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ABSTRACT Sentiment classification for reviews has attracted increasingly more attention from the natural
language processing community. By embedding prior knowledge into learning structures, classifiers often
achieve a better performance than original methods. In this paper, we propose a sophisticated algorithm based
on deep learning and information geometry in which the distribution of all training samples in the space is
treated as prior knowledge and is encoded by deep belief networks (DBNs). From the view of information
geometry, we construct the geodesic distance between the distributions over the features for classification.
The study of the distributions contributes to the training of the DBN, since the distance is correlated to the
error rate in the classification. Finally, we evaluate our proposal using empirical data sets that are dedicated
for sentiment classification. The results show that our algorithm results in a significant improvement over
existing methods.

INDEX TERMS Information geometry, neural networks, semi-supervised learning, sentiment classification.

I. INTRODUCTION
Due to the fast development of the internet, people are able
to express their opinions much easier and in different ways.
As a result, it is not surprising that currently there are tons of
reviews available. Sentiment classification for such reviews
has attracted increasingly more attention from the Natural
Language Processing (NLP) community.

Sentiment classification refers to the use of natural
language processing, text analysis and computational lin-
guistics to identify and extract subjective information from
source materials. Sentiment classification aims to determine
the attitude of a speaker with respect to some topic or the
overall contextual polarity of a document, such as ‘positive’
or ‘negative’ and ‘thumbs up’ or ‘thumbs down’ [1]. Methods
for document sentiment classification are generally based on
the lexicon and corpus [2]. The lexicon-based approaches
can derive a sentiment measure for text based on senti-
ment lexicons. The corpus-based approaches involve a sta-
tistical classification method. The corpus-based approaches
usually outperform the lexicon-based approaches and have
been used in unsupervised learning, supervised learning and
semi-supervised learning.

Early research within this field includes the works of
Pang et al. [3] and Turney [4]. They applied supervised
learning and unsupervised learning for classifying the senti-
ments of movie reviews and automobile reviews respectively.
The study of supervised learning methods for sentiment
classification began with the work in [3]. On the basis of
Markov Logic Networks (MLNs), a study proposed a cross-
domain multitask text sentiment classification method rooted
in transfer learning [5]. These methods are widely used in
analyzing the sentiments of various topics, such as movie
reviews [6], micro-blogs [7], [8] and so on. The idea is to
train a domain-specific sentiment classifier for each target
domain using the labeled data in that domain. Furthermore,
some scholars apply machine learning approaches to derive
a classifier through supervised learning [9], [10]. In 2018,
a platform was presented to automate the processing of infor-
mation obtained from social networks by focusing on improv-
ing the accuracy of decision support systems for sentiment
analysis [11]. In addition, a feature selection method was
introduced to improve the performance of the supervised
learning algorithms [12]. Although these methods have good
performance, they all rely on labeled data as the training set,
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which is normally difficult to obtain. Even though several
works use the domain adaptation approach [13]–[16], as is
the challenge of the domain-specific approach, annotating
a large scale corpus for each domain is very expensive.
Unsupervised learning for sentiment classification maxi-
mizes the likelihood of observed data without any labeled
reviews [17]. In [4], the classification of a review is predicted
by the average semantic orientation of the phrases in the
review that contain adjectives or adverbs. In addition, a phrase
has a positive semantic orientation when it has good associa-
tions (e.g., ‘‘subtle nuances’’) and a negative semantic orien-
tation when it has bad associations (e.g., ‘‘very cavalier’’).
Semantic Orientation from Pointwise Mutual Information
(SO-PMI) [18] is a method for inferring the semantic orien-
tation of a word from its statistical association with a set of
positive and negative paradigm words. Read and Carroll
investigated the effectiveness of word similarity techniques
when performing weakly supervised sentiment classifica-
tion [19]. In 2014, a novel learning model based on active
learning and self-training was introduced to incorporate
unlabeled data from the target language into the learn-
ing process for cross-lingual sentiment classification [20].
Because labeled data are not used by unsupervised learning
approaches, they are expected to be less accurate than those
based on supervised learning [21]. Several semi-supervised
learning approaches have been proposed, which use a large
amount of unlabeled data together with labeled data for learn-
ing [22], [23]. Zhou et al. [24] proposed a semi-supervised
learning algorithm called fuzzy deep belief networks for
sentiment classification, which is based on the deep learning
algorithm Deep Belief Networks (DBNs) [25] and fuzzy
sets [26]. However, it does not learn any information from
the labels during its unsupervised learning (the learning
of RBMs).

Information geometry has found various applications in
many fields, such as the asymptotic theory of statistical infer-
ence [27], semiparametric statistical inference [28], and the
Expectation–Maximization (EM) algorithm [29].

In this paper, we propose to enhance DBNs with informa-
tion geometry in order to address the aforementioned chal-
lenges. Our method guides the learning of RBMs to absorb
information from the labels. The details are described as
follows. The neural networks discriminate the pattern through
learning its distribution. We treat the value of a feature as
a variable. We describe its value by its distribution. In our
case, the patterns are divided into two categories. In each
category, one feature is associated with a distribution. Then,
it has two distributions for two categories. The distributions
are calculated based on labeled data, which makes use of
the information from the labels. With the theory of informa-
tion geometry, the distributions of the features of all labeled
training samples in the space are mapped into a statistical
manifold. On the manifold, the geodesic distance is an effec-
tive measurement of the difference among the distributions.
Although there are many other alternative measures [30],
the measurement provided by information geometry has

many good properties, such as information monotonicity [31]
and being invariant under coordinate transformations [32].
If the distance between the distributions of a feature is larger,
then the feature is more discriminative (important), not the
other way around. This is because the distance is correlated
to the error rate of a classifier via the single feature. This is
explained in the theoretical analysis. Next, we guide the RBM
to absorb the information from the labels using information
geometry by computing the distance, while the traditional
algorithm for training the RBM does not take the knowledge
about the information from the labels into account. In more
detail, through weighting, we enhance the representation of
the important features using the RBM.Our algorithm refers to
Deep Belief Networks with Information Geometry (IGDBN).
Our proposal is able to tackle the aforementioned challenges
and results in better performance than the previous methods.

The remainder of this paper is organized as follows.
Section II presents our semi-supervised learning method
IGDBN in details. Section III presents the experimental
results. We conclude the paper in Section IV.

II. MATERIALS AND METHODS
Our method is called IGDBN. We describe its novel proce-
dure for training a DBN and classifying sentiment as follows.
First, we preprocess the sentiment classification data set.
Second, we evaluate the importance of each feature in the
classification from the view of information geometry. Third,
in RBMs, we enhance the representation of important fea-
tures. Fourth, we obtain the DBN that consists of the RBMs
and fine-tune the DBN. Finally, the deep network is applied
for sentiment classification. The whole procedure is shown
in Figure 1.

FIGURE 1. The whole procedure for establishing IGDBN and classifying
sentiment.

A. PREPROCESS
As the sentiment classification data set is normally composed
of many review documents, we need to preprocess them
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in advance in the same way as that of [33]. Specifically,
we tokenize and downcase each review and represent it as a
vector of unigrams, using the frequency as its presence. The
details are described as follows.

Each review is represented as a vector x i. The data set is
denoted by

X = [x1, x2, . . . , xU+T ] (1)

where

x i = [x i1, x
i
2, . . . , x

i
A]
′, i ∈ 1, 2, . . . ,U + T (2)

and where U is the number of training reviews, T is the
number of test reviews, A is the number of feature words in
the data set, and the frequency of the jth feature word in the
ith review is x ij for j ∈ 1, 2, . . . ,A.

The L training reviews to be labeled manually are denoted
by XL . Each column of XL is a vector of a review. These
training reviews are chosen randomly. The labels correspond-
ing to L labeled training reviews are aggregated into a set of
labels Y . It is denoted as

Y = [y1, y2, . . . , yL] (3)

where

yi = [yi1, y
i
2]
′ (4)

yic =

{
1, if x i ∈ cth class
0, if x i /∈ cth class

(5)

c is the index of classes for cε{1, 2}, which corresponds to
positive and negative, respectively. If a review x i is positive,
yi = [1, 0]’, and otherwise yi = [0, 1]’.
We construct a DBN with one input layer, one output layer

and N -1 hidden layers. The input layer h0 has A units and the
output layer hN has 2 units corresponding to the positive and
negative. The output layer has a linear activation function, and
every hidden layer uses a sigmoid function as its activation
function.

B. TRAINING RBMs
We build the DBN layer by layer using RBMs [34]. Each
RBM consists of an input layer and an output layer [35]. And
all elements of the inputs and outputs range from [0,1]. All of
the training reviews are used as the inputs for the first RBM.
And its outputs will be used as the inputs for the next RBM.
These will be repeated until the N-1th RBM. An element of
the input vector refers to a feature. For each RBM, we study
the features to guide its learning.

We divide the labeled data XL into a positive set XL1 and a
negative set XL2 . Next, we model the distribution over XL1 (j)
and XL2 (j), for jε{1, 2, . . . ,A}, while XLc (j) represents the
jth row of XLc for cε{1, 2}. Each row of XLc is associated
with a feature as discussed in Section A. It states that the
averages of the random variables drawn from the indepen-
dent distributions converge in distribution to the Gaussian
distribution when the number of samples is sufficiently large.

Thus, we assume that the distribution over XLc (j) satisfies the
Gaussian distribution

p(xj|θc(j)) =
1

√
2πσc(j)

exp(
−|xj − µc(j)|2

2(σc(j))2
) (6)

where θc(j) = (θc1(j), θ
c
2 (j))

′
= (µc(j), σc(j))′. xj is a random

variable. Its mean is µc(j), and its standard deviation is σc(j).
The proposed method can address any other distributions. We
will prove it by Theorem 1 in the next section.

To describe the distribution over the jth feature of the
samples in set XLc , we only need to estimate the mean µc
and standard deviation σc using the sample mean and sample
standard deviation as

µ̃c(j) = 1
Lc

Lc∑
i=1

x ij (7)

σ̃c(j) =

√
1

Lc−1

Lc∑
i=1

(x ij − µ̃c(j))
2 (8)

where class c has Lc labeled data for cε{1, 2}, j is the index
of features, and x ij corresponds to the jth feature of the ith
labeled data vector. We denote the results as

θ1(j) = (µ1(j), σ1(j))′ (9)

θ2(j) = (µ2(j), σ2(j))′ (10)

for each feature indexed by j.
Define

H = {(µ, σ ) ∈ R2|σ > 0}. (11)

as a half plane.
Let the Fisher Information Matrix (FIM) be

G(θ ) = [gqz(θ )] (12)

where q and z are the indexes of the elements in the
matrix G(θ ). The element gqz(θ ) is calculated by

gqz(θ ) = E{
∂ log p(x|θ )

∂θq
·
∂ log p(x|θ )

∂θz
} (13)

where E signifies the expectation. Then

G = (gqz(µ, σ )) =
(
1/σ 2 0
0 2/σ 2

)
(14)

We consider the couple (H ,G) as a Riemannian manifold.
Then, the expression for the metric of (H ,G) is

ds2F = dθTG(θ )dθ =
dµ2
+ 2dσ 2

σ 2 (15)

Consider a curve θ (t) that joins θ1 = θ (t1) and θ2 = θ (t2),
in which t1 ≤ t ≤ t2. Then, the distance along the curve
between its endpoints, namely, the two distributions p(x|θ1)
and p(x|θ2), along θ (t) [36] is defined by

D(θ1, θ2) :=
∫ t2

t1
(

√
(
dθ
dt

)TG(θ )(
dθ
dt

))dt (16)

where ‘‘:=’’ stands for ‘‘defined as’’. This distance is
dependent on the choice of the curve. The distance between
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p(x|θ1) and p(x|θ2) is defined as the minimum of such dis-
tances over all possible curves. The Integrated Fisher Infor-
mation Distance (IFID) between the two distributions p(x|θ1)
and p(x|θ2) is defined as the integral along the curve θ (t) that
minimizes (16) [37]. That is,

DF (θ1, θ2)

:= min
{θ (t):θ (t1)=θ1,θ(t2)=θ2}

∫ t2

t1
(

√
(
dθ
dt

)TG(θ )(
dθ
dt

))dt (17)

Using the local coordinates, the geodesic equations are
given by the Euler–Lagrange equations as

d2θk
dt2

+

n∑
q=1

n∑
z=1

(
1
2

n∑
q=1

gkl(
∂gql
∂θz
+
∂gzl
∂θq
−
∂gqz
∂θl

))
dθq
dt

dθz
dt
= 0,

∀k, l ∈ {1, . . . , n} (18)

where θ = (θ1, θ2, . . . , θn)′.
Any curve γ (t) that satisfies (17) is called a geodesic line.

Then, for any t , there exists ε > 0, and γ (t) is a distance line
for (t−ε, t+ε). In other words, for any t1, t2 ∈ (t−ε, t+ε),
the minimal distance line between γ (t1) and γ (t2) is γ (t),
t1 ≤ t ≤ t2.
By substituting (14) to (17), the distance DF between

θ1(j) = (µ1(j), σ1(j))′ and θ2(j) = (µ2(j), σ2(j))′ in the upper
half-plane can be solved as follows:

DF ((µ1, σ1), (µ2, σ2))

=
√
2 ln

(
∣∣∣(µ1−µ2√

2
, σ1 + σ2)

∣∣∣+ ∣∣∣(µ1−µ2√
2
, σ1 − σ2)

∣∣∣)
4σ1σ2

=
√
2 ln(

F((µ1, σ1), (µ2, σ2))+(µ1−µ2)2+2(σ 2
1 +σ

2
2 )

4σ1σ2
)

(19)

where | · | stands by the standard vector norm in European
Space. In addition,

F((µ1, σ1), (µ2, σ2))

=

√
((µ1−µ2)2+2(σ1−σ2)2)((µ1 − µ2)2 + 2(σ1 + σ2)2)

(20)

In (19) and (20), we use µ1, σ1, µ2 and σ2 instead of µ1(j),
σ1(j), µ2(j) and σ2(j) for simplicity.
Then we substitute (9) and (10) into (19) and (20) to

achieve a diagonal matrix MDF (j, j) ∈ RA×A. Its element
MDF (j, j) is computed as

MDF (j, j) = 1− λ
1

1+ fun(DF ((µ̃1(j), σ̃1(j)), (µ̃2(j), σ̃2(j))))
(21)

where fun() denotes a normalization function that dividesDF
by the largest one, and λ is a constant that ranges from
0 to 1. MDF (j, j) ranges from 0 to 1. The IFID is correlated
to the error rate. If the distance between the distributions of

a feature is larger, then the feature is more discriminative
(important), not the other way around. The theoretical analy-
sis is described as follows.

Suppose that a Bayes classifier [38] (which has the lowest
error rate) assigns a sample x i to the cth class according to
the value of its jth feature. The rule for classification is as
follows:

If p(c|x ij ) = max
c∈{1,2}

p(c|x ij ), then x
i
∈ cth class.

Then, the error rate is defined as

p(e) =
∫
p(e|x ij )p(x

i
j )dx

i
j

where

p(e|x ij ) = min
c∈{1,2}

[p(c|x ij )] ≤
√
p(c = 1|x ij )p(c = 2|x ij )

Then,

p(e) =
∫
p(e|x ij )p(x

i
j )dx

i
j

≤

∫ √
p(c = 1|x ij )p(c = 2|x ij )p(x

i
j )dx

i
j

=
√
p(c = 1)p(c = 2)

∫ √
p(x ij |c = 1)p(x ij |c = 2)dx ij

in which

ρ(p(x ij |c=1), p(x
i
j |c=2))=

∫ √
p(x ij |c = 1), p(x ij |c = 2)dx ij

is the Bhattacharrya coefficient[39].
For distributions belonging to the same exponential family

(e.g., p(x ij |c = 1) and p(x ij |c = 2) are Gaussians), we have

ρ = e−JF (θ
1,θ2)

where JF is a Jensen divergence defined over the natural
parameter space.

To make the bound for P(e) tighter, we may consider for
α ∈ [0, 1] that

ρ(p(x ij |c = 1), p(x ij |c = 2))

≤ ρα(p(x ij |c = 1), p(x ij |c = 2))

=

∫
[p(x ij |c = 1)]α[p(x ij |c = 2)]1−αdx ij

To scale it,we have[40]

Dα =
1− ρα
α(1− α)

It is the IFID in information geometry when we set
α ∈ [− 1

2 ,
1
2 ] instead of [0,1] by remapping α ← α − 1

2 .
Thus, when the IFID is larger, ρα is smaller. It makes the
upper bound of the error rate of the classification according
to the jth feature lower. Apart from the IFID, there are many
other alternative measures, among which a popular one is the
Kullback-Leibler divergence (KLD) [41]. However, the KLD
cannot reflect the infinitesimal difference between two distri-
butions as the IFID can. The proof this can be found in the
Appendix.
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Therefore, the value ofMDF (j, j) reflects the importance of
the jth feature. We call it the importance factor.

Next, wewill show that all the calculations discussed above
can be extended to address any other distribution.
Theorem 1: Let k1, k2, . . . , k j be real numbers that follow

the same distribution. The mean and standard deviation of
such numbers are µ1 and σ1, respectively. Let

µ2 = (
j∑

i=1

k i)/j

σ2 =

√√√√[
j∑

i=1

(k i − µ2)2]/(j− 1)

Then, for any 0 < ε < 1, the assertion

lim
j−>∞

DF ((µ1, σ1), (µ2, σ2)) = 0

lim
j−>∞

DF ((µ1, σ1), (µ2, σ2))/
√
µ2 + σ 2 > 0

holds with atleast a probability of 1− ε where

µ = (µ2 − µ1) /σ1

σ = σ2/σ1 − 1

The proof can be seen in the Appendix. According to
Theorem 1, all the calculations discussed above can be
extended to address any other distribution. This is because
when j is large enough, the DF between a Gaussian distri-
bution and another distribution trends to zero, and thus the
distribution will converge to the Gaussian distribution.

The feature, which has a larger importance factor, usually
plays a more important role in classification. To enhance the
representation of important features by RBMs, it is reason-
able to promote the amplitudes of the weights of the connec-
tions from the visible units corresponding to these important
features. At the same time, the weights of useless features
should be restrained. Thus, we redefine the energy as

E(v, h) = −bTMDF v− r
T h− hTWMDF v (22)

where a visible vector v of dimension A and a layer h of B
binary hidden units. The parameters of the RBM are denoted
by b, r and W . Each element of v represents a feature that is
multiplied by its importance factor in MDF .
g() is the logistic sigmoid function defined as

g(t) =
1

1+ e−t
(23)

Given a random training example, v, the probability that
the binary state, ho, of each hidden unit is 1 will be expressed
as

p(ho|v) = g(ro +
∑
j

wjoMDF (j, j)vj) (24)

We begin from a random state of visible units where a
single step of Gibbs sampling determines the hidden units’

state using (24) and then computes the visible units’ state
using (25).

p(vj|h) = g(MDF (j, j)bj +
∑
o

wjoMDF (j, j)ho) (25)

The parameter updates require performing the 1-step
Contrastive Divergence [42].

1wjo = α(< MDF (j, j)× vjho >data

− < MDF (j, j)× vjho >recon) (26)

1bj = α(< MDF (j, j)× vj >data

− < MDF (j, j)× vj >recon) (27)

1ro = α(< ho >data − < ho >recon) (28)

where α is the learning rate,< · >data denotes an expectation
with respect to the data distribution and < · >recon is the
corresponding expectation when the features are being driven
by the reconstructed counts.

Each RBM is associated with a hidden layer in the DBN.
The activation of hidden units in one RBM is treated as the
training data for its next RBM, and the labels are inherited.
For the latter RBM, we repeat the process described above.
Finally, we achieve N -1 RBMs.

C. FINE-TUNE AND CLASSIFICATION
We refine the parameter space using L labeled reviews by
back-propagation. In this task, we define the optimization
problem as

argmin
W

f (hN (XL ,Y L)) (29)

f (hN (XL),Y L) =
1
2

L∑
i=1

2∑
c=1

(hNc (x
i)− yic)

2 (30)

where c is the index of classes and hN is the activation
function of the output layer.

The label of new data is denoted by ĉ. It is determined by

ĉ = argmax
c

hNc (x) (31)

III. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL SETUP
We use five sentiment classification data sets from the UCI
Machine Learning Repository, as has been done in previously
published works. The data sets include electronics (ELE),
kitchen appliances (KIT), movies (MOV), books (BOO) and
DVDs (DVD). Each of them contains 1000 positive and
1000 negative reviews. We divide the 2000 reviews into two
parts. Half of the reviews are randomly selected as training
data and the remaining reviews are used for testing. All algo-
rithms are tested with cross-validation for 10 rounds. Then,
the average of these 10 experiment results is reported. The
percent of labeled training samples ranges from 20% to 80%.
We adapt the structures of the deep networks in [43]. We also
set the same parameters for all neural networks. The learning
rate is 0.05, the momentum is 0, the number of iterations
is 2000, and λ is set to 0.1 based on experience.
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FIGURE 2. Test accuracy on five data sets for TSVM, FDBN, EM DBN and
IGDBN. (a). Test accuracy on five data sets for TSVM, FDBN, EM DBN and
IGDBN when the percent of labeled training samples is set to 20%.
(b). Test accuracy on five data sets for TSVM, FDBN, EM DBN and IGDBN
when the percent of labeled training samples is set to 40%. (c). Test
accuracy on five data sets for TSVM, FDBN, EM DBN and IGDBN when the
percent of labeled training samples is set to 60%. (d). Test accuracy on
five data sets for TSVM, FDBN, EM DBN and IGDBN when the percent of
labeled training samples is set to 80%.

B. PERFORMANCE COMPARISON
We compare the classification performance of IGDBN
with two representative semi-supervised learning classifiers,
i.e., the Transductive SVM (TSVM) [44] and Fuzzy Deep
Belief Networks (FDBN) [43]. In addition, we also apply
the EM algorithm [45] to deep belief networks so that we
can compare the proposed method with the method using
information geometry. For simplicity, we call this kind of
DBN an EM DBN.

The test accuracy on the five data sets for TSVM, FDBN,
EM DBN and IGDBN (proposed method) can be seen in
Figure 2. We can see that the performance of the IGDBN is
better than the TSVM, FDBN and EM DBN on all five data
sets. This proves the effectiveness of our proposed learning
method, which labels the same number of reviews, in that it
can obtain better performance than the other semi-supervised
methods. Intuitively, the improvement of our method is sig-
nificant compared with previous methods. The improved

TABLE 1. Improved Percentages on accuracy. (a) Average improved
percentages over five data sets when the percent of labeled training
samples is set to 20%. (b) Average improved percentages over five data
sets when the percent of labeled training samples is set to 40%. (c) Average
improved percentages over five data sets when the percent of labeled
training samples is set to 60%. (d) Average improved percentages over
five data sets when the percent of labeled training samples is set to 80%.
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DF ((µ1, σ1), (µ2, σ2)) =
√
2 ln{[F((µ1, σ1), (µ2, σ2))+ (µ1 − µ2)2 + 2(σ 2

1 + σ
2
2 )]/4σ1σ2}

=
√
2 ln[

σ 2
1

√
(µ2 + 2σ 2)(µ2 + 8+ O(σ ))+ σ 2

1µ
2
+ 4σ 2

1 (1+ σ + O(σ
2))

4σ1σ2
]

percentages on accuracy are given in Table I. Under differ-
ent percentages of labeled training samples, IGDBN outper-
forms the previous algorithms constantly. The improvement
of IGDBN over FDBN and EM DBN is comparable to the
improvement of those two methods made over previous ones.
While the percent of labeled training samples becomes larger,
the improvement of the IGDBN tends to be more prominent.
That is because more samples lead to equations (7) and (8)
having enough samples to approach the real mean and stan-
dard deviation.

IV. CONCLUSION
According to the shortcomings of the current methods for
sentiment classification, we propose a sophisticated algo-
rithm based on deep learning and information geometry. The
novel semi-supervised learning algorithm IGDBN addresses
the sentiment classification problemwith a number of labeled
reviews. The experiments show that the proposed method
has advantages in accuracy compared with the previous
algorithms.

APPENDIX
PROOF FOR THEOREM 1
By the Central Limit Theorem, for any distribution, for a
sufficiently large j, we have

(µ2 − µ1)/σ1 ∼ N (0, 1/j)

(σ2)2/(σ1)2 ∼ N (1, 1/(j− 1))

Then, there exists a positive function c(j), which is decreas-
ing with zero as the limit, such that

p{|µ| ≤ c(j)} > 1− ε

p{|σ | ≤ c(j)} > 1− ε

For a large j, we deduce that DF ((µ1, σ1), (µ2, σ2)), as
shown at the top of this page.

Then,
√
2 ln[c1(r + o(r))+ 1] ≤ DF ((µ1, σ1), (µ2, σ2))

≤
√
2 ln[c2(r + o(r))+ 1]

where r =
√
µ2 + σ 2, and c1 and c2 are positive constants.

The results hold true.
Next, we prove the superiority ofDF compared with KLD.
The symmetric form of KLD is[41]

KLD((µ1, σ1)||(µ2, σ2))

=
1
2
[2 ln(σ2/σ1)+ σ 2

1 /σ
2
2 + (µ1 − µ2)2/σ 2

2 − 1]

Then, for a large j, we have

KLD((µ1, σ1)||(µ2, σ2)) ≤ o(
√
µ2 + σ 2)

Then, according to Theorem 1, with at least a probability of
1− ε,

lim
n−>∞

KLD((µ1, σ1)||(µ2, σ2))/
√
µ2 + σ 2 = 0

which implies KLD(·) has lower sensitivity than DF (·).
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