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ABSTRACT Smart grids, which are composed of reciprocal power grids and communication networks, have
revolutionized the traditional electrical section. Interdependent smart grids have attracted many researchers
to the cascade scheme. However, the strategy of coupling two networks has been neglected. The construction
of a real coupled network has been infeasible due to the economic cost and network scale for researchers.
Therefore, coupling two networks to simulate a real network is fundamental for a smart grid. In this paper,
we propose a model for the coupled network, analyze the characteristic of power network, and focus on
the coupling strategy. Next, we leverage a classic community detection algorithm to form a local network.
A new local positive degree coupling algorithm was proposed based on community detection to create
a coupled network. A numerical experiment demonstrates that our coupling algorithm outperforms the
previous random coupling scheme. In addition, the local positive degree coupling algorithm can be extended
to other cyber-physical systems with slight changes for future studies.

INDEX TERMS Community detection, large scale network, random coupling scheme, smart grid, simulation
network.

I. INTRODUCTION
Smart grids, which have incited a revolution in traditional
electrical grids, integrate various smart infrastructures and
renewable energy sources. A smart grid, coupled with
widespread power networks and intelligent communication
networks, has formed a reciprocal network. Power stations
depend on communication networks for control and manage-
ment, whereas communication networks depend on power
systems for their electricity support. A smart grid has a salient
feature: the coupling of two interdependent networks rather
than the use of a single isolated network. This feature has
attracted many researchers to the cascade scheme due to
essential power security. Some results are remarkable [1], [2].

Electrical energy is instantaneous and cannot be stored
in its original form on a large scale; as a result, a experi-
ment that considers an economic and large-scale network for
researchers is infeasible [3]. Therefore, simulation is funda-
mental for a smart grid [4].

Many researchers have concentrated on cascade con-
trol and alleviation in interdependent networks [2], [5].
Most of those studies were based on completely random
coupling, which is a strong condition for a coupled net-
work [6]. Many real-world networks (e.g., smart grid) are
not randomly deployed but are carefully designed to achieve

performance and function [1]. Thus, a random coupling
strategy is not suitable for a real network with regard to
both theory and experiment. However, connection with every
determined node point-by-point remains unrealistic for large-
scale networks. A power grid has a distinguished modu-
lation property [7]. Therefore, coupling two heterogeneous
networks for a smart grid becomes a challenge considering
the modularity of a power network.

Few studies address coupling strategies. Shin, et al. inves-
tigated unidirectional and bidirectional inter-edges to affect
the cascade [1]. Four types of relationships (power flow,
power supply, communication signal and control data) were
investigated in [8]. An allocation of the edges between a
power grid and a communication network was proposed [9].
The allocation followed a well-known balls and bins model
of probability and provided the interlinks between a power
grid and the Internet. How the edges connected two networks
remains unclear in these studies.

The coupling method, which is a one-to-one connection,
can be traced in [10] regarding the vulnerability of the cou-
pled network. Wang et al. [11] considered a one-to-two con-
nection method to ensure the connection of two communica-
tion nodes with a power node. However, these studies did not
provide clear descriptions.
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Considering the modulation property, some studies of
a separating network in a smart grid system were pro-
posed. To consider the geographical correlated failures [12],
the authors divided an Italian transmission network into
mangy disk centers. In [13], a regional division in a
smart grid was envisioned. These studies did not clearly
address the problem of coupling two networks for a smart
grid.

The community detection algorithm can connect related
nodes to establish a community, in which nodes are easily
connected. The majority of power applications are restricted
to many factors, such as time delay, management and geo-
graphical area [14]. Thus, nodes prefer to communicate in an
inner community rather than an inter community. Intuition
enlightens us to the use of the community detection algorithm
to build a coupled network.

Based on intuition, we propose a coupling scheme and
weaken the condition of complete randomness, considering
the modulation of the power grid. First, we construct a model
to represent a coupled network and propose a specific prob-
lem. Second, we provide a coupling algorithm to couple two
networks based on the classic community detection algo-
rithm. An algorithm analysis is also presented. In the exper-
iment, we simulate the coupling scheme and compare the
results of algorithms. The main contributions are summarized
as follows:

• The model for an interdependent network is given.
Based on this model, we formulate a specific
problem.

• In the coupling scheme, we weaken the condition of
complete randomness and propose a community algo-
rithm based on community detection.

• We present a positive degree coupling algorithm and
perform an algorithm analysis.

• With open NetworkX, we set up an experiment and
compare the performance of algorithms.

In the remainder of this paper, we construct a model for
the interdependent network in section II. Section III intro-
duces and analyzes the coupling algorithm. An experimental
evaluation and a discussion of the results are provided in
section IV. The study’s conclusions are presented
in section V.

II. NETWORK MODEL
In this section, we introduce the model for the coupled net-
work and propose useful definitions for the coupled network.
The research problem is based on this model. Basic notations
are summarized in Table 1.

A. NETWORK MODEL
The electrical energy has a hierarchical level and supply
for consumption equipment. A node in a power network
has many properties, such as load, power level, geograph-
ical position, and administrator node. The administrator
node, which manages the neighbor nodes when a fault has

TABLE 1. Basic notations.

occured, is specific for each power node due to the rigorous
requirement of security. We use the n-dimensional vec-
tor xp to represent a power node. Different dimensions
represent different properties. The power node set P =
(xp1 , x

p
2 , . . . , x

p
s ) implies that the power grid include s nodes.

An adjacent matrix Ap represents the mutual connection
among the power nodes. Similarly, a node of communica-
tion network can be modeled as the m-dimensional vector
yc. Each communication node has multi-properties, such as
administrator node and type. The communication node set
C = (yc1, y

c
2, . . . , y

c
t ) signifies that the communication net-

work includes t nodes. The adjacent matrix Ac can represent
the relationship among communication nodes. The coupled
matrix Rs×t represents the coupling information between
power nodes and communication nodes, since each power
node has at least one coupled communication node. There-
fore, the coupled network G can be presented as five-tuple
model:

G = (P,Ap,C,Ac,R) (1)

Definition (Inner-Network Distance): Assume that xpi and
xpj are two power nodes; the inner-network distance is

dispxi,xj =
∥∥∥xpi − xpj ∥∥∥. Likewise, if yci and ycj are two com-

munication nodes, the distance denotes discyi,yj (y
c
i , y

c
j ) =∥∥∥yci − ycj ∥∥∥.

Definition (Administrator Node): The administrator node
Adj = {(Adj ∈ P) ∨ (Adj ∈ C)}, and node {j|dj ∈
max
k
{d1, d2, · · · , dn}, 1 ≤ k ≤ n}. Because this node is

usually located in a town or a city, an administrator node,
which is always referred to as a power supply bureau, can
manage many nodes in a power network and communication
network.
Definition (Inter-Network Distance): Assuming that xpi

and ycj are the power node and communication node,
respectively. An internetwork distance can be defined as
disxi,yj (pu, pv) =

∥∥∥xTi · pu− yTj · pv∥∥∥. The parameters pu and
pv satisfy

∑
i
pui = 1 and

∑
j
pvj = 1. For example, pu =

(0, 0, 1, 0, 0, . . .) indicates that we take the third component
of vector xi for the calculation.

Figure 1 shows an intuitive model of the coupled network.
The red bold solid line represents a power line, whereas
the black solid line is an inner link of nodes located in the
communication network. The black dashed line represents the
interlink of two networks.
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FIGURE 1. Model of the coupled network.

B. PROBLEM STATEMENT
For the coupled network, we pay attention to method how to
couple two heterogeneous networks considering the modula-
tion property of power grid for a smart grid.More specifically,
in the interdependent model G = (P,Ap,C,Ac,R) in (1),
we discuss how to fill the value of the coupled matrix R
according to given P,Ap,C and Ac, considering the modu-
lation of Ap.

III. COUPLING ALGORITHM
In this section, we apply the classic community detection
algorithm to the adjacency matrix to form modules in the
first subsection. Then, we provide the coupling algorithm
to couple the different nodes of pairwise communities in
the second subsection. In each subsection, we provide an
analysis of algorithms.

A. ASSEMBLE COMMUNITY
To weaken the condition of complete randomness, we apply
the classic community detection algorithm to the power
network [15]. Because Ap represents the power adjacency
matrix, for node i, di =

∑
j
Api,j. The function δ has been

defined as δ(u, v) = 1 if u = v and 0 otherwise. Let
m = 1

2

∑
i,j
Api,j denote the number of total edges of the power

network P. Assuming that node i belongs to the community
ci and all nodes have been divided into communities without
overlap, we can use modularity Q to measure whether the
community has assembled corrected nodes.

Q =
1
2m

∑
i,j

[
Api,j −

didj
2m

]
δ(ci, cj) (2)

Some researchers have proposed a concrete algorithm of
community detection with optimal performance [16]. They
have achieved optimization of modularity by the heuris-
tic computing 1Q at the shorter computation time. Since
the communication network has a topology that is simi-
lar to the topology of a power network in geographical
locations [17], [18], we create the communities of a com-
munion network with the same number of nodes and a more
robust connection [19].

After a community has formed, the maximum range of ck
is defined as

ran(ck ) = max{dispxi,xjor dis
c
yi,yj}, i, j ∈ ck

Since the community ci is only a structure connection,
it does not contain an administrator node. We identify the
administrator nodes using Adj in communities after the com-
munities are established. With the vector parameters pu
and pv, the community cpi matches the community ccj by

disadpi ,adcj (pu, pv)

= min
{∥∥∥(adpi )T · pu− (adcj )

T
· pv

∥∥∥}, ∀i,∀j (3)

This match forms the pair of communities, as shown
in figure 1. We use the assemble community algorithm
(algorithm 1) to present the pairwise communities.
Time Complexity: If a network has n nodes and m edges,

the algorithm complexity of the first step is O(md log n).
Let d denote the depth of a dendrogram that describes the
community. Identify the administrator needs O(n log n) using
a quick sort in the second step. In the sparse network (e.g.,
smart grid), m ∼ n and d ∼ log n, an algorithm runs in
O(nlog2n). Therefore, the time complexity of algorithm 1
is O(nlog2n).
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Algorithm 1 Assemble Community
Input: The limited definitive interdependent network G
Output: Pair of communities
1: Use Q as a metric to form the community
2: Identify the administrator Adj for each community ci

within ran(ci)
3: Obtain the parameters pu and pv and use (3) to connect

the pairs of communities

B. INTER-MODULE COUPLING STRATEGY
In this subsection, we focus on the coupling method in pair-
wise communities. In smart substations, which are correlated
with essential applications, often connect with more neigh-
borhood nodes [20]. Similarly, the communication nodes,
which are concerned with substations, are also tends to
associate more communication nodes, because equipment
needs to control, supervise, and run. According to this real-
ity, we use positive degree coupling (PDC) algorithm (algo-
rithm 2) to couple two heterogeneous communities. This
algorithm indicates the high degree substations are prone
to connect with the high degree communication nodes each
other.

Assuming that we have community cpX including power
nodes X = {x1, x2, · · · , xn}with the weight vector ω(xi). In a
similar way, we have community ccY including communica-
tion nodes Y = {y1, y2, · · · , yn} and weight vector ω(yj). Let
RP stands for the random weighted permutation of X . We can
get the inner connection between the two communities by
PDC algorithm:

Algorithm 2 Positive Degree Coupling

Input: two communities cpX ,c
c
Y and

∣∣cpX ∣∣ = ∣∣ccY ∣∣ = n
Output: n pairs of coupled nodes
1: Y ′← Sort Y according to the weight ω(yj) in descending

order.
2: Sum of weight of X , totWeight ←

∑n
i=1 ω(xi)

3: for all k = 1 to n do
4: v← randomly select an element in X with the proba-

bility ω(xk )/totWeight
5: RPk ← v,X ← X\{v}, totWeight ← totWeight −

ω(xk )
6: add an edge in the two nodes (RPk ,Y ′k )
7: k = k + 1
8: end for
9: return (RP,Y ′)

Algorithm 2 returns pairwise nodes with edges. The pair-
wise nodes originate from two heterogeneous networks.
We use this information about nodes and edges to fill the
matrix R in the model of the coupled network G to solve the
problem.

From this algorithm, we obtain the random weighted per-
mutation RP of X . In this permutation, the element with a
large weight has a low excepted index [10].

Proposition: In the random weighted permutation RP,
a node with a large weight has a lower expected index than a
node with a smaller weight.

Proof: Let E(X , v) be the expected index of the node v
in the random weighted permutation RP. Then we have

E(X , v) =
ω(v)∑

x∈X
ω(x)
+

∑
z∈X\{v}

ω(z)∑
x∈X

ω(x)
(1+ E(X\{z}, v))

(4)

Assuming that the weight of v1 and v2 satisfies ω(v1) >
ω(v2), we compare E(X , v1) with E(X , v2).

E(X , v1)− E(X , v2)

=
{ω(v2)E(X\{v2}, v1)− ω(v1)E(X\{v1}, v2)}∑

x∈X
ω(x)

=
ω(v2)− ω(v1)∑

x∈X
ω(x)

(5)

Due to hypothesis ω(v1) > ω(v2), we obtain E(X , v1) <
E(X , v2) and the proposition holds.

Since the random algorithm is concerned with step 4 of
algorithm 2, in the sequel, we employ the random algorithm to
analyze the expected number of the node iwith the probability

ω(i)
/

n∑
k=1

ω(k) [21]. Let

I (xi) =

{
1 node i is selected
0 else

(6)

refer to the event in which node xi is exactly selected. With
the prerequisite that every loop is independent of the previous
selection, we have expected the number

E(X ) = E(
∑
n

xi) =
∑
n

E(xi) =
∑
n

Pr(xi)

The probability of xi is P(xi) = 1
n−i+1 ·

ω(xi)
n−1+1∑
k=1

ω(xk )
; therefore,

E(X ) =
∑
n

Pr(xi) =
1
n
·
ω(x1)
n∑

k=1
ω(xk )

+
1

n− 1

·
ω(x2)

n−1∑
k=1

ω(xk )

+, · · · ,+
1
2
·

ω(xn−1)
ω(xn−1)+ ω(xn)

+ 1 (7)

If the ordered weight ω(x1) ≥ ω(x2) ≥ · · ·ω(xn), then
the right part of P(xi) is a decreasing function. Thus we can
achieve the results

E(X ) ≥ (
1
n
+

1
n− 1

+ · · · + 1) ·
ω(x1)
n∑

k=1
ω(xk )

≈
ω(x1)
n∑

k=1
ω(xk )

(ln n+ O(n)) (8)
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Although the expected number of the exact selection of
node x is small, we can achieve the ordered permutation using
the repeated trials. Algorithm 1 and algorithm 2 are integrated
into a local positive degree coupling algorithm (LPDC) by
input and output as we have previously presented.We express
it as two parts to understand the LPDC.

IV. EXPERIMENT
Using experiments, we quantify two critical metrics. The
results indicate that the LPDC is a more practical coupling
approach than the completely random scheme. Since research
on applicable simulation tools for both a power network and a
communication network remain underway [22], [23], we use
open NetworkX to construct a network and an experiment by
Python [24].

A. SETUP AND METRIC
We create small world network to simulate the power with the
NetworkX, as a power network has the remarkable feature
of a small world [25]. In the classic small world network,
nearest neighbors as well as reconnection probability are key
parameters [24]. The nearest neighbors mean each node is
joined with its k nearest neighbors. The reconnection prob-
ability implies reconnection probability of edge [24]. The
experiment parameters of power network are 2, 3, 4 neighbor
nodes as well as reconnection probability 0.2, 0.3, and 0.4,
as neighbor nodes are not more than 4 in [25]. The power
level permutations are 380 V, 500 V, 1000 V, 6000 V, 10 KV,
20 KV, 35 KV, 66 KV, 110 KV, 220 KV, 350 KV, and 500 KV.
These values are randomly allocated to power nodes as one
of the properties. Since the fault tolerance and self-healing
ability are the distinguished characteristics of a smart grid,
we use the power fault propagation (PFP) model to simulate
a potential cascading procession [11].The nearest neighbors
mean each node is joined with its k nearest neighbors. The
reconnection probability implies reconnection probability of
edge In the PFP model, the tolerance coefficient λp is 1.3.
We select the top ten degree nodes to represent the adminis-
trator node. Regarding parameters pu and pv, we use a compo-
nent of the node degree. Since most communication networks
are observed to have the scale free property, we adopt the
exponential factor between 2 and 2.6 [10], [18]. For the
community detection method, we apply use the classic modu-
larityQ as ametric by the fast heuristicmethod [16]. Different
coupling strategies are designed to improve the robustness of
the network and the facility of application. LetN represent the
total nodes of an the interdependent network and N0 denote
the node number, which trigger the cascade and cause black-
outs in the entire network. We employ the percentage P,
which is defined as P = N0/N to measure different coupling
algorithms. To a certain extent, this percentage reflects the
ability to destroy the entire network. All experimental results
are averaged over 50 independent trials.

B. PERFORMANCE
We compare themodularityQ value with different parameters
of the reconnection probability and the nearest neighbors.

Figure 2 shows the variation in the Q value according to
different network scales. The nearest neighbors are 3, while
reconnection probabilities are 0.2. Figure 2 reveals a large
network has a large Q value. This finding indicates that a
large network can develop a community with greater ease
than a small network. The Q value nonlinearly increases
when the node number increases. The reconnection probabil-
ity 0.4 has large value than the reconnection probability 0.2
from the graph. Figure 2 reveals two gaps in the parameter
reconnection probabilities. Note that the different gaps have
minor influence on the Q value. The increasing trend of
Q decreases when the network size increases. This observa-
tion also implies that a larger network can easily form a steady
community.

FIGURE 2. Q with different reconnection probabilities.

Figure 3 depicts the variation of the Q value with different
nearest neighbors. The Q value slightly increases according
to the network scale. From figure 3, we notice the sharp
descent between 2 or 3 nearest neighbors and 4 nearest neigh-
bors, when the reconnection probability is 0.3. This descent
indicates that the key factor to the community is the nearest
neighbors of a small world network. This observation can be a
guiding principle to design a large-scale network for different
power applications.

Table 2 provides the 50 Q values with reconnection prob-
ability 0.3 and 3 nearest neighbors when the node number is
200. Each number is an experimental result. Table 2 reveals
that the Q value of 50 experiments with an average of 0.8556
and a standard deviation of 0.003865. This small standard
deviation is another result, that is, the algorithm is relatively
stable even if we do not intend to provide theoretical proof.

Figure 4 reveals a distinct trend of an average community
number with respect to the network scale. With the reconnec-
tion probability 0.3, we achieve the average community num-
ber. An increase in the average community number follows
the network scale because additional nodes are involved. The
average community number in 4 nearest neighbors is smaller
than the number of the others. Figure 5 reports the average
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TABLE 2. Basic notations.

FIGURE 3. Q with different nearest neighbors.

FIGURE 4. Average community number.

node number per community, which increases with different
nearest neighbors. The average node number includes more
nodes in the 4 nearest neighbors.

Regarding the coupling scheme, we compare three
coupling strategies (i.e., complete random coupling (CRC),
random coupling based on community (RCBC), and LPDC).
For CRC, we couple a power network and a communication
network in a completely random manner. RCBC intends
to connect two different communities, and randomly cou-
ples nodes among each pair communities. Compared with
LPDC, RCBC randomly connected many nodes based on
algorithm 1. Note that the P value is a ratio. With this ratio,
fault nodes can cascade the entire network instead of parts of

FIGURE 5. Average node number.

the network. The larger is the P value, the more robustness is
the network.

As shown in figure 6, we obtain the smallest P value
when the coupling scheme is completely random. With
the LPDC strategy, P outperforms the other two coupling
schemes. According to figure 6, the RCBC is better than
the CRC because some faults can be tolerated in the inner
community. The community has a greater inner connection
in topology. For each coupling scheme, randomly fluctuates
up and down along the average ratio, which is 0.2348, 0.3071,
and 0.3436 for CRC, RCBC and LPDC, respectively. These
results signify that the network scale has minimal concern
with the P value.
Figure 7 describes the P value, which vibrates along the

three average values 0.3223, 0.3889, 0.4270 for CRC, RCBC
and LPDC, respectively. TheP value is larger than theP value
with figure 6 due to the different parameters of the network.
A relationship with the model of cascade is observed [11].
Figure 6 and Figure 7 reveal that the coupled scheme based on
the community is better than the completely random scheme
for the small world network.

Figure 8 reports the runtime of the PRDC as well as
LRDC algorithm with respect to different network scales.
A related parameter is reconnection probability 0.3. The
runtime increases with node numbers. The time is expressed
in seconds. The nearest neighbors cause a large differ-
ence. The parameter of 4 nearest neighbors requires a
larger amount of runtime than that of 2 nearest neigh-
bors due to the network, which has a stronger connection
and needs additional heuristic iterations to constitute steady
community.
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FIGURE 6. Different algorithms with 2 nearest neighbors.

FIGURE 7. Different algorithms with 4 nearest neighbors.

FIGURE 8. Running time.

V. CONCLUSION
In this paper, we focus on a coupling scheme for an the
interdependent smart grid. We leverage the matrix to model
the coupled network. Considering the significant modulation

property of a smart grid, we proposed the local positive degree
coupling (LPDC) strategy that is based on the community
detection algorithm. To clarify the LPDC strategy, we have
presented two related algorithms: the assemble community
algorithm and the positive degree coupling algorithm. The
experimental results indicate that LPDChas outperformed the
complete random coupling method.

The proposed coupling strategy can be easily extended
to a multilayer network for other researchers. This coupling
method is easily applied to various networks with small
changes, such as a cyber physical network and a social net-
work. In future research, we will investigate the fault cascade
from the viewpoint of pairwise nodes and quantitatively ana-
lyze an interdependent network based on the LPDC strategy.
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