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ABSTRACT This paper investigates the impulsive stabilization of fractional-order complex switched
networks with parametric uncertainty. Using a fractional-order Lyapunov method and matrix inequality
techniques, the dynamical characteristics of the controlled impulsive system are well captured, and a
novel impulsive stabilizing criterion is derived in terms of algebraic conditions. The stabilization criterion
is dependent on system parameters and on the lengths of impulsive intervals. In addition, a simulation
example is given to demonstrate the effectiveness of the newly obtained results. Finally, an application of
the obtained control pulse is also presented in the blind source separation.

INDEX TERMS Complex switched networks, fractional-order dynamic systems, parametric uncertainty,
impulsive control.

I. INTRODUCTION
Complex networks are all around us [1]–[10]. Many natural
systems can be modeled by complex networks, as examples,
consider aviation networks, power networks, and biologi-
cal networks. Connected nodes in a complex network may
have interactions that change abruptly, leading to a network
structure that is irregular and switching dynamically. The
structure of such a network is described by a switching
topology. For an example, consider community ecology: by
its interactions within the community, an individual changes
the links between itself and bodies with which it has contact,
in real time. This type of network can be modeled as a com-
plex switched network. Other examples of complex switched
networks in the real world, include smart grid, bird flock
and virus dynamics [1], [3], [7], [9], [10]. Many researchers
have become interested in the network evolution and dynamic
complexity of complex switched networks [2], [4], [5], [8].
The study of the structure and dynamics in complex switched
networks is a rapidly growing field of study, that is challeng-
ing because of the complex wiring topology.

To minimize error when constructing these compli-
cated systems, an appropriate mathematical operator
must be selected, such as a fractional-order operator.

Fractional dynamics is an important research field in non-
local constitutive systems [11]–[17]. In practice, intercon-
nected control systems are best described by fractional-order
dynamic systems. Using an approximation of the fractional
derivative, time-domain implementation of analysis and syn-
thesis for fractional-order dynamic systems can be addressed
[15]–[17]. However, exploring the deep network structure
using this analytical framework is notably difficult. The
question of how to develop a framework, which is consis-
tent with the nonstandard approximation for formulating a
fractional-order operator and presents a universal viewpoint
for fractional dynamics, is significant for successful system
construction.

In a variety of engineering disciplines, parametric uncer-
tainty occurs because of incomplete knowledge of math-
ematical models such as empirical quantities, constitutive
laws, etc [11]. For example, biochemical reactions are often
modeled by differential/algebraic equations with paramet-
ric uncertainty. When analyzing these systems, it is often
desirable to assess the robustness of system performance
against uncertainty. Even though, as the rapid development
of automation technologies, the problem of designing the
feedback controller that provides good dynamic performance
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and robust property for an uncertain nonlinear system is NP-
hard in general. The issue of reliable control in the uncertain
nonlinear system is still in the early stage and many crucial
problems remain to be further solved.

Impulsive control arises naturally in a wide range of appli-
cations, such as shaping circuits, high-power laser facility,
digital X-ray radiography and accelerator physics. Along
with the development of applications, impulsive control has
become a powerful tool for complex nonlinear systems over
the past several years [18]–[25]. Viewed from the perspective
of cybernetics, the impulses are essentially samples of the
state variables of the controlled systems at discrete moments.
A basic principle for impulsive control is to stabilize a given
plant by utilizing only the sampling impulses at discrete
moments [18], [22], [25]. Hence, impulsive control can dra-
matically minimize bandwidth and lessen communication
costs.

This paper is concerned with the impulsive stabilization
problem of fractional-order complex switched networks with
parametric uncertainty. A new framework is introduced, that
combines a fractional-order Lyapunovmethod and fractional-
order convergence principle. The newly established frame-
work is consistent with the nonstandard approximation for
formulating a fractional-order operator but presents a general
viewpoint for fractional dynamics. A constructive procedure
for systematic design of the impulsive control is further
proposed. One favorable feature of this approach is that the
scheme can effectively avoid the difficult problem of solving
an impulsive controller. In addition, a concrete application is
discussed to show the applicability and quality of the obtained
control pulse in the blind source separation.

The remaining section of this paper is arranged below.
Section II presents the model description and preliminar-
ies. Impulsive stabilization for the controlled fractional-order
complex switched networks is considered in Section III.
An illustrative example is formulated in Section IV,
the obtained results to be extended into the field of blind
source separation are stated in Section V. Finally, Section VI
presents the paper’s conclusions.

II. MODEL DESCRIPTION AND PRELIMINARIES
We begin by recalling the definitions of the Caputo derivative
and the Mittag-Leffler function.

The Caputo derivative CDαt0 (·) of order α > 0 of a function
F (t) ∈ Cn+1([t0,+∞),<) is defined as

CDαt0F (t) =
1

0(n− α)

∫ t

t0

F (n)(s)
(t − s)α−n+1

ds,

where t ≥ t0, n − 1 < α < n, n is a positive integer, 0(·) is
Gamma function.

The Mittag-Leffler function with related one parameter
Eα(·) is described as

Eα(z) =
+∞∑
k=0

zk

0(kα + 1)
,

where α > 0, z is a complex number,0(·) is Gamma function.

Consider a class of fractional-order complex switched
networks with parametric uncertainty consisting of N
nonidentical coupled nodes

CDαt0xi(t) =
+∞∑
s=1

[(
Aiρ +1Aiρ(t)

)
xi(t)+ fiρ(t, xi(t))

+

N∑
j=1

bρij(t)ϒ(t)xj(t)
]
`s(t),

i = 1, 2, · · · ,N , t ≥ t0 ≥ 0, (1)

where the fractional order is 0 < α < 1, xi(t) =
(xi1(t), xi2(t), · · · , xin(t))T ∈ <n is the state vector of node i,
Aiρ is a constant n × n matrix, 1Aiρ(t) is the norm-bounded
parametric uncertainty, the nonlinear vector-valued function
fiρ satisfies fiρ(t, 0) = 0, Bρ(t) =

(
bρij(t)

)
N×N

is the
coupled configuration matrix, when there is a connection
between the ith node and the jth node, i 6= j, bρij(t) 6= 0,
otherwise, bρij(t) = 0, and the diagonal element bρii(t) =

−

N∑
j=1,j 6=i

bρij(t), i = 1, 2, · · · ,N , ϒ(t) = (rij(t))n×n is the

inner coupled matrix, when two coupled nodes are linked
through its ith state and jth state, rij(t) 6= 0, if not, rij(t) = 0,
i, j ∈ {1, 2, · · · , n}, `s(t) is the staircase function, `s(t) = 1
for Ts < t ≤ Ts+1 with discontinuous switched instants
T1 < T2 < · · · < Ts < · · · , and lim

s→+∞
Ts = +∞, where

T1 > t0, s ∈ {1, 2, · · · }, otherwise, `s(t) = 0, the switched
signal ρ , ρ(t) : [t0,+∞) → {1, 2, · · · ,m}, and
ρ(t) = ς ∈ {1, 2, · · · ,m} for Ts < t ≤ Ts+1.
Remark 1: System (1) possesses time-varying topology. If

bρij(t) tends to be zero from nonzero, then the link from the
ith node to the jth node, i 6= j, may be severed. In contrast,
if bρij(t) turns from zero into nonzero, then the link from the
ith node to the jth node, i 6= j, may be added.
Remark 2: If bρij(t) 6= bρji(t), i 6= j, then system (1) is

directed. Conversely, if bρij(t) = bρji(t), i 6= j, then system (1)
is undirected.

For (1), we design the impulsive control as follows:

ui(t) =
+∞∑
k=1

Dkxi(t)δ(t − tk ), i = 1, 2, · · · ,N , (2)

whereDk is n×n gain matrix, δ(·) is the Dirac Delta function,
the impulsive time sequence {tk}

+∞

k=1 satisfies t1 < t2 < · · · <
tk < · · · and lim

k→+∞
tk = +∞.

Next, we give several basic assumptions for (1).
(A1) There exists a symmetric and positive definite matrix

Qiρ and a continuous function ψiρ(t) ≥ 0, such that

f Tiρ (t, xi(t))Qiρxi(t) ≤ ψiρ(t)x
T
i (t)Qiρxi(t), (3)

for i ∈ {1, 2, · · · ,N }, t ≥ t0, xi(t) ∈ <n.
(A2)

1Aiρ(t) = MiρPiρ(t)Niρ, (4)
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where Miρ and Niρ are all known constant matrices with
matched dimensionality, Piρ(t) is the unknown time-varying
matrix with PTiρ(t)Piρ(t) ≤ I (I is an identity matrix with
matched dimensionality).

(A3) For any two switched instants Ts and Ts+1, there must
be positive integers κ1 and κ2 to satisfy

tκ1 = Ts < tκ1+1 < · · · < tκ1+κ2 = Ts+1, (5)

where tκ1 , tκ1+1, · · · , tκ1+κ2 , are impulsive instants.
Remark 3: From (A1), it is easy to see that (3) is a more

general condition for fiρ . Obviously, if fiρ satisfies a Lips-
chitz condition or block condition on xi, then (3) holds, but
not vice versa. Assumption (A2) guarantees the uncertain
term to be norm-bounded. By (A3), the switched interval
τswitch , Ts+1 − Ts is an integral multiple of the impulsive
interval τimpulse , tk+1 − tk .
Under the impulsive control (2), from (1) and (A3),

we obtain the controlled system

CDαt0xi(t) =
(
Aiρ +1Aiρ(t)

)
xi(t)+ fiρ(t, xi(t))

+

N∑
j=1

bρij(t)ϒ(t)xj(t), t ∈ (tk−1, tk ],

4xi(t) = xi(t
+

k )− xi(tk ) = Dkxi(t), t = tk ,

xi(t
+

0 ) = xi0, i = 1, 2, · · · ,N , k = 1, 2, · · ·. (6)

In the following, we introduce some of the most common
lemmas.
Lemma 1 [26]: Let R, W and S(t) be real matrices with

matched dimensionality, if ST (t)S(t) ≤ I (I is an identity
matrix with matched dimensionality), then

RTST (t)WT
+WS(t)R ≤

1
E
RTR+ EWWT ,

where E > 0 is a constant.
Lemma 2: If R and W are real matrices with matched

dimensionality, then

RTW +WTR ≤ ERTR+
1
E
WTW,

where E > 0 is a constant.
Lemma 2 is a direct consequence of Lemma 1: in Lemma 1,

let S(t) ≡ I (I is an identity matrix with matched dimension-
ality), Lemma 2 can be directly derived from this.
Lemma 3 [27]: For positive definite matrix R, symmetric

matrixW and vector X with matched dimensionality, then

λmin(R−1W)X TRX≤X TWX ≤λmax(R−1W)X TRX,

where λmin(·) and λmax(·) denote the minimum andmaximum
eigenvalues, respectively, R−1 represents the inverse matrix
of R.
Lemma 4 [17]: Let B(t) be a continuous function defined

in [t0,+∞), if there exists constant H such that

CDαt0B(t) ≤H B(t), t ≥ t0 ≥ 0,

then

B(t) ≤ B(t0)Eα(H (t − t0)α), t ≥ t0 ≥ 0,

where 0 < α < 1, Eα(·) is one-parameter Mittag-Leffler
function.

III. THEORETICAL RESULTS
In this section, the scheme of impulsive control is provided
for achieving the stabilization of (1).

For technical convenience, we denote

ω(t) = max
1≤i≤N ,1≤ρ≤m

[
λmax

(
Q−1iρ

[
QiρAiρ + ATiρQiρ

+
1
ξ1
QiρMiρMT

iρQiρ + ξ1N
T
iρNiρ + 2ψiρ(t)Qiρ

])]

+ max
1≤i≤N ,1≤ρ≤m

[ N∑
j=1

∣∣∣bρij(t)∣∣∣ 1ξ2 λmax
(
ϒ(t)ϒT (t)Qiρ

)]

+ max
1≤i≤N ,1≤ρ≤m

[ N∑
j=1

∣∣∣bρji(t)∣∣∣ ξ2λmax(Q−1iρ )], (7)

σ =

max
1≤i≤N ,1≤ρ≤m

[
λmax

(
Qiρ

)]
min

1≤i≤N ,1≤ρ≤m

[
λmin

(
Qiρ

)] , (8)

γk = λmax

(
[I + Dk ]T [I + Dk ]

)
≥ 0, k = 1, 2, · · · ,

(9)

where λmax(·) and λmin(·) denote the maximum andminimum
eigenvalues, respectively, ξ1 > 0 and ξ2 > 0 are some con-
stants, I is an identity matrix with matched dimensionality.
Theorem 1: Let (A1)-(A3) hold. If there exists a constant

ω̂ > 0, such that
ω(t) ≤ −ω̂ < 0, for t ≥ t0, (10)

γkσEα
(
− ω̂(tk − tk−1)α

)
< 1, k = 1, 2, · · · , (11)

then system (1) is globally asymptotically stable under the
impulsive stabilizing control law (2).
Proof: Define the Lyapunov function

V (t) =
N∑
i=1

xTi (t)Qiρxi(t).

Evaluating the Caputo derivative of V (t) along the trajec-
tory of (6) gives
CDαt0V (t)

≤

N∑
i=1

[
xTi (t)

(
QiρAiρ + ATiρQiρ

+Qiρ1Aiρ(t)+1ATiρ(t)Qiρ

)
xi(t)

+2f Tiρ (t, xi(t))Qiρxi(t)

+

N∑
j=1

bρij(t)
(
xTj (t)ϒ

T (t)Qiρxi(t)+ xTi (t)Qiρϒ(t)xj(t)
)]
.
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Using the assumption (A1), this becomes

CDαt0V (t)

≤

N∑
i=1

[
xTi (t)

(
QiρAiρ + ATiρQiρ

+Qiρ1Aiρ(t)+1ATiρ(t)Qiρ

)
xi(t)

+2ψiρ(t)xTi (t)Qiρxi(t)

+

N∑
j=1

bρij(t)
(
xTj (t)ϒ

T (t)Qiρxi(t)+ xTi (t)Qiρϒ(t)xj(t)
)]
.

Applying (A2), it follows that

CDαt0V (t)

≤

N∑
i=1

[
xTi (t)

(
QiρAiρ + ATiρQiρ

+QiρMiρPiρ(t)Niρ + NT
iρP

T
iρ(t)M

T
iρQiρ

)
xi(t)

+2ψiρ(t)xTi (t)Qiρxi(t)

+

N∑
j=1

bρij(t)
(
xTj (t)ϒ

T (t)Qiρxi(t)+ xTi (t)Qiρϒ(t)xj(t)
)]
.

(12)

By Lemma 1, there exists a constant ξ1 > 0 such that

QiρMiρPiρ(t)Niρ + NT
iρP

T
iρ(t)M

T
iρQiρ

≤
1
ξ1
QiρMiρMT

iρQiρ + ξ1N
T
iρNiρ . (13)

According to Lemma 2, there exists a constant ξ2 > 0 such
that

xTj (t)ϒ
T (t)Qiρxi(t)+ xTi (t)Qiρϒ(t)xj(t)

≤
1
ξ2
xTi (t)Qiρϒ(t)ϒT (t)Qiρxi(t)+ ξ2xTj (t)xj(t). (14)

Substituting (13) and (14) into (12) yields

CDαt0V (t)

≤

N∑
i=1

[
xTi (t)

(
QiρAiρ + ATiρQiρ

+
1
ξ1
QiρMiρMT

iρQiρ + ξ1N
T
iρNiρ

)
xi(t)

+2ψiρ(t)xTi (t)Qiρxi(t)+
N∑
j=1

∣∣∣bρij(t)∣∣∣
×

(
1
ξ2
xTi (t)Qiρϒ(t)ϒT (t)Qiρxi(t)+ ξ2xTj (t)xj(t)

)]
=

N∑
i=1

[
xTi (t)

(
QiρAiρ + ATiρQiρ

+
1
ξ1
QiρMiρMT

iρQiρ + ξ1N
T
iρNiρ + 2ψiρ(t)Qiρ

)
xi(t)

+

N∑
j=1

∣∣∣bρij(t)∣∣∣ 1ξ2
(
xTi (t)Qiρϒ(t)ϒT (t)Qiρxi(t)

)

+

N∑
j=1

∣∣∣bρji(t)∣∣∣ ξ2(xTi (t)xi(t))]. (15)

By Lemma 3,

xTi (t)
(
QiρAiρ + ATiρQiρ

+
1
ξ1
QiρMiρMT

iρQiρ + ξ1N
T
iρNiρ + 2ψiρ(t)Qiρ

)
xi(t)

≤ λmax

(
Q−1iρ

[
QiρAiρ + ATiρQiρ +

1
ξ1
QiρMiρMT

iρQiρ

+ξ1NT
iρNiρ + 2ψiρ(t)Qiρ

])
xTi (t)Qiρxi(t), (16)

xTi (t)Qiρϒ(t)ϒT (t)Qiρxi(t)

≤ λmax

(
Q−1iρ

[
Qiρϒ(t)ϒT (t)Qiρ

])
xTi (t)Qiρxi(t), (17)

xTi (t)xi(t) ≤ λmax

(
Q−1iρ

)
xTi (t)Qiρxi(t). (18)

Substituting (16)-(18) into (15),

CDαt0V (t)

≤

N∑
i=1

[
λmax

(
Q−1iρ

[
QiρAiρ + ATiρQiρ +

1
ξ1
QiρMiρMT

iρQiρ

+ξ1NT
iρNiρ + 2ψiρ(t)Qiρ

])
xTi (t)Qiρxi(t)+

N∑
j=1

∣∣∣bρij(t)∣∣∣
×

1
ξ2
λmax

(
Q−1iρ

[
Qiρϒ(t)ϒT (t)Qiρ

])
xTi (t)Qiρxi(t)

+

N∑
j=1

∣∣∣bρji(t)∣∣∣ ξ2λmax(Q−1iρ )xTi (t)Qiρxi(t)]
≤ ω(t)V (t)

≤ −ω̂V (t), t ∈ (tk−1, tk ]. (19)

Applying Lemma 4 to (19),

V (t) ≤ V (t+k−1)Eα
(
− ω̂(t − tk−1)α

)
, t ∈ (tk−1, tk ],

where Eα(·) is one-parameter Mittag-Leffler function.
Note that

V (t) ≥ min
1≤i≤N ,1≤ρ≤m

[
λmin

(
Qiρ

)] N∑
i=1

xTi (t)xi(t),

V (t+k−1)≤ max
1≤i≤N ,1≤ρ≤m

[
λmax

(
Qiρ

)] N∑
i=1

xTi (t
+

k−1)xi(t
+

k−1),
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hence
N∑
i=1

xTi (t)xi(t)

≤

max
1≤i≤N ,1≤ρ≤m

[
λmax

(
Qiρ

)]
min

1≤i≤N ,1≤ρ≤m

[
λmin

(
Qiρ

)] N∑
i=1

xTi (t
+

k−1)xi(t
+

k−1)

×Eα
(
− ω̂(t − tk−1)α

)
= σ

N∑
i=1

xTi (t
+

k−1)xi(t
+

k−1)Eα
(
− ω̂(t − tk−1)α

)
, t ∈ (tk−1, tk ].

Let

µ(t) =
N∑
i=1

xTi (t)xi(t), (20)

then we have

µ(t) ≤ σµ(t+k−1)Eα
(
− ω̂(t − tk−1)α

)
, t ∈ (tk−1, tk ].

(21)

On the other hand, when t = t+k ,

µ(t+k ) =
N∑
i=1

[
(I + Dk )xi(tk )

]T[
(I + Dk )xi(tk )

]

≤ λmax

(
[I + Dk ]T [I + Dk ]

) N∑
i=1

xTi (tk )xi(tk )

= γkµ(tk ), k = 1, 2, · · · . (22)

By (21) and (22),

µ(t) ≤ σµ(t+0 )Eα
(
− ω̂(t − t0)α

)
, for any t ∈ (t0, t1],

µ(t+1 ) ≤ γ1µ(t1),

then

µ(t+1 ) ≤ γ1µ(t1) ≤ γ1σµ(t
+

0 )Eα
(
− ω̂(t1 − t0)α

)
.

Similarly,

µ(t) ≤ σµ(t+1 )Eα
(
− ω̂(t − t1)α

)
, for any t ∈ (t1, t2],

µ(t+2 ) ≤ γ2µ(t2),

then

µ(t+2 ) ≤ γ2µ(t2) ≤ γ2σµ(t
+

1 )Eα
(
− ω̂(t2 − t1)α

)
≤ γ1γ2σ

2µ(t+0 )Eα
(
−ω̂(t2 − t1)α

)
Eα
(
− ω̂(t1 − t0)α

)
.

By a similar procedure, for general t ∈ (tk , tk+1],

µ(t) ≤ γ1γ2 · · · γkσ k+1µ(t
+

0 )Eα
(
− ω̂(t − tk )α

)
×Eα

(
− ω̂(tk − tk−1)α

)
· · ·Eα

(
− ω̂(t2 − t1)α

)
×Eα

(
− ω̂(t1−t0)α

)
, (23)

that is, for t ∈ (tk , tk+1],

N∑
i=1

xTi (t)xi(t)

≤ γ1γ2 · · · γkσ
k+1µ(t+0 )Eα

(
− ω̂(t − tk )α

)
×Eα

(
− ω̂(tk − tk−1)α

)
· · ·Eα

(
− ω̂(t2 − t1)α

)
×Eα

(
− ω̂(t1 − t0)α

)
.

Since γk (k = 1, 2, · · · ) and σ are all bounded constants,
then by (11), the trivial solution of (6) is globally asymp-
totically stable. This property also means that system (1) is
globally asymptotically stable under the impulsive stabilizing
control law (2).
Remark 4: Fractional-order complex switched net-

works (1), which are characterized by discontinuous dynami-
cal systems, have discontinuousmotions (motions that are not
continuous evoked by switching effect). Our objective is to
develop a unified analysis and control design framework for
such a hybrid dynamical systems using control system theory
and methods. We consider impulsive control law given by
the controlled systems of impulsive dynamics, which extends
nonimpulsive control systems to impulsive commutative
systems.
Remark 5: The proposed impulsive-control-based method

for transforming nonimpulsive control systems into impul-
sive commutative systems is highly effective. An important
specialty of this architecture is that the hybrid properties
of continuous and discontinuous phase could be efficiently
integrated and analyzed, whose advantage is considerable
flexibility in controlling hybrid systems in which the con-
tinuous and discontinuous processes interact. Hence, there
is sufficient generality for fractional-order complex switched
networks.
Remark 6: In the existing research on the impulsive sta-

bilization of complex networks, almost all of the results
require %(I + Dk ) < 1 or %

(
(I + Dk )T (I + Dk )

)
< 1,

where %(·) represents the spectral radius of the matrix. In
Theorem 1, this restriction is removed, as can be observed in
(9) and (11). Therefore, for some complex networks, even if
%(I+Dk ) ≥ 1 or %

(
(I+Dk )T (I+Dk )

)
≥ 1, the stabilization

problem can be solved.
Remark 7: Theorem 1 is a sufficient condition under which

stabilization control of (1) can be realized with the impul-
sive strategy (2). The impulsive stabilizing control law (2)
requires the information of all state variables at impulse
instants. In application, it is more practical to measure certain
of the state variables, rather than all state variables. How
to design less conservative impulsive control strategies is a
challenging problem and an interesting direction for future
research.
Remark 8: Processing range queries on linear matrix

inequality of higher dimensionality is tough question.
The curse-of-dimensionality for linear matrix inequality in
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control design has been widely realized. One obvious remedy
to this issue is to achieve some form of dimensionality reduc-
tion. The dimensionality of matrix expression in Theorem 1 is
equal to the dimensionality of system parameters matrix
of (1). This ensures that, even in the increase in the dimen-
sionality of system parameters matrix of (1), the solvability of
Theorem 1 should still be available through some numerical
algorithms.

In fact, the proposed stabilization scheme can be achieved
by numerical programming. A computational procedure for
systematic design of the impulsive control of Theorem 1 can
be described as follows:

Step I: Choose the gain matrices Dk .
Step II: Compute γk defined in (9). If γk ≥ 0, proceed

directly to Step III. If γk < 0, return to Step I.
Step III: Select symmetric and positive definite matrices

Qiρ to satisfy (A1) and count σ given in (8).
Step IV: Choose constants ξ1 > 0 and ξ2 > 0, and use these

to calculate ω(t) defined in (7).
Step V: Select constant ω̂ > 0. If (10) and (11) hold,

then according to Theorem 1, the impulsive control (2) can
globally asymptotically stabilize (1). If No, return to Step I.

If 1Aiρ(t) = 0, (1) will degrade into

CDαt0xi(t) =
+∞∑
s=1

[
Aiρxi(t)+ fiρ(t, xi(t))

+

N∑
j=1

bρij(t)ϒ(t)xj(t)
]
`s(t),

i = 1, 2, · · · ,N , t ≥ t0 ≥ 0. (24)

Denote

ω̃(t)

= max
1≤i≤N ,1≤ρ≤m

[
λmax

(
Q−1iρ

[
QiρAiρ+ATiρQiρ+2ψiρ(t)Qiρ

])]

+ max
1≤i≤N ,1≤ρ≤m

[ N∑
j=1

∣∣∣bρij(t)∣∣∣ 1ξ2 λmax
(
ϒ(t)ϒT (t)Qiρ

)]

+ max
1≤i≤N ,1≤ρ≤m

[ N∑
j=1

∣∣∣bρji(t)∣∣∣ ξ2λmax(Q−1iρ )], (25)

where λmax(·) denotes the maximum eigenvalue, ξ2 > 0 is
some constant.
Corollary 1: Let (A1) and (A3) hold. System (24) is

globally asymptotically stable under the impulsive stabilizing
control law (2), if there exists a constant ω̂ > 0, such
that

ω̃(t) ≤ −ω̂ < 0, for t ≥ t0,

γkσEα
(
− ω̂(tk − tk−1)α

)
< 1, k = 1, 2, · · · .

If (1) does not produce mode switching, (1) will degrade
into

CDαt0xi(t) =
(
Ai +1Ai(t)

)
xi(t)+ fi(t, xi(t))

+

N∑
j=1

bij(t)ϒ(t)xj(t),

i = 1, 2, · · · ,N , t ≥ t0 ≥ 0. (26)

In this way, assumptions (A1) and (A2) can be rewritten as
follows.

(A4) There exist a symmetric and positive definite matrix
Qi and a continuous function ψi(t) ≥ 0, such that

f Ti (t, xi(t))Qixi(t) ≤ ψi(t)xTi (t)Qixi(t),

for i ∈ {1, 2, · · · ,N }, t ≥ t0, xi(t) ∈ <n.
(A5)

1Ai(t) = MiPi(t)Ni,

where Mi and Ni are all known constant matrices with
matched dimensionality, Pi(t) is the unknown time-varying
matrix with PTi (t)Pi(t) ≤ I (I is an identity matrix with
matched dimensionality).

We also denote

ω̂(t) = max
1≤i≤N

[
λmax

(
Q−1i

[
QiAi + ATi Qi +

1
ξ1
QiMiMT

i Qi

+ξ1NT
i Ni + 2ψi(t)Qi

])]
+ max

1≤i≤N

[ N∑
j=1

∣∣bij(t)∣∣ 1
ξ2
λmax

(
ϒ(t)ϒT (t)Qi

)]

+ max
1≤i≤N

[ N∑
j=1

∣∣bji(t)∣∣ ξ2λmax(Q−1i )]
, (27)

σ̂ =

max
1≤i≤N

[
λmax

(
Qi

)]
min

1≤i≤N

[
λmin

(
Qi

)] , (28)

where λmax(·) and λmin(·) denote the maximum andminimum
eigenvalues, respectively, ξ1 > 0 and ξ2 > 0 are some con-
stants.
Corollary 2: Let (A4) and (A5) hold. System (26) is

globally asymptotically stable under the impulsive stabilizing
control law (2), if there exists a constant ω̂ > 0, such that

ω̂(t) ≤ −ω̂ < 0, for t ≥ t0,

γk σ̂Eα
(
− ω̂(tk − tk−1)α

)
< 1, k = 1, 2, · · · .

IV. A NUMERICAL EXAMPLE
We consider a nearest-neighbor fractional-order coupled
complex switched network with five nodes. Assume that the
switched signal ρ , ρ(t) : [t0,+∞) → {1, 2} and the
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FIGURE 1. Time responses of states xi1 (i = 1, 2, · · · , 5) without
impulsive control.

switched interval Ts+1 − Ts = τswitch = 0.02. Next, the
network model is described by xi = (xi1, xi2, xi3)T ,

Aiρ =

−25aiρ 0 0
0 −29aiρ 0
0 0 −30aiρ

 ,
1Aiρ(t)= sin(aiρ t)

 1 1 1
1 1 1
1 1 1

,
fiρ(t, xi(t))

=

(
0,−xi1xi3, xi1xi2

)T
,

B1(t) =
(
b1ij(t)

)
5×5
=


− sin(t) 0 0 0 sin(t)

0 −2 2 0 0
0 0 −1 1 0
0 0 1 −1 0
0 0 0 −1 1

 ,

B2(t) =
(
b2ij(t)

)
5×5
=0.5


− sin(t) 0 0 0 sin(t)

0 −2 2 0 0
0 0 −1 1 0
0 0 1 −1 0
0 0 0 −1 1

,
ϒ(t) = I (I is an identity matrix),

in addition, α = 0.5, a11 = a21 = a31 = a41 = a51 = 0.2,
a12 = a22 = a32 = a42 = a52 = 0.3.

The corresponding time response curves of states xi1, xi2,
and xi3 (i = 1, 2, · · · , 5) without impulsive control are
depicted in Figures 1-3. It is seen that the uncontrolled
network is disorganized. One limitation of the disorganized
nearest-neighbor complex network may be that the network
nodes do not naturally lie on a metric space, thus restricting
the community detection.

Obviously, we can get

Miρ =

 1
1
1

 ,
Niρ = [1 1 1],

Piρ(t) = sin(aiρ t).

Next, we perform a specific calculation.

FIGURE 2. Time responses of states xi2 (i = 1, 2, · · · , 5) without
impulsive control.

FIGURE 3. Time responses of states xi3 (i = 1, 2, · · · , 5) without
impulsive control.

FIGURE 4. The states xi1 (i = 1, 2, · · · , 5) of the controlled network
under the designed impulsive control law with N = 10.

Step I: We choose the gain matrices Dk = diag(−0.7,
−0.7,−0.7).
Step II: We compute γk as defined in (9), and obtain

γk = 0.09.
Step III: For the symmetric and positive definite matrices

Qiρ , we select Qiρ = I (I is an identity matrix) to satisfy
(A1), and then determine using (8) that σ = 1.

Step IV: We choose constants ξ1 = 1 and ξ2 = 1, and then
calculate ω(t) = −2.0667 using (7).
Step V: We Select the constant ω̂ = 2 > 0, and observe

that (10) and (11) hold.
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FIGURE 5. The states xi2 (i = 1, 2, · · · , 5) of the controlled network
under the designed impulsive control law with N = 10.

FIGURE 6. The states xi3 (i = 1, 2, · · · , 5) of the controlled network
under the designed impulsive control law with N = 10.

Let tk+1 − tk = τimpulse. If there is some integer N > 0,
such that N τimpulse = τswitch, then (A3) holds.

According to Theorem 1, the impulsive control (2) can
globally asymptotically stabilize (1).

In the first simulation example below, we select
tk+1 − tk = 0.002, i.e., N = 10. The controlled network
states under the designed impulsive control law are depicted
in Figures 4-6. In the second simulation example below,
we select tk+1 − tk = 0.004, i.e., N = 5. The controlled
network states under the designed impulsive control law
are depicted in Figures 7-9. The simulation results indicate
that the controlled network is globally asymptotically stable.
This suggests that, to some extent, the proposed methods
have good dynamic property and negligible vibration, and
efficiently stabilize the controlled network.

V. APPLICATION TO BLIND SOURCE SEPARATION
In this section, we formulate the obtained results to be applied
in the field of blind source separation.

Source signals are ‘‘tiger’’, ‘‘tree’’, ‘‘sky’’, which are
described in Figure 10.

After vectorization, each component in vectors for source
signals is assumed to be independent of each other. Let the
impulse signal in Section IV ‘‘A Numerical Example’’ as the
unknown sources to be mixed.

FIGURE 7. The states xi1 (i = 1, 2, · · · , 5) of the controlled network
under the designed impulsive control law with N = 5.

FIGURE 8. The states xi2 (i = 1, 2, · · · , 5) of the controlled network
under the designed impulsive control law with N = 5.

FIGURE 9. The states xi3 (i = 1, 2, · · · , 5) of the controlled network
under the designed impulsive control law with N = 5.

FIGURE 10. The original images.

Here, the aim of blind source separation is to look for a
filter, such that the components of reconstructed signals are
mutually independent.
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FIGURE 11. The transformed black-and-white images and the related
histograms.

FIGURE 12. The mixed images effected by the impulse signal in Section IV
‘‘A Numerical Example’’ and the related histograms.

Applying the learning algorithm as Amari et al. [28],
Figure 11 gives the transformed black-and-white images and
the related histograms. Figure 12 shows the mixed images
effected by the impulse signal in Section IV ‘‘A Numerical
Example’’ and the related histograms.

In order to describe the characteristics of blind source
separation more intuitively, the full process from the original
images to the separated images is illustrated in Figure 13.

In order to analyze conveniently, besides qualitative anal-
ysis, and sometimes we also need the data of quantita-
tive analysis. A graphical illustration of the histograms
of original images and separated images can be seen in
Figure 14.

FIGURE 13. The full process from the original images to the separated
images.

FIGURE 14. The histograms of original images and separated images.

VI. CONCLUSIONS
Looked through the paper, we investigate thoroughly the
impulsive stabilizing control law for a class of uncertain
fractional-order complex switched networks. By virtue of
fractional-order Lyapunovmethod and impulsive control law,
a less conservative impulsive stabilizing criterion is obtained.
Several tests about blind source separation using the derived
control pulse are carried out to demonstrate that our control
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algorithm is with a high-performance level. Further investi-
gations may aim to design the pinning impulsive strategy for
fractional-order complex switched networks and the delay-
dependent impulsive control for fractional-order time-delay
complex switched networks.
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