ELM classifier, we consumemuch less
time compared to the other methods. For the ensemble clas-
sifier Ada-ELMs, the time required increases compared with
the single ELM classifier. Even though the time increases
with the number of primitive ELMs, the Ada-ELMs with
ten ELMs is sufficient. The time used in those ELM-based
methods is much less than for the MLP method.
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V. CONCLUSIONS
In this paper, we address the task of recognizing large-
scale clothing images based on multiple features and vari-
ants of ELMs. Considering the accuracy and training time,
we develop a clothing recognition framework. This frame-
work is composed of three components: low-level feature
extraction, feature fusion with AE-ELM for the high-level,
and ensemble classification with ELMs, i.e., Ada-ELMs.
Experiments on a large-scale publicly available dataset on
clothing images demonstrate that our proposed framework
is flexible and competitive, especially for balancing the time
and recognition accuracy.

There are still several interesting problems to be investi-
gated in the future. For example, recognizing clothing images
with imbalanced categories using those ELM-related meth-
ods is highly interesting. In this study, we consider clothing
images with eight categories. However, the categories in real-
world clothing images would bemore than fifty. Furthermore,
in recognizing fine-grained clothing images for example,
a suit with different collars is valuable in practical applica-
tions. Therefore, another challenging problem is to recog-
nize clothing images with large and fine-grained categories.
In addition, exploring other types of ELMs, e.g., with sparsity,
will be considered in our future research.
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