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ABSTRACT Temporally correlated trajectories are ubiquitous, and it has been a challenging problem to
protect the temporal correlation from being used against users’ privacy. In this paper, we propose an
optimal Pufferfish privacy mechanism to achieve better data utility while providing guaranteed privacy of
temporally correlated daily trajectories. First, a Laplace noise mechanism is realized through geometric sum
of noisy Fourier coefficients of temporally correlated daily trajectories. Then, we prove that the proposed
noisy Fourier coefficients’ geometric sum satisfies Pufferfish privacy, i.e., the so-called FGS-Pufferfish
privacy mechanism. Furthermore, we achieve better data utility for a given privacy budget by solving a
constrained optimization problem of the noisy Fourier coefficients via the Lagrange multiplier method.What
is more, a rigorous mathematical formula has been obtained for the Fourier coefficients’ Laplace noise scale
parameters. At last, we evaluate our FGS-Pufferfish privacy mechanism on both simulated and real-life data
and find that our proposed mechanism achieves better data utility and privacy compared with the other state-
of-the-art existing approach.

INDEX TERMS Fourier coefficients, geometric sum, Lagrange multiplier method, Pufferfish privacy,
temporally correlated trajectories.

I. INTRODUCTION
Currently, many real-world applications, such asmaps, points
of interest searching and taxi reservation, generate, store and
process a large amount of temporally correlated trajectories.
Releasing these trajectories makes it possible for researchers
to predict users’ behavior trend [1] and monitor traffic [2] by
utilizing temporal correlations of users, i.e., relations between
locations at different timestamps.

Although temporal correlations of users’ trajectories are
useful to the researchers and many service applications such
as travel recommendations [1], they may cause a privacy
risk [3]. With background knowledge, adversaries may mine

individuals’ privacy through the temporal correlations of
their trajectories. For example, as shown in Figure 1, once
trajectories are released to untrusted service providers, they
may compute the temporal correlation of a user’s trajecto-
ries. Then the adversaries could infer the user’s mobility
pattern, e.g., Alice, with their background knowledge about
Alice’s temporal correlation. Furthermore, they may analyze
her privacy such as home address and work address.

The problem of privacy-preserving trajectories releasing
has attracted extensive interests of many researchers.
As direct solutions, dummy trajectories [4], supp-
ression [5], [6] and k-anonymity [7] have been adopted to
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FIGURE 1. Temporal correlation inference attacking.

protect trajectory privacy. Unfortunately, they cannot resist
composition attack [8], deFinetti attack and background
knowledge attack [9]. To overcome this, differential
privacy [10] is considered to achieve privacy-preserving
trajectory publication [11], [12] because adversaries cannot
judge whether individuals are in the database or not. Never-
theless, these solutions do not consider the issue of temporal
correlations of trajectories.

In order to protect individuals’ privacy under the
assumption that there are temporal correlations within
trajectories, several works have attempted to consider the
relations between locations for differentially private trajec-
tory releasing. For the privacy-preserving aggregate informa-
tion releasing, first, the prefix tree [13] is adopted to achieve
such goal. Then, the n-gram model [14] is introduced to
protect correlation privacy. Recently, Markov model [15] is
utilized to achieve differentially private correlation protection
for trajectories. For a single trajectory releasing, the sum
of many copies of Gaussian white noise [3] is adopted
to generate correlated Laplace noise for protecting trajec-
tories’ temporal correlations, i.e., the so-called Correlated
Time-Series (CTS) privacy protection. Furthermore, based on
Markov model, Pufferfish privacy [16] is adopted to protect
the temporal correlations within trajectories [17]. Although
these solutions can protect temporal correlations efficiently,
they do not consider to optimize data utility for a given
privacy budget.

It has been a task of great challenge to handle such individ-
uals’ privacy induced by the temporal correlations. On one
hand, Differential Privacy (DP) cannot be directly applied
to temporally correlated trajectories. Although a Pufferfish
privacymechanism can handle such kind of trajectories, to the
best of our knowledge, there is no rigorous mathematics
formulation of a Pufferfish privacy mechanism dedicated

to the temporal correlation privacy problem. On the other
hand, to have an efficient Pufferfish privacy mechanism,
it is preferred that a rigorous mathematics formula of the
noise scale parameters can also be obtained to achieve the
optimal data utility with a guaranteed privacy. To fill in such
gap, in this paper, we propose a Laplace noisy mechanism,
satisfying Pufferfish privacy, for protecting the individuals’
privacy against adversarial inferencing through their trajec-
tories’ temporal correlations.

The main contributions of this paper are summarized
below.
• We propose a noise mechanism for efficient generation
of Laplace noise via the Fourier coefficients’ geometric
sum to achieve ε-Pufferfish privacy, i.e., the FGS-
Pufferfish privacy mechanism.

• We present an analytical formula of the optimized the
Fourier coefficients noise for the constrained optimiza-
tion problem of achieving a better data utility for a given
privacy budget. Then, we provide theoretical analysis of
the data utility and privacy, as well as the posterior-to-
prior knowledge gain of an adversary.

• We evaluate the proposed FGS-Pufferfish privacy mech-
anism over both simulated and real-life datasets.
The experimental results demonstrate that our proposed
mechanism does achieve better privacy and data utility
than the state-of-the-art existing approach.

The remainder of this paper is organized as follows.
In Section II, we review the related work in the liter-
ature. In Section III, we formally define our problem,
and then introduce some background knowledge, including
Pufferfish privacy, discrete Fourier transform and its inverse
transform, geometric sum, and the constrained optimiza-
tion problem. Then, in Section IV, we explain the relation
between the mobility pattern and temporal correlations,
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and mathematically quantify the temporal correlation of
a trajectory and the corresponding temporal correlation’s
discrete Fourier transform. In Section V, we introduce our
proposed FGS-Pufferfish privacy mechanism. Furthermore,
data utility, privacy analyses and the adversary’s posterior-to-
prior knowledge gain are depicted in Section VI. The privacy-
preserving trajectory releasing algorithm based on the
FGS-Pufferfish privacymechanism is outlined in SectionVII.
In SectionVIII, the experimental performance evaluations are
shown. Finally, Section IX concludes this paper.

II. RELATED WORK
Releasing temporally correlated raw trajectories poses a
serious privacy problem, due to potential sensitive informa-
tion leak linked to the temporal correlation. In this section,
we review some literature about the privacy-preserving trajec-
tories releasing.

Gao et al. [18], [19] reviewed different methods for
trajectory privacy. At the beginning, researchers proposed
dummy trajectories [4], suppression technique [5], [6], tech-
niques based on k-anonymity [7] and their variants to protect
privacy in trajectories. Unfortunately, these approaches
cannot prevent inferencing attack well if the locations are
in sensitive areas. Researchers also adopted differential
privacy to protect trajectory privacy. Rastogi and Nath [11]
proposed the Fourier Perturbation Algorithm (FPA) using
Fourier transform, without considering the temporal correla-
tions in a trajectory. Jiang et al. [12] proposed a noisy position
mechanism for each position, satisfying (ε, δ)-differential
privacy, and a noisy coordinate mechanism whose Laplace
scale of the longitude is the same as that of the lati-
tude, satisfying ε-differential privacy, respectively. Then they
proposed an ε-differentially private exponential mechanism
through sampling suitable distance and director for trajectory
publication. Riboni and Bettini [20] proposed a trajectory
privacy protection in a context-aware recommending system
by combining the (L, j)-density with ε-differential privacy.
Quan et al. [21] proposed a trajectory obfuscationmechanism
based on the Laplace mechanism. In this mechanism, a polar
Laplace noise is added on the trajectories. Zhang et al. [22]
proposed a noise generation strategy based on the time-series
pattern in order to protect individual privacy within the cloud
framework. Cao andYoshikawa [23] proposed an `-trajectory
privacy model to protect a trajectory whose length is `. This
model satisfies ε-differential privacy for releasing real-time
statistics of trajectory streams. Under the assumption of no
temporal correlation, Hua et al. [9] designed an exponential
mechanism to select a group divided by the distances between
locations at each timestamp and proposed a Laplace mecha-
nism of noisy counts for differentially private trajectory publi-
cation. Furthermore, Li et al. [24] proposed a differentially
private location generation algorithm and a bounded Laplace
mechanism for trajectories releasing. Besides, Bindschaedler
and Shokri [25] generated fake trajectories by utilizing
the correlations between locations for privacy-preserving
trajectory releasing. Moreover, these approaches also do not

consider trajectories’ temporal correlations which could leak
individual privacy.

However, an adversarymay utilize the temporal correlation
to build a user’s mobility pattern and thus infer the user’s
trajectory [1], [2]. There are several works dealing with such
spatio-temporal correlation. On one hand, researches consid-
ered privacy-preserving aggregate information releasing.
Chen et al. [13] proposed a data-dependent solution by
recursively constructing a noisy prefix tree based on the
existed trajectory data, for trajectory statistics publishing.
However, with the growth of the prefix tree, this solu-
tion will lead to poor data utility. To solve this problem,
Chen et al. [14] proposed a differentially private trajectory
statistics publishing method by using the variable n-gram
model. He et al. [26] proposed a trajectory systhesis method,
called ‘‘DPT’’, according to the correlations between loca-
tions within a single trajectory. They considered individual
movements’ speeds and constructs prefix tree counts ensuring
ε-differential privacy. Then, based on this approach, they
presented a tool, called ‘‘VisDPT’’ [27], helping data cura-
tors understand privacy problems for data releasing and
their proposed privacy protecting mechanism. Fan et al. [28]
utilized road networking, overall population density and so
on to model the correlations at per timestamps and adopted
Quadtree to deal with the sparsity of trajectories for differen-
tially private aggregate releasing, respectively. Furthermore,
a set of novel techniques are based on theMarkov assumption.
Wang and Sinnott [15] proposed a private reference system
by cluster-based anchor points under the X-order Markov
assumption. The raw trajectories are discrete in this system.
Then noisy calibrated trajectories are released by using differ-
entially private prefix trees.

On the other hand, researchers generated privacy-
preserving trajectories to protect temporal correlations. Wang
and Xu [3] adopted Gaussian white noise to protect a
trajectory’s temporal correlation. Ou et al. [29] proposed
differentially private trajectory releasing by using Hidden
Markov model. To deal with the weakness of differential
privacy, Song et al. [17] proposed the Markov Quilt Mech-
anism (MQM) under the Pufferfish privacy framework to
protect the spatio-temporal correlation within a single trajec-
tory. Although these works consider the spatio-temporal
correlation within a single-user trajectory, the data utility
optimization is not achieved for a given privacy budget.

In sum, although there are several literatures dealing with
the privacy problem of temporal correlations, none of them
presents a rigorous mathematical Laplace noise mechanism
under the Pufferfish privacy framework that is proved to
be ε-differentially private. What’s more, to the best of our
knowledge, there is no rigorous analytical formula of the
noise scale parameters to achieve the optimal data utility,
for a given privacy budget. Thus in this paper, we propose
such Laplace noise mechanism through adding noise in the
daily trajectory’s Fourier coefficients, satisfying ε-Pufferfish
privacy, in order to protect temporal correlations against infer-
encing attacks.
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III. PRELIMINARIES
In this section, we first present the statement of our problem
and the basic idea of our mechanism. Then, we introduce
some basic concepts, including Pufferfish privacy, Discrete
Fourier Transform (DFT) and Inverse Discrete Fourier Trans-
form (IDFT), geometric sum, and the constrained optimiza-
tion problem. To start, Table 1 lists some key variables used
across this paper with their explanations.

TABLE 1. Notations and definitions.

A. PROBLEM STATEMENT AND BASIC IDEA
Our goal is to protect the temporal correlation of a user’s daily
trajectories from being related to a user’s daily trajectories
pattern and thus the user’s privacy, when combined with other
prior knowledge about the user. First, let’s define the daily
trajectory of a user as follows.

Definition 1 (Daily Trajectory): The daily trajectory of
a user um on the d-th day, denoted as T, is a sequence of
locations at N times slots,

T =
{
(Xn,Yn)

∣∣n = 0, 1, . . . ,N − 1
}
,

where Xn and Yn are the longitude and latitude of a user um
at the n-th time slot on the d-th day, respectively; and m ∈
{1, 2, . . . ,M} and d ∈ {1, 2, . . . ,D}.
A daily trajectory database, denoted by T , contains M

users’ daily trajectories overD days.When adversaries obtain
the database T , they may compute the temporal correlation
of every user through ensemble average of the user’s daily
trajectories over allD days; then the adversaries may compare
it with the prior knowledge of a user’s temporal correlation.
Based on the similarity and other background knowledge,
they could identify which temporal correlation belongs to a
certain user. Therefore the temporal correlation of a user’s
daily trajectories should be protected in order to avoid such
inferencing attack.

In this paper, we first quantify the temporal correlation
in a rigorous mathematics way. Then we propose the FGS-
Pufferfish privacy mechanism by adding noise to the Fourier
coefficients through geometric sum. At last, we obtained the
rigorous formula of the optimal noisy Fourier coefficients by
solving the constrained optimization problem, i.e., achieving
the optimal data utility for a given privacy budget.

For the rest of this paper, because the mean or the
ensemble average of a user’s daily trajectories does not
affect our problem treatment, we will only consider
the following modified daily trajectory with its mean
subtracted: {(xn, yn) |n = 0, 1, . . . ,N − 1}, where (xn, yn) =(
Xn − X̄n,Yn − Ȳn

)
, where (X̄n, Ȳn) is the ensemble average

of the n-th time-slot locations over allD days, i.e., (X̄n, Ȳn) =
Ed
{(
X (d)
n ,Y (d)

n

)}
(d ∈ {1, 2, . . . ,D}). Also, wewill assume

that {xn|n = 0, 1, . . . ,N − 1} and {yn|n = 0, 1, . . . ,N − 1}
are statistically independent and can be treated individually.
What’s more, for simplicity, we take the modified longitude
daily trajectory {xn|n = 0, 1, . . . ,N − 1} as an example to
explain our proposed mechanism.

B. BASIC CONCEPTS
Before we go into the details of the temporal correlation
privacy issue, let’s introduce some basic concepts first, which
includes Pufferfish privacy, DFT/IDFT, geometric sum, and
the constrained optimization problem.

1) PUFFERFISH PRIVACY
Pufferfish privacy [16] is a mathematics mechanism for
privacy and its definition is given as below,

Definition 2 (Pufferfish Privacy): A random mecha-
nism M is said to be ε-Pufferfish private in a framework
(C,Q,2) if for the data C drawn from all possible belief
distributions θ ∈ 2 of an adversary, the following condition
is satisfied for all secret pairs

(
C(u),C(v)

)
∈ Q, and all

C′ ∈ Range{M (C ∈ C)},

exp(−ε) ≤
Pr
(
M (C′)

∣∣C(u),θ
)
=C′

Pr
(
M (C′)

∣∣C(v),θ
)
=C′
≤ exp(ε).

2) DISCRETE FOURIER TRANSFORM
Now let’s look at the DFT of a user’s daily trajectory.

Definition 3 (Discrete Fourier Transform): The
discrete Fourier transform transforms a user’s daily trajectory{
xn
∣∣n = 0, 1, . . . ,N − 1

}
into a set of sine and cosine waves

of different frequencies and corresponding Fourier coeffi-
cients

{
Fk
∣∣k = 0, 1, . . . ,K − 1

}
which is defined as follows,

Fk =

N−1∑
n=0

xnW
−1
n,k ; W−1n,k = exp

(
−j

2π
N
nk
)
,

where j =
√
−1; N and K are the total number of time slots

and Fourier coefficients, respectively.
In this paper, we assume that both the real part F r

k and
the imaginary part F i

k of the Fourier coefficient Fk follow
the same Gaussian distribution with mean µk = 0 and the
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standard deviation of σSk , and the probability distribution
of {Fk

∣∣k = 0, 1, . . . ,K − 1} is as follows,

Pr
(
{Fk

∣∣k = 0, 1, . . . ,K − 1}
)
=

K−1∏
k=0

exp

− |Fk |2(
σSk

)2


2π (σSk )
2 ,

and its power spectrum Sk = |Fk |
2 follows the Chi-Square

χ2
2 distribution with a degree of 2, which is also the exponen-

tial distribution,

Pr ({Sk |k = 0, 1, . . . ,K − 1}) =
K−1∏
k=0

exp

(
−

Sk
2σ2Sk

)
2σ 2Sk

. (1)

On the contrary, a trajectory for a given Fourier coeffi-
cients set of length K can be expressed by the IDFT, and its
definition is given as follows.

Definition 4 (Inverse Discrete Fourier Transform): The
inverse discrete Fourier transform transforms the Fourier
coefficients

{
Fk
∣∣k = 0, 1, . . . ,K − 1

}
into the daily trajec-

tory
{
xn
∣∣n = 0, 1, . . . ,N − 1

}
which is defined as follows,

xn =
K−1∑
k=0

FkWn,k ; Wn,k = exp
(
j
2π
N
nk
)
. (2)

3) GEOMETRIC SUM
Geometric sum [30] can achieve noise Laplace distribution
through sum of a random K -series of random variables{
Fk
∣∣k = 0, 1, . . . ,K − 1

}
and its definition is as follows,

Definition 5 (Geometric Sum): Let
{
Fk
∣∣k = 0, 1, · · · ,

K − 1
}
be a sequence of independent random variables (but

not necessarily identically distributed), their geometric sum
is defined as,

F =
K−1∑
k=0

Fk ,

with K following the geometric distribution,

Pr(K ) = (1− p)K−1p = Geo(K ; p).
Theorem 1: Suppose that E{Fk} = 0 and Var{Fk} =

σ 2
Fk , then the geometric sum F weakly follows the Laplace

distribution [30],

Pr

(
F =

K−1∑
k=0

Fk

)
= Lap

(
F; 0,

σF
√
2

)
,

under the conditions of

lim
k→∞

k−ασ 2
Fk , for some 0 < α < 1;

σ 2
F = lim

n→∞

1
K

K−1∑
k=0

σ 2
Fk > 0 exists;

and for all ξ > 0:

lim
p→0

∞∑
k=0

(1− p)k−1p EFk
{
F2
k ; |Fk | ≥ ξp

−1/2
}
= 0.

4) THE CONSTRAINED OPTIMIZATION PROBLEM
The constrained optimization problem is a strategy of finding
the local extrema (maxima and minima) of a function f (b)
subject to equality constraint g(b) = 0. The constrained
optimization problem is given below,

b∗ = argmax
b
{f (b)|g(b) = 0} ,

with the following Lagrangian,{
L(b|λ) = f (b)− λg(b),
g(b) = 0.

(3)

which can be solved by the LagrangeMultiplier (LM)method
when the following conditions are satisfied,

∂L
∂b

∣∣∣∣
(λ∗,b∗)

=
∂L
∂λ

∣∣∣∣
(λ∗,b∗)

= 0.

IV. TEMPORAL CORRELATION AND MOBILITY PATTERN
In this section, we show that relation between the user’s
mobility pattern of a user and its temporal correlationC of the
user’s daily trajectories; then we show that its Fourier coef-
ficients

{
Sk
∣∣k = 0, 1, . . . ,K − 1

}
is closely related to the

variance of the Fourier coefficients of a user over all D days,
i.e.,

{
Vard

{
F (d)
k

} ∣∣k = 0, 1, . . . ,K − 1; d = 1, 2, . . . ,D
}
.

A. MOBILITY PATTERN
The user’s mobility pattern can be described by the
conditional probability of the next i-th location from the
current n-th location, i.e., Pr (xn+i|xn). Also, for Markov
process, the conditional probability of the current loca-
tion depends only on its last location, i.e., Pr

(
xn+i|xn+i−1,

xn+i−2, · · · , xn
)
= Pr (xn+i|xn+i−1).

B. TEMPORAL CORRELATION
The temporal correlation C describes the relation among
different locations within a user’s daily trajectories {xn|n =
0, 1, . . . ,N−1} through the conditional transition probability
Pr (xn+i|xn), i.e., the mobility pattern. It is the ensemble
average of a user’s daily trajectories {xn|n = 0, 1, . . . ,N−1}
over all D days and each user has one and only one C.

Definition 6 (Temporal Correlation): Auser’s temporal
correlation of length I , denoted by C, depicts the relation
between two locations at current time slot tn and its following
i-th time slots tn+i, and its definition is as below:

C =
{
Ci
∣∣i = 0, 1, . . . , I − 1

}
,

with Ci being the ensemble average of the locations pair
at time slots (tn+i, tn), denoted as (xn+i, xn), over all days,

Ci = Ed
{
x(d)n+ix

(d)
n

}
=

∫
xn+ixndPr (xn+i|xn) dPr (xn) ,

where d ∈ {1, 2, . . . ,D}.
From Lemma 2 in Appendix B, it can be shown that,

the Fourier coefficients of C is the variance of the Fourier
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coefficients of a user’s daily trajectories over all days, i.e.,
Sk = Vard

{
F (d)
k

}
= 2σ 2

Sk ,

Ci =
K−1∑
k=0

(
2σ 2

Sk

)
Wi,k , (4)

where k = 0, 1, . . . ,K − 1 and d = 1, 2, . . . ,D.
If the trajectories set follows the ergodic process,

the ensemble average of the temporal correlation is equivalent
to an autocorrelation function within a single daily trajectory,

Ci =
1

N − i+ 1

N−i∑
n=0

xn+ixn.

C. THE DFT OF THE TEMPORAL CORRELATION
The DFT coefficients of a user’s temporal correlation C,
denoted as

{
Sk
∣∣k = 0, 1, . . . ,K − 1

}
, is obtained from

Eq. (4),

Sk = 2σ 2
Sk . (5)

For ergodic trajectories, we also have,

Sk = |Fk |
2, (6)

where Fk is the k-th DFT coefficient of the user’s daily
trajectories given in Definition 3.

V. THE FGS-PUFFERFISH PRIVACY MECHANISM
In this section, we present a noise mechanism based on the
geometric sum of the Fourier coefficients and optimize the
data utility for a given privacy budget.

A. THE SETTING
1) TEMPORAL CORRELATION SECRET
For our problem, the Pufferfish secrets set consists of
temporal correlations of all user given in Definition 6,
denoted by C, and it is expressed as follows,

C =
{
C(um)

∣∣ m = 1, 2, . . . ,M
}
.

2) CORRELATION SECRETS PAIRS
A correlation secrets pair consists of two temporal correla-
tions of any two users u and v in the same database, denoted
as Q,

Q =
{(
C(u),C(v)

) ∣∣ u, v ∈ {u1, u2, · · · , uM } , u 6= v
}
.

3) THE ADVERSARY’S BELIEF DISTRIBUTION
The adversary’s belief distribution θ is the probability of the
temporal correlation C,

2 = {θ : Pr (C)}.

B. NOISE MECHANISM
From Eq. (5) and Eq. (6), we know that the Fourier coef-
ficients of the temporal correlation C are closely related
to those of the daily trajectory. Thus it is natural to add
noise to the Fourier coefficients of the trajectory. Actually,
Rastogi and Nath [11] proposed a similar noise mechanism,
i.e., the so-called FPA approach, based on the noisy Fourier
coefficients mechanism. Unfortunately, the FPA approach
considers neither the temporal correlation issue, nor the data
utility optimization problem.

In this paper, we propose to optimize the Fourier coef-
ficients noise for the problem of temporal correlation
privacy. First, we add the noise in the Fourier coeffi-
cients

{
F ′k
∣∣k = 0, 1, . . . ,K − 1

}
shown in Definition 3;

then, we obtain the generated noisy daily trajectory
{x ′n|n = 0, 1, . . . ,N − 1} according to the IDFT
given in Definition 4, with the noisy Fourier coefficients{
F ′k
∣∣k = 0, 1, . . . ,K − 1

}
; and finally, the noisy temporal

correlation C′ is obtained from the noisy daily trajectory
{x ′n|n = 0, 1, . . . ,N − 1} according to Definition 6.

1) THE FOURIER COEFFICIENTS NOISE MECHANISM
In the Fourier coefficients noise mechanism, we add the noise
into the Fourier coefficient, and we have,

F ′k = Fk + δFk , (k = 0, 1, . . . ,K − 1). (7)

The Fourier coefficients noise mechanism does not require
specific probability distribution of

{
δFk

∣∣k=0, 1, · · ·,K−1},
as long as they are mutual independent. However, to have
minimum K to achieve Laplace distribution of the geometric
sum, a natural choice is the Laplace distribution for both the
real part and imaginary part of the noisy Fourier coefficients,
i.e.,

{(
δF r

k , δF
i
k

) ∣∣k = 0, 1, . . . ,K − 1
}
,

Pr
(
δF r

k
)
= exp

(
−

∣∣δF r
k

∣∣
bFk

)
= Lap

(
δF r

k ; 0, bFk

)
, (8)

where we have only shown the set of real parts due to
the similarity and assumed that both the set of real parts{
δF r

k

∣∣k = 0, 1, . . . ,K − 1
}
and the set of imaginary parts{

δF i
k

∣∣k = 0, 1, . . . ,K − 1
}

have the same Laplace noise
scale parameter bFk . Also, we have the following Laplace
properties, 

EδFk {δFk} = 0,
VarδFk {δFk} = 2 b2Fk

,

EδFk

{
(δFk)

4}
= 24 b4Fk

,

VarδFk

{
(δFk)

2}
= 20 b4Fk

.

2) LAPLACE LOCATION NOISE
After the addition of Fourier coefficients noise, the noisy
location becomes,

x ′n =
K−1∑
k=0

F ′kWn,k = xn + δxn,
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with

δxn =
K−1∑
k=0

δFkWn,k .

Theorem 2: The noisy location via the Fourier coeffi-
cients noise mechanism has a Laplace probability distribution
given by,

Pr(x ′n) =
N−1∏
n=0

1
2bx

exp
(
−|x ′n − xn|

bx

)
,

with

bx =

√√√√1
2

K−1∑
k=0

(1− p)k
(
2 b2Fk

)
.

Proof: With the help of Theorem 1, Lemma 1
in Appendix A shows that each noisy location x ′n follows the
Laplace distribution with the mean of E{x ′n} = xn and the
same scale parameter bx = bxn . So the noisy daily trajectory
{x ′n
∣∣n = 0, 1, . . . ,N − 1} has a joint Laplace distribution and

Theorem 2 is proved.

3) LAPLACE TEMPORAL CORRELATION NOISE
Theorem 3: The noisy temporal correlation C′ has a

joint Laplace probability distribution given by,

Pr(C′) =
I−1∏
i=0

1
2bCi

exp

(
−|δC ′i − δC̄i|

bCi

)
, (9)

and

δC ′i = C ′i − C̄i,

C̄i =
∞∑
k=0

(1− p)k
(
σ 2
2Sk

)
Wi,k ,

δC̄i =
∞∑
k=0

(1− p)k
(
2b2Fk

)
Wi,k ,

bCi =

√√√√ ∞∑
k=0

(1− p)k
(
12 b4Fk

)
−

(
δC̄i

)2
2

.

where
{
C̄i|i = 0, 1, . . . , I − 1

}
is a set of the mean of the

temporal correlation C before noise is added; and{
δC̄i|i = 0, 1, . . . , I − 1

}
is a set of the noise induced change

of the mean of temporal correlation C.
Proof: From Lemma 3 (see Appendix C), we know

that each Ci follows the Laplace distribution with the scale
parameter bCi . Thus the temporal correlation C = {Ci

∣∣i =
0, 1, . . . , I − 1} has a joint probability distribution and
Theorem 3 is proved.

C. THE CONSTRAINED OPTIMIZATION OF THE
FGS-PUFFERFISH PRIVACY MECHANISM
In this section, we propose to achieve the optimal data utility
for a given privacy budget, i.e., the constrained optimization

problem. We resort to the LM method for such constrained
optimization of the FGS-Pufferfish privacy mechanism.

Before the constrained optimization problem, let’s quantify
the data utility. Here we consider two utilities, including the
location utility and the correlation utility. This is because,
on one hand, the location utility is important for location
based services such as location recommendation; and on the
other hand, the correlation utility is important for applications
such as location forecasting.

For the location utility, we want the average noisy location
deviates from its raw location as small as possible and is
defined as its variance given below,

Definition 7 (Location Utility): The location utility,
denoted by UL , is the average variance of noisy locations{
x ′n
∣∣n = 0, 1, . . . ,N − 1

}
after the noise is added. We have,

UL = En
{
σ 2
xn

}
=

∞∑
k=0

(1− p)k
(
2 b2Fk

)
.

For the correlation utility, we want the mean of the noisy
temporal correlations C̄i deviates from its raw value Ci as
small as possible, which is defined as follows,

Definition 8 (Correlation Utility): The correlation
utility, denoted by UC, is the average of the deviation of the
noisy correlation C̄i from its raw value Ci, denoted as δC̄i =
C̄i − Ci, over its correlation length of I . From Theorem 3,
we have,

UC =
1
I

I−1∑
i=0

δC̄i

=

∞∑
k=0

(1− p)k
(
Wkb2Fk

)
,

whereWk =
1
I

I−1∑
i=0

2 Wi,k .

Now let’s define the data utility through the location utility
and the correlation utility. And its definition is as follow.

Definition 9 (Data Utility): The data utility, denoted
by U , is the weighted sum of both the location utility UL and
the correlation utility UC, and its definition is as below,

U = wUL + (1− w)UC

=

∞∑
k=0

(1− p)k
(
W ′kb

2
Fk

)
,

whereW ′k = 2 w+ 1−w
I

I−1∑
i=0

2Wi,k , with w ∈ [0, 1] being the

weight of the location utility UL .
It is well-known that the privacy budget ε is inversely

proportional to the Laplace noise scale parameter, i.e.,
the larger the Laplace noise scale parameter, the smaller the
privacy budget ε or the better the privacy protection. For such
reason, let’s look at the Laplace noise scale parameters set
bC =

{
bCi
∣∣i = 0, 1, . . . , I − 1

}
. According to Theorem 3,

bC has minimum value at bC0 . So we only need to consider
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bC0 when dealing with the constrained optimization problem,

bC0 =

∞∑
k=0

(1− p)k
(
12 b4Fk

)
− 2

(
∞∑
k=0

(1− p)kb2Fk

)2

.

Now we can simplify the LM method in Eq. (3) for
the constrained optimization problem of the FGS-Pufferfish
privacy mechanism, with the help of Theorem 3,
min

{
U =

∞∑
k=0

(1− p)k
(
W ′kb

2
Fk

)}
,

b2C0
=

∞∑
k=0

(1− p)k
(
12 b4Fk

)
− 2

(
∞∑
k=0

(1− p)kb2Fk

)2

,

(10)

with the Lagrangian of

L =
∞∑
k=0

(1− p)k
(
W ′kb

2
Fk

)

− λ


∞∑
k=0

(1− p)k
(
12 b4Fk

)
−2

(
∞∑
k=0

(1− p)kb2Fk

)2

−b2C0

.
From Lemma 4 in Appendix D, the optimal Fourier noise

sale parameters b∗Fk
is given below,

where I is the unit matrix, W ′ =
{
W ′k

∣∣k = 0, 1, · · · ,
K − 1

}
, and

Q =


(1− p)0 (1− p)1 (1− p)2 (1− p)3 · · ·

...
...

...
... · · ·

(1− p)0 (1− p)1 (1− p)2 (1− p)3 · · ·

.
VI. ANALYSIS
In this section, we give the analysis of the data utility, privacy
and the adversary knowledge.

A. UTILITY
According to the Eq. (11), as shown at the top of the next
page, and the data utility given in Definition 9, we have the
optimal data utility as below,

U∗ =
∞∑
k=0

(1− p)k
(
W ′kb

∗2
Fk

)
.

B. PRIVACY
First, let’s look at the measure of the temporal correlation for
the FGS-Pufferfish privacy mechanism.

A temporal correlation measure, denoted by M (C), is the
joint probability distribution of the noisy temporal correlation
C′ after noise is added,

Pr(M (C)) = Pr(C′) =
I−1∏
i=0

Pr(C ′i ).

Theorem 4: The Fourier coefficients noise mechanism
satisfies ε-Pufferfish privacy of the noisy temporal correla-
tion C′ for a given noise scale parameter bC,

exp(−ε) ≤
Pr
(
C′
∣∣C(u), bC

)
Pr
(
C′
∣∣C(v), bC

) ≤ exp(ε),

with ε = ε0 +1, where

ε0 = sup
u,v


I−1∑
i=0


∣∣∣C (u)

i − C
(v)
i

∣∣∣
bCi

,
1 = sup

u,v


I−1∑
i=0


∣∣∣δC̄ (u)

i − δC̄
(v)
i

∣∣∣
bCi

.
Proof: From Theorem 3, we have,

Pr
(
C′
∣∣C(u), bC

)
Pr
(
C′
∣∣C(v), bC

)
= exp

−
I−1∑
i=0


∣∣∣δC (u)

i − δC̄
(u)
i

∣∣∣− ∣∣∣δC (v)
i − δC̄

(v)
i

∣∣∣
bCi

,
from which we have,

min
C′

{
Pr
(
C′
∣∣C(u), bC

)
Pr
(
C′
∣∣C(v), bC

)}

= exp

−
I−1∑
i=0


∣∣∣C (u)

i − C
(v)
i + δC̄

(u)
i − δC̄

(v)
i

∣∣∣
bCi

 ,
max
C′

{
Pr
(
C′
∣∣C(u), bC

)
Pr
(
C′
∣∣C(v), bC

)}

= exp


I−1∑
i=0


∣∣∣C (u)

i − C
(v)
i + δC̄

(v)
i − δC̄

(v)
i

∣∣∣
bCi

 .
So the privacy budget ε is obtained by taking the maximum

difference of the probability ratios for all pairs of trajectories(
C(u),C(v)

)
,

ε = sup
u,v

{
− ln

(
min
C′

{
Pr
(
C′; C(u), bC

)
Pr
(
C′; C(v), bC

)})}

= sup
u,v

{
ln

(
max
C′

{
Pr
(
C′; C(u), bC

)
Pr
(
C′; C(v), bC

)})}

= sup
u,v


I−1∑
i=0


∣∣∣C (u)

i − C
(v)
i + δC̄

(u)
i − δC̄

(v)
i

∣∣∣
bCi


= sup

u,v


I−1∑
i=0


∣∣∣C (u)

i − C
(v)
i

∣∣∣
bCi

+ I−1∑
i=0


∣∣∣δC̄ (u)

i − δC̄
(v)
i

∣∣∣
bCi


= ε0 +1.

and Theorem 4 is proved.
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b∗Fk
=

√√√√√√√√√√√
bC0

[(
6I − Q

)−1
W ′
2

]
k√√√√√

3
∞∑
k=0

(1− p)k
[(

6I − Q
)−1

W ′
]2
k
−

(
∞∑
k=0

(1−p)k
[(

6I−Q
)−1

W ′
]
k

)2

2

. (11)

C. ADVERSARY KNOWLEDGE
Our goal is to prevent an adversary from mining a user’s
privacy through analyzing the user’s temporal correlation
based on the adversary’s prior knowledge about the user.
A good privacy mechanism requires that the adversary’s
posterior-to-prior knowledge gain should be close to unit 1.
Mathematically, the adversary’s knowledge gain is given by
the ratio of the posterior probabilityPr(C′ ∼ 0|C) to the prior
probability Pr(C′ ∼ 0), given that the adversary has known
the raw daily trajectory correlation of the user C(u).

1) PRIOR KNOWLEDGE
Without any knowledge of the correlation of a user C(u),
the adversary might uniformly pick C. From Lemma 3
(see Appendix C), the adversary’s prior knowledge is
given by,

Pr
(
C′
)
=

∫
C

I−1∏
i=0

Pr
(
C ′i ; C̄, bC

)
Pr(C)dC. (12)

2) POSTERIOR KNOWLEDGE
Given that the adversary has known the user’s temporal corre-
lation C(u), the adversary’s posterior knowledge is given by,

Pr
(
C′|C(u)

)
=

I−1∏
i=0

Pr
(
C ′i ; C̄

(u), bC
)
. (13)

3) POSTERIOR-OVER-PRIOR KNOWLEDGE GAIN
Now, let’s look at the posterior-over-prior knowledge gain of
an adversary.

Theorem 5: The posterior-over-prior knowledge gain of
an adversary satisfies

exp(−ε) ≤
Pr(C′|C)
Pr(C′)

≤ exp(ε).

Proof: From Eq. (12) and Eq. (13), we have,

Pr(C′)
Pr(C′|C(u))

=

∫
C

I−1∏
i=0

Pr
(
C ′i ; C̄, bC

∣∣C)Pr(C)dC
I−1∏
i=0

Pr
(
C ′i ; C̄(u), bC

∣∣C(u)
)

=

∫
C

[
I−1∏
i=0

Pr(C ′i ; C̄, bC)

/
I−1∏
i=0

Pr(C ′i ; C̄
(u), bC)

]
Pr(C)dC.

From Theorem 4, we have,

exp(−ε) ≤
Pr(C′|C(u))
Pr(C′)

≤ exp(ε),

and Theorem 5 is proved.

VII. THE PRIVACY-PRESERVING TRAJECTORIES
RELEASING
In this section, we summarize our FGS-Pufferfish privacy
mechanism and present the numerical recipe of the privacy-
preserving daily trajectory releasing algorithm.

The basic reasoning of the FGS-Pufferfish privacy mecha-
nism is as follows:

1) First, we define the constrained optimization problem
of achieving a better data utility U∗ for a given privacy
budget given by the Laplace scale parameter of C0, i.e.,
bC0 .

2) Next, we solve the constrained optimization problem
via the LM method and obtain the optimal obtained
Laplace scale parameter

{
b∗Fk

∣∣k = 0, 1, . . . ,K − 1
}

for the noisy Fourier coefficients as shown in Eq. (11).
3) Then, the FGS-Pufferfish privacy mechanism adds

noise to the Fourier coefficients according to Eq. (7)
and obtain the noisy Fourier coefficients, i.e.,{
F ′k
∣∣k = 0, 1, . . . ,K − 1

}
.

4) At last, we obtain the sanitized daily trajectories{(
x ′n, y

′
n
)
|n = 0, 1, . . . ,N − 1

}
according to Eq. (2),

with the noisy Fourier coefficients
{
F ′k
∣∣k = 0, 1, . . . ,

K − 1
}
.

Based our proposed FGS-Pufferfish privacy mechanism,
we design an algorithm to release temporally correlated
trajectories in order to protect individuals’ privacy. Because
our goal is to protect the temporal correlation of a user’s
daily trajectory, we first calculate the Fourier coefficients
{Fk

∣∣k = 0, 1, . . . ,K − 1} of a daily trajectory {xn|n =
0, 1, . . . ,N − 1}, which is related to the Fourier coeffi-
cients {Sk

∣∣k = 0, 1, . . . ,K − 1} of its temporal corre-
lation C. Then, to achieve the Laplace distribution of the
noisy temporal correlation C′ through the Fourier coeffi-
cients noise mechanism, i.e., adding noise to K Fourier
coefficients, with K following the geometric distribution.
Furthermore, we obtain the optimal Laplace scale parame-
ters

{
b∗Fk

∣∣k = 0, 1, . . . ,K − 1
}
for the noisy Fourier coef-

ficients. Finally, we use IDFT to obtain the noisy loca-
tions of the sanitized daily trajectory. The details of the
privacy-preserving trajectory releasing through the FGS-
Pufferfish privacy mechanism is given in Algorithm 1.
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Algorithm 1 FGS-Pufferfish Private Trajectory Releasing
Input: A raw daily trajectories set:

T =
{
T(d,um)

∣∣m = 1, 2, . . . ,M; d = 1, 2, . . . ,D
}
, and

a given Laplace scale parameter of C0: bC0 .
Output: A privacy-preserving trajectories set:

T ′
=
{
T′(d,um)

∣∣m = 1, 2, . . . ,M; d = 1, 2, . . . ,D
}
.

1: for all m ∈ {1, 2, . . . ,M} do
2: T′(d,um) = ∅
3: Calculate the ensemble average of (Xn,Y n).
4: for all d ∈ {1, 2, . . . ,D} do
5: Obtain the modified daily trajectory of the d-th day:{

(xn, yn)
∣∣n = 0, 1, . . . ,N − 1

}
, where xn = Xn −

Xn and yn = Yn−Y n (only {xn
∣∣n = 0, 1, . . . ,N−1}

is shown).
6: Calculate the Fourier coefficients for the modified

longitude: Fk =
N−1∑
i=0

xn exp
(
−j 2πN kn

)
.

7: Select an appropriate p and obtain K through the
geometric distribution: Pr(K ) = (1− p)K−1p.

8: Select the utility weight w and calculate W ′k :

W ′k = 2 w+ (1−w)Wk = 2 w+
1− w
I

I−1∑
i=0

2Wi,k .

9: Calculate the optimal Laplace scale parameter for
the noisy Fourier coefficients:

b∗Fk
=

√√√√√√√
bC0

[(
6I−Q

)−1 W ′
2

]
k√√√√√

3
∞∑
k=0

(1−p)k
[(

6I−Q
)−1

W ′
]2
k
−

(
∞∑
k=0

(1−p)k
[(

6I−Q
)−1

W ′
]
k

)2
2

.

10: Obtain noisy Fourier coefficients F ′k = Fk + δFk :

Pr(δFk ) = exp

(
−
|δFk |

b∗Fk

)
.

11: for all n ∈ {0, 1, . . . ,N − 1} do
12: Obtain the noisy location x ′n through IDFT: x ′n =

K−1∑
k=0

F ′k exp
(
j 2πN kn

)
.

13: end for
14: Obtain the noisy modified daily trajectory:

{
(
x ′n, y

′
n
) ∣∣n = 0, 1, . . . ,N − 1}.

15: T′(d,um) = T′(d,um) ∪
{(
x ′n + X̄n, y

′
n + Ȳn

) ∣∣n = 0, 1, . . . ,N − 1
}
.

16: end for
17: end for
18: return T ′

=
{
T′(d,um)

∣∣m =1, 2,· · ·,M; d =1, 2,· · ·,D} .
VIII. EVALUATION
A. EVALUATION SETTING
1) CONFIGURATIONS
We implement our simulations with Python 2.7 on a
laptop with Intel Core i7-6500U, 2.59GHz, Windows 10

system equipped with 8GB main memory. The trajecto-
ries’ temporal correlations are evaluated at time intervals
of
{
ti = iτ

∣∣i = 0, 1, . . . , I − 1
}
, with τ being a constant,

as required by the DFT and IDFT. Also, all simulations are
for the data utility U that consists of w = 90% location utility
UL and 1 − w = 10% correlation utility UC. What’s more,
due to similarity, only the result for the location utility UL is
shown.

2) DATA
We compare our FGS-Pufferfish privacy mechanism to the
CTS approach [3] on both simulated and real-life data [32].
Because the real-life data is not sampled at a constant time
interval τ , we interpolate the raw data in order that the
obtained data has a constant time interval τ .

a: SIMULATED DATA
The simulated data is consist of temporally correlated simu-
lated trajectories which are generated through updating the
current location xn at the n-th time slot by keeping only a
fraction of the last location xn−1, while adding a random
location change g that follows the Gaussian distribution, i.e.,

xn = C1xn−1 + g
√
1− C2

1 , with C1 = exp−1/τc being
the temporal correlation at i = 1 and τc is the correlation
time constant. The generated daily trajectory has an expo-
nential temporal correlation of Ci = exp−i/τc . This data
contains 9 trajectories, and each daily trajectory consists
of 32 time slots with a constant time interval. For both our
FGS-Pufferfish privacy mechanism and the CTS approach,
1,000,000 noise realizations are used for statistics.

b: REAL DATA
The real data is collected by Yonsei University in Seoul of
Korea. It contains nine users’ mobility trajectories in 62 days.
A daily trajectory in this dataset consists of longitudes xn,
latitudes yn and timestamps t . After an interpolation with
a constant time interval, each user’s daily trajectory has
48 times slots. Similar to the simulated dataset, we used
1,000,000 noise realizations for statistics.

3) METRICS
During our evaluations, firstly, we evaluate the probability
distribution for noisy temporal correlations, due to similarity
reason, we only show the result of Pr(C ′0). Then, we focus on
other two metrics of performance: privacy and utility.

In the previous analysis, we have proved that our mech-
anism satisfies ε-Pufferfish privacy. Hence, we adopt the
privacy budget ε to evaluate the privacy. For the privacy
budget ε, we use the joint probability for all coefficients{
C ′i
∣∣i = 0, 1, . . . , I − 1

}
of the correlation function C′, i.e.,

Pr(C′) in Eq. (9).
Furthermore, for the location utility evaluation, we adopt

the utility of the average location standard deviation of a
daily trajectory UL = σ L in Definition 9 to measure the data
utility.
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B. SIMULATED DATA
We first generate correlated trajectories with an exponential
temporal correlation. Then we evaluate the probability distri-
bution of the noisy temporal correlation Pr(C ′0) as shown
in Figure 2. It is clear that the distribution Pr(C ′0) of our
proposed FGS-Pufferfish privacy mechanism is a symmetric
Laplace distribution, agreeing with Theorem 3, while the
probability distributionPr(C ′0) of the CTS approach is neither
symmetric and nor a Laplace distribution.

FIGURE 2. Temporal correlation distribution Pr
(

C ′

0

)
for simulated data.

1) PRIVACY EVALUATION FOR SIMULATED DATA
Now, let’s see the privacy budget ε. As we know, the smaller
the privacy budget ε, the better the privacy. The experimental
results are shown in Figure 3, from which it is clear that
our FGS-Pufferfish privacy mechanism does achieve better
privacy than the CTS approach, for given location utilities
U = σ L .

FIGURE 3. Privacy budget ε evaluation for simulated data.

2) UTILITY EVALUATION FOR SIMULATED DATA
Now, let’s look at the location utility UL under the same
privacy budget ε. As shown in Figure 4, the location utility

UL of our FGS-Pufferfish privacy mechanism is better than
that of the CTS approach. Also, we can see that the smaller
the privacy budget ε, the better the location utility UL .

FIGURE 4. Utility U evaluation for simulated data.

C. REAL DATA
For real-life data, we evaluate the longitude coordinate xn
and the latitude coordinate yn independently. Similar to the
simulated data, we first evaluate the probability distribution
Pr
(
C ′x,0

)
and Pr

(
C ′y,0

)
of the temporal correlations after

noise is added, and the results as shown in Figure 5 for
Pr
(
C ′x,0

)
and Figure 6 for Pr

(
C ′y,0

)
. Similar to the simu-

lated data, both Pr
(
C ′x,0

)
and Pr

(
C ′y,0

)
of our proposed

FGS-Pufferfish privacy mechanism are symmetric Laplace
distributions, agreeing with Theorem 3, while those of the
CTS approach are not.

FIGURE 5. Temporal correlation distribution Pr
(

C ′

x,0

)
for longitudes.

1) PRIVACY EVALUATION FOR REAL DATA
Now let’s look at the privacy budgets εx and εy. As shown
in the Figure 7 and Figure 8, the privacy budgets εx and εy
of our FGS-Pufferfish privacy mechanism are smaller than

37160 VOLUME 6, 2018



L. Ou et al.: Optimal Pufferfish Privacy Mechanism for Temporally Correlated Trajectories

FIGURE 6. Temporal correlation distribution Pr
(

C ′

y,0

)
for latitudes.

FIGURE 7. Privacy budget εx evaluation for longitudes.

FIGURE 8. Privacy budget evaluation εy for latitudes.

those of the CTS approach for the same given data utilities
Uxx and Uxy . Also, both approaches show that the privacy is
better for a worse data utility, and vice versa.

2) UTILITY EVALUATION FOR REAL DATA
Similar to the simulated data, we have also evaluated the
location utilitiesUxx andUxy under the same privacy budget εx

and εy, which are shown in Figure 9 and Figure 10. Again, it is
clear that our FGS-Pufferfish privacy mechanism achieves
better location utility for the same given privacy budgets εx
and εy.

FIGURE 9. Location utility Ux evaluation for longitudes.

FIGURE 10. Location utility Uy evaluation for latitudes.

IX. CONCLUSION
We propose a Laplace noise mechanism based on the
noisy Fourier coefficients’ geometric sum, satisfying Puffer-
fish privacy, i.e., the FGS-Pufferfish privacy mechanism,
to protect the temporal correlation of a user’s daily trajec-
tories. The optimal noisy Fourier coefficients are obtained
by solving the constrained optimization problem via the LM
method to achieves a better data utility for a given privacy
budget. Experiments with both simulated and real-life data
show that our FGS-Pufferfish privacy mechanism achieves
better data utility and privacy compared to the existing
approach. Although we only deal with daily trajectories with
a constant time interval, our proposed mechanism can be
readily modified for time-series data with irregular time
intervals. At last, the geometric sum can be combined with
other decomposition methods such as Principal Components
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Analysis (PCA) and wavelets methods for better performance
of specific time-series applications.

APPENDIX A
NOISY LOCATION PROBABILITY DISTRIBUTION

Lemma 1: After noise is added to the Fourier coeffi-
cients, the noisy location’s Laplace distribution is given by

Pr(x ′n) = Lap
(
x ′n; xn, bxn

)
,

with

bxn =

√√√√1
2

∞∑
k=0

(1− p)k
(
2 b2Fk

)
, (n = 0, 1, . . . ,N − 1).

Proof: From Theorem 1, we know that x ′n follows the
Laplace distribution, and its mean Ex ′n and Laplace scale
parameter bxn are given by,

Ex ′n
{
x ′n
}
= xn, bxn =

σxn
√
2
.

Now let’s calculate the standard deviation σxn ,

σ 2
xn = EK

{
K−1∑
k=0

K−1∑
k ′=0

EδFk

{
δFkδF∗k ′

}
W−1n,kWn,k ′

}

= EK

{
K−1∑
k=0

(
2 b2Fk

)}
=

∞∑
k=0

 ∞∑
K≥k

Pr(K )

(2 b2Fk

)

=

∞∑
k=0

(
1−

K<k∑
K=0

Pr(K )

)(
2 b2Fk

)
=

∞∑
k=0

(1− p)k
(
2 b2Fk

)
,

from which Lemma 1 is proved.

APPENDIX B
TEMPORAL CORRELATION OF A USER

Lemma 2: The temporal correlation of a user before
noise is added, denoted as C, is the Fourier transform of
the variance of the Fourier coefficients of the user’s daily
trajectories over all D days, i.e., Sk = Vard

{
F (d)
k

}
=

2σ 2
Sk , (k = 0, 1, . . . ,K − 1; d = 1, 2, . . . ,D),

Ci =
K−1∑
k=0

(
2σ 2

Sk

)
Wi,k .

Proof: From Eq. (2), we have,

Ci = Ed
{
x(d)n+ix

(d)
n

}
= EFk

{
K−1∑
k=0

FkWi+n,k

K−1∑
k ′=0

F∗k ′W
−1
n,kâĂŸ

}

=

K−1∑
k=0

Wi+n,k

K−1∑
k ′=0

W−1n,k ′EFk

{
FkF∗k ′

}

=

K−1∑
k=0

Wi+n,k

K−1∑
k ′=0

W−1n,k ′EFk

{
|Fk |

2
}
δ(k − k ′)

=

K−1∑
k=0

(
2σ 2

Sk

)
Wi,k .

where we have used the property of the Chi-Square χ2
2 distri-

bution in Eq. (1) and thus Lemma 2 is proved.

APPENDIX C
NOISY TEMPORAL CORRELATION DISTRIBUTION
Similar to the noisy location distribution, we can obtain
the noisy temporal correlation distribution according to the
geometric sum given in Theorem 1.

Lemma 3: The noisy temporal correlation coefficient
C ′i follows the Laplace distribution,

Pr(C ′i ) = Lap
(
C ′i ; C̄

′
i , bCi

)
,

with

C̄ ′i = 2
∞∑
k=0

(1− p)k
(
σ 2
Sk + b

2
Fk

)
Wi,k ,

bCi =

√√√√ ∞∑
k=0

(1− p)k
(
12 b4Fk

)
−

(
δC̄i

)2
2

.

Proof: Similar to Lemma 2, the noisy temporal corre-
lation

{
C ′i
∣∣i = 0, 1, · · · , I − 1

}
after the Fourier coefficients

noise mechanism can be obtained,

C ′i =
K−1∑
k=0

EFk

{
|F ′k |

2
}
Wi,k

=

K−1∑
k=0

(
EFk

{
|Fk |

2
}
+ |δFk |

2
)
Wi,k

=

K−1∑
k=0

(
2σ 2

Sk + |δFk |
2
)
Wi,k . (14)

We can see that C ′i in Eq. (14) is in the form
of geometric sum. From Theorem 1, we know that{
C ′i
∣∣i = 0, 1, . . . , I − 1

}
follows Laplace distribution. With

the help of the properties of the Laplace Fourier coeffi-
cients noise

{
δFk

∣∣k = 0, 1, . . . ,K − 1
}
given in Eq. (8),

the mean of the noisy temporal correlation coefficients{
C ′i
∣∣i = 0, 1, . . . , I − 1

}
after the Fourier coefficients noise

mechanism is given by,

C̄ ′i = Ed
{
x ′(d)n+ix

′(d)
n

}

= E(K ,δFk )

{
K−1∑
k=0

(
2σ 2

Sk + |δFk |
2
)
Wi,k

}
= C̄i + δC̄i,
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b∗Fk
=

√√√√√√√√√√√
bC0

[(
6I − Q

)−1
W ′
2

]
k√√√√√

3
∞∑
k=0

(1− p)k
[(

6I − Q
)−1

W ′
]2
k
−

(
∞∑
k=0

(1−p)k
[(

6I−Q
)−1

W ′
]
k

)2

2

. (15)

λ∗ =

√√√√√
3
∞∑
k=0

(1− p)k
[(

6I − Q
)−1

W ′
]2
k
−

(
∞∑
k=0

(1−p)k
[(

6I−Q
)−1

W ′
]
k

)2

2

2bC0

. (17)

where C̄i is the mean of the temporal correlation before noise
is added; and δC̄i is the noise induced change of the mean of
the temporal correlation C,

C̄i = E(K ,δFk )

{
K−1∑
k=0

(
2σ 2

Sk

)
Wi,k

}
,

δC̄i = E(K ,δFk )

{
K−1∑
k=0

|δFk |
2Wi,k

}
.

Now let’s calculate C̄i and δC̄i,

C̄ ′i = EK

{
K−1∑
k=0

(
2σ 2

Sk

)
Wi,k

}

= 2
∞∑
k=0

(1− p)k
(
σ 2
Sk

)
Wi,k .

Similarly, we have,

δC̄i =
∞∑
k=0

(1− p)k
(
2 b2Fk

Wi,k

)
.

We can also obtain the variance of C ′i (i = 0, 1, . . . , I − 1)
as follows,

Var(K ,δFk )
{
C ′i
}

= Var(K ,δFk )

{
K−1∑
k=0

(
|δFk |

2
)
Wi,k

}

= E

{
K−1∑
k=0

(
|δFk |

2
)
Wi,k

K−1∑
k ′=0

(
|δFk ′ |

2
)
W−1i,k ′

}
−
(
δC̄i

)2
= EK

{
K−1∑
k=0

EδFk

{
|δFk |

2
}}
−
(
δC̄i

)2
=

∞∑
k=0

(1− p)k
(
24 b4Fk

)
−
(
δC̄i

)2
= 2b2Ci .

where we have used the property of the Laplace distribution
of Var(K ,δFk )

{
C ′i
}
= 2 b2Ci and Lemma 3 is proved.

APPENDIX D
THE OPTIMAL FOURIER COEFFICIENTS NOISE
SCALE PARAMETERS

Lemma 4: The optimal Fourier coefficients noise scale
parameters for the constrained optimization problem of data
utility U for a given privacy budget ε given in Eq. (10) are
given by Eq. (15).

Proof: Starting from Eq. (10), we require that,

∂L
∂bFk

∣∣∣∣
b∗Fk

= 0,

from which we have,(
6I − Q

)
b∗2F =

1
4λ∗

W ′,

where I is the unit matrix; b2F is the vector of
{
b2Fk

∣∣k =
0, 1, . . . ,K − 1

}
; W ′ is the vector of

{
W ′k

∣∣k = 0, 1, · · · ,

K − 1
}
; and the matrix Q is given below,

Q =

(1− p)
0 (1− p)1 (1− p)2 (1− p)3 · · ·

...
...

...
... · · ·

(1− p)0 (1− p)1 (1− p)2 (1− p)3 · · ·

.
First, let’s express b∗2F as a function of λ∗,

b∗2F =
1
λ∗

(
6I − Q

)−1
W ′

4
. (16)

Then, let’s substitute Eq. (16) into Eq. (10) and obtain the
analytical formula of λ∗,

At last, combing Eq. (16) and Eq. (17), as shown at the
top of this page, we obtain the analytical formula for b∗Fk
given in Eq. (15), as shown at the top of this page, and thus
Lemma 4 is proved.

REFERENCES
[1] Y. Zheng, L. Z. Zhang, X. Xie, and W.-Y. Ma, ‘‘Mining interesting loca-

tions and travel sequences fromGPS trajectories,’’ in Proc. WWW, Madrid,
Spain, 2009, pp. 791–800.

[2] J. Yuan, Y. Zheng, X. Xie, and G. Z. Sun, ‘‘Driving with knowledge
from the physical world,’’ in Proc. SIGKDD, Athens, Greece, 2011,
pp. 316–324.

VOLUME 6, 2018 37163



L. Ou et al.: Optimal Pufferfish Privacy Mechanism for Temporally Correlated Trajectories

[3] H. Wang and Z. Xu, ‘‘CTS-DP: Publishing correlated time-series data
via differential privacy,’’ Knowl.-Based Syst., vol. 122, pp. 167–179,
Apr. 2017.

[4] T.-H. You, W.-C. Peng, and W.-C. Lee, ‘‘Protecting moving trajectories
with dummies,’’ in Proc. MDM, Beijing, China, May 2007, pp. 278–282.

[5] M. Terrovitis, G. Poulis, N. Mamoulis, and S. Skiadopoulos, ‘‘Local
suppression and splitting techniques for privacy preserving publica-
tion of trajectories,’’ IEEE Trans. Knowl. Data Eng., vol. 29, no. 7,
pp. 1466–1479, Jul. 2017.

[6] R. Chen, B. C. M. Fung, N. Mohammed, B. C. Desai, and K. Wang,
‘‘Privacy-preserving trajectory data publishing by local suppression,’’ Inf.
Sci., vol. 231, pp. 83–97, May 2013.

[7] L. Sweeney, ‘‘k-anonymity: Amodel for protecting privacy,’’ Int. J. Uncer-
tainty Fuzziness Knowl. Based Syst., vol. 10, no. 5, pp. 557–570, 2002.

[8] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith, ‘‘Composition attacks
and auxiliary information in data privacy,’’ in Proc. SIGKDD, Vancouver,
BC, Canada, 2008, pp. 265–273.

[9] J. Hua, Y. Gao, and S. Zhong, ‘‘Differentially private publication of
general time-serial trajectory data,’’ in Proc. INFOCOM, Hong Kong,
Apr./May 2015, pp. 549–557.

[10] C. Dwork, ‘‘Differential privacy,’’ in Proc. ICALP, Venice, Italy, 2006,
pp. 1–12.

[11] V. Rastogi and S. Nath, ‘‘Differentially private aggregation of distributed
time-series with transformation and encryption,’’ in Proc. SIGMOD,
New York, NY, USA, 2010, pp. 735–746.

[12] K. Jiang, D. Shao, S. Bressan, T. Kister, and K. Tan, ‘‘Publishing trajec-
tories with differential privacy guarantees,’’ in Proc. SSDBM, Baltimore,
MD, USA, 2013, Art. no. 12.

[13] R. Chen, B. C. M. Fung, B. C. Desai, and N. M. Sossou, ‘‘Differentially
private transit data publication: A case study on theMontreal transportation
system,’’ in Proc. KDD, Beijing, China, 2012, pp. 213–221.

[14] R. Chen, G. Acs, and C. Castelluccia, ‘‘Differentially private sequential
data publication via variable-length n-grams,’’ in Proc. CCS, Raleigh, NC,
USA, 2012, pp. 638–649.

[15] S. Wang and R. O. Sinnott, ‘‘Protecting personal trajectories of social
media users through differential privacy,’’ Comput. Secur., vol. 67,
pp. 142–163, Jun. 2017.

[16] D. Kifer and A. Machanavajjhala, ‘‘Pufferfish: A framework for mathe-
matical privacy definitions,’’ ACM Trans. Database Syst., vol. 39, no. 1,
Jan. 2014, Art. no. 3.

[17] S. Song, Y. Wang, and K. Chaudhuri, ‘‘Pufferfish privacy mechanisms
for correlated data,’’ in Proc. SIGMOD, Chicago, IL, USA, 2017,
pp. 1291–1306.

[18] M. Guo, X. Jin, N. Pissinou, S. Zanlongo, B. Carbunar, and S. S. Iyengar,
‘‘In-network trajectory privacy preservation,’’ ACM CSUR, vol. 48, no. 2,
Oct. 2015, Art. no. 23.

[19] S. Gao, J. Ma, W. Shi, G. Zhan, and C. Sun, ‘‘TrPF: A Trajectory privacy-
preserving framework for participatory sensing,’’ IEEE Trans. Inf. Foren-
sics Security, vol. 8, no. 6, pp. 874–887, Jun. 2013.

[20] D. Riboni and C. Bettini, ‘‘Differentially-private release of check-in
data for venue recommendation,’’ in Proc. PerCom, Budapest, Hungary,
Mar. 2014, pp. 190–198.

[21] D. Quan, L. Yin, and Y. Guo, ‘‘Enhancing the trajectory privacy with
Laplace mechanism,’’ in Proc. Trustcom, Helsinki, Finland, Aug. 2015,
pp. 1218–1223.

[22] G. Zhang, X. Liu, and Y. Yang, ‘‘Time-series pattern based effective noise
generation for privacy protection on cloud,’’ IEEE Trans. Comput., vol. 64,
no. 5, pp. 1456–1469, May 2015.

[23] Y. Cao and M. Yoshikawa, ‘‘Differentially private real-time data release
over infinite trajectory streams,’’ in Proc. MDM, Pittsburgh, PA, USA,
Jun. 2015, pp. 68–73.

[24] M. Li, L. Zhu, Z. Zhang, and R. XU, ‘‘Achieving differential
privacy of trajectory data publishing in participatory sensing,’’ Inf. Sci.,
vols. 400–401, pp. 1–13, Aug. 2017.

[25] V. Bindschaedler and R. Shokri, ‘‘Synthesizing plausible privacy-
preserving location traces,’’ in Proc. SP, San Jose, CA, USA, May 2016,
pp. 546–563.

[26] X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc, and
D. Srivastava, ‘‘DPT: Differentially private trajectory synthesis using hier-
archical reference systems,’’ Proc. VLDB Endowment, vol. 8, no. 11,
pp. 1154–1165, Jul. 2015.

[27] X. He, N. Raval, and A. Machanavajjhala, ‘‘A demonstration of VisDPT:
Visual exploration of differentially private trajectories,’’ Proc. VLDB
Endowment, vol. 9, no. 13, pp. 1489–1492, Sep. 2016.

[28] L. Fan, L. Xiong, and V. S. Sunderam, ‘‘Differentially private multi-
dimensional time series release for traffic monitoring,’’ in Proc. DBSec,
Newark, NJ, USA, 2013, pp. 33–48.

[29] L. Ou, Z. Qin, Y. Liu, H. Yin, Y. P. Hu, and H. Chen, ‘‘Multi-user location
correlation protection with differential privacy,’’ in Proc. ICPADS, Wuhan,
China, Dec. 2017, pp. 422–429.

[30] A. A. Toda. (Nov. 2011). ‘‘Weak limit of the geometric sum of independent
but not identically distributed random variables.’’ [Online]. Available:
https://arxiv.org/abs/1111.1786

[31] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong, ‘‘Quantifying differen-
tial privacy under temporal correlations,’’ in Proc. Int. Conf. Data Eng.,
Apr. 2017, pp. 821–832.

[32] Y. Chon, E. Talipov, H. Shin, and H. Cha, ‘‘Mobility prediction-
based smartphone energy optimization for everyday location monitoring,’’
in Proc. SenSys, Seattle, WA, USA, 2011, pp. 82–95.

LU OU (S’15) received the B.S. degree
in computer science from the Changsha University
of Science and Technology and the M.S. degree
in software engineering from Hunan University,
China, in 2009 and 2012, respectively, where she
is currently pursuing the Ph.D. degree with the
College of Computer Science and Electronic Engi-
neering. Her research focuses on security, privacy,
and big data.

ZHENG QIN (M’18) received the Ph.D. degree
in computer software and theory from Chongqing
University, China, in 2001. From 2010 to 2011,
he served as a Visiting Scholar with the Depart-
ment of Computer Science, Michigan University.
He is currently a Professor with the College of
Computer Science and Electronic Engineering,
Hunan University, where he also serves as the
Vice Dean. He also serves as the Director of the
Hunan Key Laboratory of Big Data Research and

Application and the Vice Director of the Hunan Engineering Laboratory
of Authentication and Data Security. His main interests are network and
data security, privacy, data analytics and applications, machine learning, and
applied cryptography. He is a member of the China Computer Federation.

SHAOLIN LIAO (SM’15) received the B.S. degree
in materials science and engineering from
Tsinghua University, Beijing, China, in 2000, and
the Ph.D. degree in electrical engineering from
the University of Wisconsin–Madison, Madison,
USA, in 2008. He was a Post-Doctoral Fellow
at the Department of Physics, City University of
New York, from 2008 to 2010. He is currently a
Research and Development Staff with the Argonne
National Laboratory and an Adjunct Faculty with

the Department of Electrical and Computer Engineering, Illinois Institute
of Technology, Chicago, IL, USA. His interests span the multidisciplinary
areas of privacy and machine learning of big data, simulation, algorithms,
and modeling in signal processing, and novel methods in computational
electromagnetics. He is an Associate Editor of the IEEE ACCESS.

37164 VOLUME 6, 2018



L. Ou et al.: Optimal Pufferfish Privacy Mechanism for Temporally Correlated Trajectories

HUI YIN received the B.S. degree in computer
science from Hunan Normal University, China,
in 2002, the M.S. degree in computer soft-
ware and theory from Central South Univer-
sity, China, in 2008, and the Ph.D. degree from
the College of Information Science and Engi-
neering, Hunan University, China, in 2018. He is
currently an Assistant Professor with the College
of Applied Mathematics and Computer Engi-
neering, Changsha University, China. His main

interests include information security, privacy protection, applied cryptog-
raphy, and malware detection.

XIAOHUA JIA (F’13) received the B.Sc. and
M.Eng. degrees from theUniversity of Science and
Technology of China in 1984 and 1987, respec-
tively, and the D.Sc. degree in information science
from The University of Tokyo in 1991. He is
currently a Chair Professor with the Department of
Computer Science, City University of Hong Kong.
His research interests include cloud computing
and distributed systems, data security and privacy,
computer networks, and mobile computing. He is

the General Chair of ACM MobiHoc 2008, a TPC Co-Chair of IEEE
GLOBECOM 2010–Ad Hoc and Sensor Networking Symp, and an Area
Chair of IEEE INFOCOM 2010 and 2015–2017. He is an Editor of the IEEE
INTERNET OF THINGS, the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS (2006–2009), Wireless Networks, the Journal of World Wide Web,
the Journal of Combinatorial Optimization, and so on.

VOLUME 6, 2018 37165


	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	PROBLEM STATEMENT AND BASIC IDEA
	BASIC CONCEPTS
	PUFFERFISH PRIVACY
	DISCRETE FOURIER TRANSFORM
	GEOMETRIC SUM
	THE CONSTRAINED OPTIMIZATION PROBLEM


	TEMPORAL CORRELATION AND MOBILITY PATTERN
	MOBILITY PATTERN
	TEMPORAL CORRELATION
	THE DFT OF THE TEMPORAL CORRELATION

	THE FGS-PUFFERFISH PRIVACY MECHANISM
	THE SETTING
	TEMPORAL CORRELATION SECRET
	CORRELATION SECRETS PAIRS
	THE ADVERSARY'S BELIEF DISTRIBUTION

	NOISE MECHANISM
	THE FOURIER COEFFICIENTS NOISE MECHANISM
	LAPLACE LOCATION NOISE
	LAPLACE TEMPORAL CORRELATION NOISE

	THE CONSTRAINED OPTIMIZATION OF THE FGS-PUFFERFISH PRIVACY MECHANISM

	ANALYSIS
	UTILITY
	PRIVACY
	ADVERSARY KNOWLEDGE
	PRIOR KNOWLEDGE
	POSTERIOR KNOWLEDGE
	POSTERIOR-OVER-PRIOR KNOWLEDGE GAIN


	THE PRIVACY-PRESERVING TRAJECTORIES RELEASING
	EVALUATION
	EVALUATION SETTING
	CONFIGURATIONS
	DATA
	METRICS

	SIMULATED DATA
	PRIVACY EVALUATION FOR SIMULATED DATA
	UTILITY EVALUATION FOR SIMULATED DATA

	REAL DATA
	PRIVACY EVALUATION FOR REAL DATA
	UTILITY EVALUATION FOR REAL DATA


	CONCLUSION
	REFERENCES
	Biographies
	LU OU
	ZHENG QIN
	SHAOLIN LIAO
	HUI YIN
	XIAOHUA JIA


