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ABSTRACT This paper presents an end-to-end approach for locating faults on high-voltage dc (HVDC)
transmission lines. Different from traditional methods which rely on communications between different
measuring units or feature extraction of post fault transients, the proposed algorithm takes the raw data
of locally detected traveling current surges as the only-input and outputs the fault locations directly.
Especially, the stacked auto-encoder (SAE) is utilized to model the relationship between fault currents and
fault locations. The SAE-based method is performed in time domain and tested with a simulated HVDC
transmission line modeled in PSCAD/EMTDC. The simulation results show that this method is effective in
locating faulted points and robust against attenuation, overlapping of traveling surges, and various ground
resistances.

INDEX TERMS VSC-HVDC, fault location, stacked auto-encoder, deep learning.

I. INTRODUCTION
Considering a number of advantages, such as lower loss,
larger transmission capacity and lower insulation require-
ment, high-voltage DC (HVDC) is a preferred choice for
long distance power transmission [1]. The wide use of
an insulated gate bipolar transistor (IGBT) and pulse-width
modulation (PWM) accelerates the development of voltage-
source convertors (VSCs), which provide high reliability and
flexible control of power flow. Such a development attracts
more researchers to focus on VSC-based HVDC [2].

Accurate fault location can help engineers to find the
faulted area and recover the system in a short time [3]. The
two main approaches are usually used in HVDC systems to
find the faulted locations: the fault feature-basedmethods and
the traveling wave-basedmethods. Each has some advantages
and shortcomings.

The fault feature-based methods usually study the fault
loops or the variations of post-fault measurements [4].
The post-fault response of VSC DC system includes three
phases: (a) capacitor discharging phase; (b) diode freewheel
phase; (c) grid current-fed phase. In phase (a), the supporting
capacitor discharges and the electrical measurements depend
mainly on the topology and structure of transmission lines.

In phase (b), the currents in IGBT increases and trips the
controllers to block IGBTs out. In phase (c), currents flow
from AC sources to DC faults via diodes. Both phase (a) and
phase (c) can be modeled with linear systems and are often
used in fault location analysis. With transmission line param-
eters, the fault feature based methods can calculate the fault
locations with the post-fault measurements in fault loops.
Time domain operations such as root mean square (RMS)
values of both AC and DC measurements [5]–[8], frequency
domain extractions such as harmonic frequency compo-
nents [4], [9], [10], and time-frequency distributions such
as Hilbert-Huang transform (HHT) or wavelet transform rep-
resented features [2], [11], [12] have all been considered.
These methods show good performance in a lot of exper-
imental scenarios, while challenges still exist in practical
applications due to the lack of accurate line parameters.

The traveling wave (TW) analysis methods are most com-
monly used in practical projects. Once the first TW reaches
line terminal, the post-fault response of DC convertors will
start. So, the TW based methods, especially the ones with
wave fronts, will not be affected by convertor controllers.
The wave fronts are usually captured at one or more termi-
nals. The single-end traveling wave methods usually capture
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the arriving time of incident wave and reflected wave and
realize the fault location with the time difference [13]–[16].
For a point-to-point transmission line, double-end traveling
wave methods record the arriving time of wave fronts at
both terminals and pin-point the fault with both the time
differences and the length of the transmission line [17], [18].
In some recent research, the traveling wave-based methods
are reported to generate an effective performance in networks
with complicate topologies [19].

Since the fault location is calculated with the arriving time
of wave fronts and the estimated propagating velocity of
traveling surges, accurate calculations of arriving time and
propagating velocity of traveling waves are pretty critical.
When the traveling wave propagates along long transmis-
sion lines, distortion and attenuation occur due to the dif-
ferent velocities of traveling wave components in different
frequency bands. However, the velocity used for location is
usually taken as a constant and calculated with line parame-
ters measured within a certain frequency band. The calculated
velocity used for location analysis might be different from
the actual velocity. Also, the recognition of the correct trav-
eling wave is quite crucial for precise location and usually
fails when fault location is extremely close to the measur-
ing point because the incident wave will be overlapped by
reflected ones. On the other hand, because of attenuations,
it is also quite difficult to decide the arrival time of wave
fronts from far-away fault points. The location results heavily
depend on precise extraction of wave fronts, correct estima-
tion of traveling velocity, and, sometimes, communication
quality. As the propagating velocity is close to light speed,
a slight error of any factor may result in a large location
error.

To reduce the dependence on the precise capturing of the
wave front and the correct calculation of propagating velocity,
the traveling surges are sometimes characterized by vari-
ous features which can be recognized by machine learning
classifiers. Machine learning is an effective tool in classi-
fying or recognizing labeled or unlabeled data [20]–[23]
and has been used in fault location of HVDC system. Some
classifiers, including the artificial neural network [21], [24]
and extreme learning machine [2], have been employed and
have performed well. However, these classifiers require a
suitable feature extraction [25]. If the features cannot fully
represent the unique differences of traveling waves from dif-
ferent locations, the location results would not be as accurate
as expected.

With the emergence of a huge amount of training data
and a rapid increase of the computational ability of mod-
ern computers, neural networks with unsupervised learning
algorithms have been used in tasks such as image processing,
natural language processing, etc. in recent years and can pro-
vide end-to-end solutions in various cases. It applies various
methods such as auto-encoders to learn the features of raw
data and avoids the influences from ineffective manual fea-
ture extraction, providing an ideal alternative to the traditional
machine learning approaches.

Auto-encoder is one of the most popular tools for fea-
ture hierarchy. An auto-encoder can learn a representation
(encoding) for a set of data with unsupervised learning, and
reduce the dimensionality of features. The depth of stacked
auto-encoder (SAE) network is relatively shallower than the
other deep networks such as conventional neural network.
Such a structure is more preferred for analyzing electrical
measurements of post-fault procedure of HVDC systems. The
use of SAE can avoid complex computations and handle low-
dimensional input well.

This paper proposes a stacked auto-encoder (SAE) based
end-to-end fault location method for VSC-HVDC transmis-
sion lines. First, the generation, propagation, and reflection
of traveling waves on HVDC transmission lines are analyzed.
Then, the SAE is trained with carefully selected parameters
and tested. Finally, the trained SAE is performed with simu-
lated traveling waves, and the location results show that SAE
has a high potential to be applied in field applications.

II. TRAVELING WAVES IN HVDC
A. GENERATION AND PROPAGATION OF TWS
The ground fault in power transmission system can be equiv-
alent to a step voltage excitation that is switched on when
a fault occurs. Due to the increase of propagation dis-
tance or the losses on transmission line resistance, the mag-
nitude of the incident wave front decreases. The impulsive
surgewill be extended. The longer it propagates, the smoother
it is. On the other hand, the amplitude of the traveling
wave and the corresponding propagating speed vary with
frequency. After a long distance propagation, traveling waves
can reach the terminal of transmission line at different instants
because of different velocities. The traveling wave fronts
measured at the terminals of the transmission line would be
distorted during propagation. Fig.1 illustrates the distortion
and attenuation of traveling wave fronts after propagating
different distances.

FIGURE 1. Attenuation of traveling surges propagating different
distances.

The same ground fault is placed at different distances
to illustrate the distortion and attenuation of traveling
wave fronts after propagating different distances. As shown
in Fig.1, the wave fronts that propagate longer are more
extended than those closer to the measuring points.

B. SUCCESSIVE REFLECTIONS OF TW
As with all electromagnetic traveling waves, travel-
ing waves on transmission lines will be reflected and
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transmitted at discontinuous junctions. This phenomenon can
be described clearly with a lattice diagram, as demonstrated
in Appendix A. The successive reflections of traveling waves
can be seen from the lattice diagram, at the measuring
point, to be a wave train [26]. The interval between two
surges in wave train is 2τ , where τ is the duration of the
traveling wave propagating from the grounded fault point to
the measurement equipment. In power system monitoring,
a piece of data segment is often used in analysis. If the data
window is shorter than 2τ , only one traveling surge will be
captured, otherwise, two or more surges will be recorded.
Fig.2 shows traveling waves from four different locations.
All of the traveling surges are detected with a certain data
window.

FIGURE 2. Traveling surges from different fault points in a same data
window.

For a 40 microsecond data window, as shown in Fig.2,
more than one amplitude increase, or traveling surge can be
detected if the interval duration τ is smaller than 20µs. Trav-
eling waves are usually regarded to propagate with a speed
approaching to 3×108m/s, or the speed of light [26]. Thus,
the smallest distance for a single traveling surge detection in
such a data window is 20 µs ×3× 108m/s = 6 km. In Fig.2,
the traveling wave trains from faults at 2 and 4 km are clearly
demonstrated, while only one traveling wave is captured for
faults at 20 and 40 km.

According to the above analysis, the waveform of the
traveling wave varies with the distance of the fault. However,
due to distortion, attenuation, and reflection, it might be a
bit hard to build the relationship between waveform and
fault location using linear models. A tool that can deal with
complex learning tasks is needed for precise location.

III. FUNDAMENTALS OF THE STACKED AUTO-ENCODER
A stacked auto-encoder (SAE) is actually a kind of neural
network with deep learning algorithms [26]–[31]. The aim
of an auto-encoder is to learn a representation or encoding
for a set of data [27], [32]. SAE uses auto-encoders in the
pre-training procedure and uses back-propagation in the fine-
tuning stage [31], [33]. Its training procedure is performed
layer by layer. Each layer is trained on a set of features
extracted by the previous layer. More layers suggest a more
complex feature extraction [28]. Fig.3 displays an example
structure of SAE. Here, x stands for the inputs, while h stands
for features of different layers.

FIGURE 3. An example structure of SAE.

Such feature hierarchy can help SAEs in handling large,
high-dimensional data sets and performing automatic feature
extraction without human intervention. This is very useful
when the number of training samples is limited, i.e., the
measured electrical transient signals [34], [35]. It has a high
potential to find the relationship between traveling waves and
fault locations. In this paper, a SAE net is selected to deal
with fault location problems. With suitable selection of net-
work structure and training functions, an SAE can effectively
recognize traveling waves from various locations.

IV. SAE-BASED FAULT LOCATION
Since an SAE is capable of handling raw data, the traveling
waves on HVDC transmission lines can be used directly as
the input of the SAE. Overall, three steps are included in
this proposed SAE-based fault location method: raw data
processing, SAE training, and fault location calculation.

A. RAW DATA PROCESSING
To capture traveling surges, a higher sampling frequency is
needed. Generally, the traveling waves are sampled at a rate
higher than 1Mega samples per second, that is, 1MHz/s [27].
In order to reveal the high frequency details, the signals ana-
lyzed in this paper are sampled at a rate of 5 MHz/s. Differ-
ent from a traditional current source convertor (CSC) based
HVDC, the VSC HVDC system controls voltages instead
of currents. Its currents often change quickly and contain
more transient information. The current travelingwave is thus
considered in this research. A time window is adopted to
record traveling surges. The length of the time window is 2τ ,
where τ is the propagating time of the traveling wave from
the fault point to the measuring device.

An SAE cares more about the waveform of traveling
waves, rather than their magnitude. The magnitude differ-
ences between all raw inputs might cause errors or slow
training. Normalization is certainly needed. All signals used
as input are normalized to ensure their values distribute
between 0 and 1 by dividing them with their maximum value.
Similarly, the output which suggests the location of the fault
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is normalized by dividing the total length of the transmission
line.

B. SAE TRAINING
A back-propagation network with multiple layers of auto-
encoder is adopted. Such a network can map any non-
linear inputs to their output with minimal computational
overheads [28], [29]. To achieve a better performance of SAE,
parameters such as architecture and functions are properly
selected according to particular application. The performance
of the selected SAE is evaluated with errors.

The selected SAE is trained with various samples, which
are generated at different locations with different ground
resistances.

C. FAULT LOCATION CALCULATION
The trained network is used to locate faults with a small
segment of traveling wave waveform. All parameters of raw
data—for instance, sampling rates, time window length, and
normalization— should be the same as those samples used
for training.

V. SELECTION OF FUNCTIONS AND
ARCHITECTURE OF SAE
Suitable parameters and functions of SAE are selected for
a particular application to reach their best performance. The
architecture and functions of the network are selected accord-
ing to the requirements of the traveling wave-based HVDC
fault location.

A. SELECTION OF SAE ARCHITECTURE
1) SIZE OF INPUT AND OUTPUT LAYERS
The input of SAE is the raw data of traveling waves and the
output is the location of the fault. As only the wave fronts of
traveling surges are employed in analysis, it is much better to
choose a short time window to avoid multiple wave fronts in
one input. However, too short a data window cannot display
the differences between traveling surges from far away faults,
where attenuation makes the wave fronts smooth and similar.
Here, a data window of 20 microseconds is adopted. So the
size of input is 100 when the sampling frequency is 5 MHz/s.

Since only one fault location is related to one input, the size
of the output is one.

2) NUMBER OF HIDDEN LAYERS
The depth of a neural network can increase its capability of
extracting features when the input size is huge. However,
too much layers of hidden nodes can result in slow train-
ing or worse recognition results. Training error is a common
criterion to evaluate the performance of a trained network.
Here, the mean value of maximum error of each training is
adopted. Its definition is shown in (1)

Emme =
1
N

N∑
i=1

max(|yj − dj|), j = 1, 2, . . . ,M (1)

TABLE 1. Mean maximum errors of trained networks with different
numbers of hidden layers.

where N is the number of trained networks, i stands for the ith

round of training or the ith trained network, yj is the calculated
fault location of jth input, and dj is the corresponding jth

target output. M is the number of training samples. Table 1
lists the mean maximum errors (MMEs) of trained networks
with different numbers of hidden layers. For this calculation,
the number of training samplesM is 72, and the errors are the
mean of N = 10 trained networks.
As illustrated in Table 1, for an input with 100 values, two

hidden layers are enough for application. Thus, the number
of hidden layers is chosen to be two.

3) SIZE OF HIDDEN LAYERS
The same method is used to find the suitable size of hidden
layers. Since the feature hierarchy extracts unique character-
istics from raw data, the size of the hidden layer is supposed
to be smaller than its previous one. The size of the first hidden
layer, S1, ranges from 2 (larger than the output layer) to 100
(equal to input layer), and the size of second hidden layer, S2,
ranges from 1 to the size of the corresponding first hidden
layer, S1. Fig.4 illustrates the distributions of MMEs which
are calculated with (1). Each error value shown in Fig.4 is
generated by 10 trained networks.

FIGURE 4. MME distribution of networks with different sizes of hidden
layers.

As Fig.4 demonstrates, larger sizes of hidden layers are
more likely to produce larger errors. According to this error
distribution, the network with a 12-node 1st hidden layer and
a 12-node 2nd hidden layer is selected, which has the smallest
maximum mean error. Therefore, the architecture of the SAE
is selected to be 100-12-12-1.

B. SELECTION OF FUNCTIONS
1) ACTIVATION FUNCTION
To effectively extract nonlinear features, activation func-
tions are used to introduce nonlinearity to SAE models.
Generally, logistic functions and rectifier functions are
often used [30]. Continuous differentiation is a requirement
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for gradient-based optimization, like back-propagation [31].
Although rectifier functions are discontinuous, they can still
be used in SAE. Logistic activation functions are continuous
and are more likely to approach a continuous non-linear
model. Here, a sigmoid function is selected to activate hidden
layers during unsupervised training and a softmax function,
which looks quite similar to the sigmoid function, is used for
supervised learning.

2) COST FUNCTION
The goal of using a neural net is to arrive at the point of least
error as fast as possible. The most popular cost functions are
mean square error (MSE) and cross-entropy function. MSE
is the average sum of differences between computed results
and targets. It gives too much emphasis on the incorrect
outputs when compared with cross entropy, which cares more
about closeness of a prediction and is a more granular way to
compute error [32].

TABLE 2. MMEs of trained networks with different loss functions

MME, defined by (1), is also used to evaluate the
performance of different loss functions. The mean errors
of 10 trained networks are listed in Table 2. All parameters
of the trained networks, except loss function, are the same.
The trained networks with cross entropy can produce smaller
errors than those with MSE. Cross entropy is selected in this
research.

VI. SIMULATION RESULTS AND COMPARISONS
A. LOCATION RESULTS
In this section, the performance of the proposed SAE-based
fault location method is tested with simulated traveling
waves. A point-to-point VSC-based transmission system is
modeled on the platform of PSCAD/EMTDC. The total
length of the DC transmission line is 200 kilometers. The
frequency dependent (phase) model is selected to simulate
transmission lines. The details of the tower structure model
are shown in Appendix B. Two-level AC/DC convertors are
adopted. The DC bus voltage is 500 kV and the middle point
of the support capacitor is grounded. A single pole to ground
fault is simulated and placed at different locations with var-
ious ground resistances. Overall, 120 faults are simulated
to generate 120 samples. Seventy-two samples are used for
training SAE, 18 samples are adopted to test trained network,
and the rest (30 samples) are used for fault location. The
details of those samples are listed in Table 3.

The size of the SAE is 100-12-12-1. Activation functions
are sigmoid and softmax functions for the hidden layers.
A cross-entropy function is used as the cost function. The
maximum epoch for each training is selected to be 1000.
The performance of the trained network is assessed with
errors, or the differences between calculated fault locations

TABLE 3. Details of samples

(Lcal) and actual ones (Lsim). The error is defined by (2).

Eerr = |Lcal − Lsim|/Ltotal × 100% (2)

Here, Ltotal is the total length of the simulated model,
200 km. To illustrate the range of errors, the mean error and
maximum error of a sample group are used. They are defined
by following equations

Eerr .mean =
1
N

N∑
i=1

Eerr .i, i ∈ IN (3)

Eerr .max = max(Eerr .i), i ∈ IN (4)

where IN stands for the sample set, and N is the number of
samples.

TABLE 4. Location results of the proposed SAE-based method with
similar samples

Table 4 lists the errors of the trained network with similar
traveling current waves. Those errors are quite small. All of
them are smaller than 0.5%, and the greatest one is only
0.47%. This suggests that the trained network can effectively
discriminate the fault locations with raw traveling data and
can be used for fault location.

Thirty groups of raw traveling wave data are used for
location with trained networks. Those data are totally differ-
ent from the samples used for training and testing. As fault
occurrence in practical applications are random, it is highly
possible for a trained network to meet unfamiliar datasets.
Table 5 illustrates the location results of the proposed
method.

As shown in Table 5, most of the mean location errors are
smaller than 1%, and all of the maximum errors are smaller
than 2%. For samples that are close to the training samples
(5, 95, 105, and 195 km), their location errors are smaller.
However, for the samples which are far away from the train-
ing samples (65 and 135 km), their errors are larger. Both
of their mean errors are greater than 1%. Faults with high
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TABLE 5. Location results of the proposed SAE-based method with
different samples

ground resistance are also a challenge in fault location. Larger
ground resistance can lead to smaller magnitudes but larger
attenuation of current traveling surges. The ground resistance
analyzed in Table 5 varies from 5 to 100 �. According to the
errors listed in Table 5, the proposed SAE-based method can
also produce good performance when fault impedances reach
up to 100�. For totally unfamiliar raw data, the performance
of the SAE is effective enough. By the increasing of the size of
training samples, the trained SAE can gain more experience
and produce better location results.

B. EFFECT OF NOISES
For practical applications, the detected traveling waves are
usually buried in noises. The noises could be interference
from nearby electromagnetic devices, impulsive transient
interferences, or background Gaussian noises. Most interfer-
ences can be removed by de-noising algorithms, for exam-
ple, lightning disturbances can be eliminated by recognition
methods and harmonics can be filtered by hardware. How-
ever, Gaussian white noises are usually contained in field
tests. The proposed location method is also tested with noised
travelingwaves. Thirty groups of samples are used in this test.
The location results are listed in Table 6.

TABLE 6. Location results of the proposed SAE-based method with
different levels of noises

According to the location results, the location errors
increase with the reduction of SNRs. The maximum location
error reaches 13.63% when the SNR is as low as 20 dB.
However, the proposed method can perform well when the
SNR is up to 40 dB. If de-noising algorithms such as thresh-
olding methods could be used, the location performance can
be improved [33].

C. EFFECT OF SYSTEM PARAMETERS
The attenuation of traveling surge fronts mainly depends
on the parameters of the DC transmission system, such as
transmission line parameters and tower equivalent param-
eters. Although the training samples can be generated by
simulated transmission lines which aremodeled precisely, the
differences between simulated models and practical systems
cannot be avoided. To illustrate the performance of proposed
method under slight differences, the system parameters are
changed. The details of tested systems are as follows: (1) sys-
tem A: solid conductor with an outer radius of 0.0203454m,
DC resistance R = 0.03206�/km; (2) system B: stranded
conductor with an outer radius of 0.0203454m, number of
strands is 19 and strand radius is 0.003m, DC resistance R =
0.03206�/km; and (3) system C: stranded conductor with
an outer radius of 0.01438637m, number of strands is 7 and
strand radius is 0.0054m, DC resistance R = 0.06412�/km.
All of the three transmission systems are point-to-point VSC-
HVDC transmission lines with a length of 200 kilometers. All
of them are simulated with frequency based model (Phase) in
PSCAD/EMTDC. For each system, 10 faults are simulated
equally on the transmission lines. The location results are
listed in Table 7.

TABLE 7. Location results of the proposed SAE-based method with
different system parameters

According to the location results, the location errors
change with the system parameters. The proposed SAE is
trained with samples from system A, and the variation of
system parameters can lead to increase of errors. When the
system parameters are similar, for example, system A and B,
the location results are still effective. But when the system
parameters vary a lot, the location errors will increase. The
maximum error is 5.86% for system C. For the practical
power transmission system with slight differences between
simulated models, the performance of SAE based method can
be also effective.

D. COMPARISIONS
The goal of this section is to compare the performance of
the proposedmethodwith other popular travelingwave-based
methods: the single-end arriving time-based method and the
traditional artificial neural network (ANN) based method.
The traveling wave data used in SAE simulations are also
adopted in comparisons.

The single-end traveling wave-based fault location method
adopts the arriving time of the incident wave and the reflected
wave [34], [35]. According to the lattice diagram of traveling
waves in Appendix A, the time difference between incident
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wave I1D and reflected wave I1D’BD equals to the duration
when the traveling wave runs the fault distance twice. With
the parameters of the transmission line, it is easy to get
the velocity of traveling waves and, thus, the fault distance.
However, the precise capturing of traveling wave fronts is
very difficult in some cases, for example, when there is noise
pollution or large attenuation. In this comparison, wavelet
maxima is used to capture the wave fronts of traveling waves.
The frequency dependent model of the transmission line is
employed and the propagating velocity is calculated to be
around 3×108m/s.
A traditional ANN-based method often adopts shallow

ANN and feature extraction [36]–[38]. Feature selection is
quite critical to generate an effective representation of fault
signals. Various features are developed, for example, wavelet
coefficients, RMS values, a Prony model, and so on. The
architecture and functions of ANN are selected carefully with
different features and applications. Here, the wavelet confi-
dents of the frequency band 312.5–625 kHz are used as the
input of ANN. As the number of wavelet coefficients is 15,
a 15-8-1 ANN structure is used. Transfer function ‘‘sigmoid’’
and training function ‘‘Levenberg-Marquardt optimization’’
are selected.

TABLE 8. Comparison between the proposed method and existing
methods

The location results are listed in Table 8. According to
these results, both compared methods have larger mean and
maximum location errors than the proposed SAE-based one.

VII. CONCLUSIONS
In this paper, an end-to-end fault location method for HVDC
transmission lines is presented. With proper selection of
parameters and a large amount of raw data as a training
sample, SAE is successfully used to solve the fault loca-
tion problems in an HVDC system with only local current
measurements. This method is not affected by the fault posi-
tion and ground resistance, and shows high reliability and
accuracy.

Unlike the traditional traveling wave-based fault loca-
tion methods in which characteristics need to be carefully
selected, the proposed algorithm can process raw data of
traveling waves. With more training data available, its perfor-
mance can even be improved further. The approach presented
in this paper is also expected to be a good supplementary to
the traveling wave-based fault location methods.

APPENDIX A
The incident waves of a fault move out in opposite directions
until they reach the convertor stations, where they reflect as a
consequence of the surge impedance of the transmission line
boundaries. Reflected waves quickly reach the faulted point
where they reflect again as a result of the ground resistance,
and some of them transmit into the opposite terminal of the
transmission line and then are reflected back. Thus, within
a few microseconds the system is alive with a whole series
of waves moving in different directions, arriving at different
times, of different magnitudes and polarity, and having expe-
rienced different attenuations and distortions [26].

FIGURE 5. The lattice diagram of traveling waves in successive reflections.

In order to keep track of all these components, a lattice
diagram has been used, such as that shown in Fig.5. Traveling
waves, I1 and I2, coming from the fault point, rush towards
convertor stations. The characters A, B, C, and D denote the
refraction factors, while A’, B’, C’, and D’ denote reflection
factors. With such a lattice diagram, the progress of each
wave component is easily followed as it slides downhill along
its zig-zag path. For each measurement device, M1 and M2,
a traveling wave train will be detected, until the currents reach
another stable status.

APPENDIX B
Fig. 6 shows the tower structure of the HVDC transmission
line model used in this research.

FIGURE 6. Tower structure of the HVDC transmission line.
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