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ABSTRACT Ambient intelligence refers a new technological paradigm, where everyday environments
behave in a smart way and are sensitive to their inhabitants. In order to reach this objective, complex
pervasive sensing platforms are deployed, together with artificial intelligence solutions. In these new,
complex, and highly interdependent systems, traditional security policies and defense strategies are not
effective, as thousands of heterogeneous cyber and physical elements are mixed and connected. New security
solutions try to learn about the expected behavior from the system and its components, so if a strange event
occurs; adequate preventive, corrective, and/or reactive security actions to detect and stop the potential cyber-
physical attack being performed are triggered in an intelligent way. In order to learn about the system and
select and apply the adequate security actions, very large datasets containing records of previous behaviors
should be analyzed, sometimes in a very fast way. This fact enormously complicates the implementation of
these new security solutions, as it is necessary a huge storage capacity, which many domestic systems do not
have, and it is needed to work with huge data sets whose processing time prevents making decisions with
the required speed. Therefore, in this paper, we investigate and propose a procedure to reduce large datasets,
with the objective of enabling new security techniques to detect cyberattacks in a fast and efficient way.
The proposed procedure is based on the calculation of small sets of samples, whose statistic configuration
is as similar as desired to the original large dataset. Stochastic models and information theory techniques
and theorems are composed and combined in order to define a mathematical framework which allows the
obtention of these equivalent reduced datasets. We also describe and evaluate a first implementation of the
proposed solution, using both, a simulation scenario and a real deployment.

INDEX TERMS Ambient intelligence, security, big data, cybersecurity, stochastic models,
information theory.

I. INTRODUCTION
Future engineered systems are envisioned to be composed of
ubiquitous deployments including thousands of hardware and
software components, very heterogeneous and managed in an
unmanned and non-centralized way [1].

Various solutions based on this new paradigm have been
proposed during the last ten years: Cyber-Physical Sys-
tems (CPS) [2], Industry 4.0 [3], Smart environments [4],
etc. Although the final applications that can support all these
technologies are different, all of them are based on a pervasive
sensing platform, which enables final applications to infer

some relevant information that is implicit in the acquired
data [2].

One of the most important and popular proposals in this
area is Ambient Intelligence (AmI) [5]. AmI refers to a
new technological paradigm where everyday environments
behave in a smart way and are sensitive to their inhabitants.
In AmI solutions, then, sensors and other processing devices
are employed as implicit interfaces to interact with people and
help them in their daily life.

In fact, the idea of using technology to enhance people
experience and help them in their daily living activities is not
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new (some first references to the concept of ‘‘smart house’’
can be found even in works of 1960). However, the current
technological state enables, for the first time, considering
AmI as a reality and as a discipline with a unique set of
contributions. In particular, current information technologies
can fulfill the requirements and essential characteristics of
AmI systems: sensitive, responsive, adaptive, transparent,
ubiquitous, and intelligent.

Although all these characteristics are equally important,
the aspect that affects themost the entire system configuration
and architecture is transparence. In AmI system, hardware
devices and other technologies tend to disappear [6]; so
engineered deployments are indistinguishable from standard
environments and daily living scenarios. This requirement
practically forces the use of resource-constrained devices,
as they are, in general, smaller in size, and allow the use
of tiny batteries (two essential facts to create transparent
technologies and unobtrusive embedded devices).

These resource-constrained devices are constantly acquir-
ing information through specific sensors, so the AmI system
may be considered sensitive. Besides, as AmI deployments
must be ubiquitous, hundreds, thousand or even hundreds of
thousands of tiny resource-constrained devices are continu-
ously generating data, which are usually sent to the intelligent
subsystems or to the equivalent module (see Figure 1).

FIGURE 1. Basic architecture for an AmI environment.

Although the use of tiny heterogeneous resource-
constrained sensor nodes has enabled the creation of viable
AmI systems; it has introduced new challenges to be
addressed. In particular, it is known that new engineered
systems (such as Internet of Things deployments) are char-
acterized for being unsecure nowadays [7]. This fact, even
though it is transversal to all new technological systems,
is especially critical in AmI solutions. Actually, as security
solutions are supported by tiny sensor nodes, they cannot be
implemented in hardware devices, or at network level. This
weakness might be exploited to attack AmI systems using a
new type of cyberattacks: the cyber-physical attacks [8].

In these attacks, changes (accidental or not) in hard-
ware or software may appear, but due to the highly interde-
pendency of components, the effects may influence in any
other part of the system, and thousands of components could
be the final objective of the attack. The genuine approach of
cyber-physical attacks is acting on the weakest elements in
the system (in this case the sensor nodes) as these elements
can cause a fail in the critical components. Using this philos-
ophy, for example, intelligent components could be forced to
make a fake decision which might be fatal for the habitants
of the environment where the AmI system is deployed.

Traditionally, security policies are preventive but due to
their amplitude (there is an infinite amount of ways to per-
form a successful cyber-physical attack) and the inevitable
weaknesses of AmI systems (devices are deployed in a pub-
lic space, etc.), protection techniques against cyber-physical
attacks are reactive.

As in industrial scenarios, where very complex and het-
erogeneous systems are controlled by supervisory control
modules which detect anomalous behaviors, in future AmI
systems intelligent components which supervise the global
system evolution and provide security to the entire deploy-
ment should be included.

The described intelligent components, considering past
information about the system behavior, will detect anomalous
phenomena in the AmI deployment and will compare the
obtained observations with known patterns. Thus, a decision
about if a cyber-physical attack is running, what type of attack
is being performed, and the most adequate actions to isolate
the effects of the attack, will be made.

First works about how to develop this process have been
reported [7]. However, a second challenge is still pending.
In systemswere hundreds of thousands of sensors and devices
are continuously generating information flows, security com-
ponents should study very large datasets to understand and
learn about the real system behavior. Processing time, then,
will increase exponentially.

Information, on the other hand, is seldom stored, as it
is employed at real-time to make a decision and then it
is immediately removed. If storage solutions to maintain
very large datasets were included in AmI systems, important
characteristics (as for example their transparence) would be
affected.

Although standard Big Data techniques seem the perfect
solution, as storing all past events and information is not
always guaranteed, the application of this technique is not
always possible. In conclusion, a new solution to reduce large
data sets and detect cyberattacks in Ambient Intelligence
Environments is required.

Therefore, in this paper we investigate and propose a proce-
dure to reduce large datasets, with the objective of enabling
new security techniques to detect cyberattacks in a fast and
efficient way in AmI deployments. The proposed procedure
is based on the calculation of small sets of samples, whichwill
be easy to update, evaluate and maintain; and whose statistic
configuration is as similar as desired to the original large
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dataset. Stochastic models and information theory techniques
and theorems are composed and combined in order to define a
mathematical framework which allows the obtention of these
equivalent reduced datasets.

The reminder of this paper is organized as follows.
Section II describes the state of the art on security tech-
niques and dataset reduction technologies for AmI appli-
cations. Section III presents the future security techniques
for AmI systems, and the proposed dataset reduction tech-
nique. Section IV describes the experimental validation car-
ried out. Finally, Section V presents the obtained results and
Section VI concludes this work.

II. STATE OF THE ART
In the last ten years, various original security solutions for
AmI and other similar systems (such as CPS) have been
reported.

In general, four different fields may be distinguished when
talking about security in AmI systems [17]: physical security,
intrusion tolerance, active protection and IT (information
technologies) security (see Figure 2).

FIGURE 2. Research areas in security for AmI environments.

Physical security is typical from industrial systems, where
critical components are physically isolated and protected
from shocks, chemical damage, etc. These techniques,
as said, are not usually employed in AmI scenarios as sensors
are deployed in public spaces, and system architectures in
AmI deployments are not as hierarchical as in industrial solu-
tions. However, some sparse proposals on this topic, based on
the definition of safety instrumented systems -SIS- (modules
which sense the hardware components to detect ‘‘physical
aggressions’’ to them) have been reported [9].

Intrusion tolerance is the most important research area in
security for AmI solutions. In this context, intrusions are
accepted as inevitable events, so technologies to guarantee the
system continues its normal operation even if a cyberattack
is running are investigated. Most of these works are focused
on the design of enhanced control loops [10], [11], but
cyber-attack taxonomies have been also described [12], [13].
Proposals about working schemes for CPS [14] and other
systems under cyber-physical attacks [15] have been also
described. The problem of all these proposals is that they are
focused on attacks which introduce perturbations or known
malicious signals in the system, so solutions are fixed and
rigid. In consequence, these proposals reduce their usability
if new or slightly different attacks are performed.

Finally, the concept of cyber-physical attack has been
investigated. Abstract taxonomies and description languages
have been proposed [16]. These instruments are very useful
to classify and infer the use of certain types of cyber-physical
attacks.

Active protection policies are those technologies that mod-
ify the basic behavior of systems to inject controls and
evaluation points that protect and avoid cyberattacks to the
system. For example, typical authentication solutions based
on a user ID and a password are active protection tech-
niques. In general, works about active protection solutions
for AmI environments are sparse, and focused on access
control: i.e. on how regulating what a user/device can do and
what the programs are allowed to execute on behalf of the
user/device [18], [19].

IT security is focused on traditional indicators: integrity,
availability, confidentiality and fingerprinting among other
parameters [25]. In fact, different works about how tradi-
tional security solutions (i.e. firewalls, computer shields, etc.)
could be applied to AmI scenarios have been recently
described [20]. However, this approach only partially cov-
ers the problems and vulnerabilities associated with cyber-
physical attacks, so more general solutions are required.
Actually, new ideas associated to security in AmI solutions
such as veracity, plausibility, witnesses and physics [25] can-
not be covered using these traditional instruments. Further-
more, general reviews about the problems associated with
security in AmI scenarios have been also reported. Works
about critical problems (such as new social or mathematical
attacks [24]) in several relevant scenarios [21]–[23] may be
found.

Enhanced intrusion tolerance techniques and the inclusion
of new ideas, such as plausibility, will necessarily require
the use of intelligent solutions. These technologies will learn
about the system behavior using information about past
events, and using the acquired knowledge will ensure the
behavior of the system within plausible limits, even when an
attack or intrusion has occurred.

In order to perform these learning processes very large
datasets including information about past events should be
stored, maintained and processed. As this is a very inefficient
approach, techniques to reduce large datasets and calculate
some equivalent smaller and more efficient sets have been
investigated.

In general, techniques to reduce datasets are based on pat-
tern recognition solutions. Traditional proposals were based
on the exploration of the complete dataset (after organizing
it as a tree, for example), so redundant or useless segments
could be pruned [26], [27]. Although this approach was valid
twenty years ago, nowadays, the size of datasets makes diffi-
cult their exploration in a limited amount of time.

More recent proposals, on the other hand, employ pattern
recognition technologies to, as in previous works, remove
redundant information [28]. These solutions are still pretty
inefficient, so most recent contributions try to calculate
statistical models to synthesize the entire dataset in much
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more manageable structures. Gaussian models are, probably,
the most popular [29].

Our proposal follows the most novel approach employing
stochastics models to reduce large datasets in AmI envi-
ronments. In order to enhance the efficiency of these basic
techniques, information theory concepts are integrated in the
calculation process.

III. REDUCED DATASETS FOR CYBERATTACK DETECTION
In this Section the future security policies for AmI systems
are slightly introduced and described (first subsection). After
the need of reducing large datasets in this future scenario
is explained, the proposed new technology (including the
stochasticsmodels and the employed theorems of information
theory) is described with details.

A. INTELLIGENT SECURITY SOLUTIONS
FOR AmI DEPLOYMENTS
A cyber-physical attack may be described using only six
different fields [16]. Figure 3 presents the basic structure of a
cyber-physical attack.

FIGURE 3. Structure of a cyber-physical attack.

Below we provide a short description of each one of the six
named fields:

• Method: It represents the procedure employed to affect
the system.

• Preconditions: They list the requirements of the system
so that the method can be effective. Together with the
‘‘method’’ this list made up the ‘‘action’’ of the cyber-
physical attack.

• Influenced element: It refers the elements which have
been manipulated through the described action.

• Influence: The produced changes in the influenced
element. Together with the ‘‘influenced element’’,
it describes the ‘‘cause’’ of the cyber-physical attack.

• Affected element: A list of the elements being affected
by the changes in the system. Usually they are the objec-
tive of the attack.

• Impact: A description of the changes in the system.
Together with the ‘‘affected element’’, it describes the
‘‘effect’’ of the cyber-physical attack.

FIGURE 4. Example of a generic XML description of a cyber-physical
attack using the CP-ADL description language.

This systematic manner of describing cyber-physical
attacks enables the use of security techniques based on
artificial intelligence technologies. Using the presented
description method, cyber-physical attacks that may suffer
AmI deployments can be modeled with XML documents,
employing (for example) the CP-ADL (Cyber-Physical
Attack Description Language) description language
(see Figure 4) [16]. Thus, these documents could be used as
patterns to be discovered in the system behavior. If one of
these behavior patterns is recognized, then it may be deducted
that a cyber-physical attack is being performed.

Both, the pattern construction process and the pattern
recognition process at real-time during the system operation
should be based on intelligent solutions which learn from the
information about the past events in the AmI deployment.

These learning technologies, in combination with some
techniques to support the defense and protection strategy
(such as the game theory), have been proved to be successful
as security solutions for AmI deployments.

Contrary to traditional security solutions (such as ciphers,
certificates, etc.) which show important scalability, synchro-
nization and other similar problems when implemented in
systems as complex, ubiquitous and heterogeneous as AmI
environments [30]; the described learning and pattern recog-
nition techniques match perfectly the requirements and char-
acteristics of AmI deployments.

In this work we are not describing in detail any intel-
ligent security solution for AmI environments, as it is
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not the objective of this paper. However, it is possible to
find several examples of these systems in the most recent
state-of-the-art [6].

Any case, as intelligent systems, these new security solu-
tions must learn about AmI deployments using datasets con-
taining information about past events. These datasets use to be
very large, as they must contain information about all devices
in the AmI environment. Typically, datasets contain all data
generated in the system for a long time. Thus, intelligent
security systems should manage and store large amounts of
information, which is very costly and prevents to operate at
real-time (a basic requirement for these security solutions).

Therefore, techniques to reduce these datasets without
errors or information loss; or to calculate smaller equivalent
datasets with a controlled level of ‘‘deformation’’ are required
to improve the efficiency of security solutions for AmI envi-
ronments.

B. STOCHASTICS MODELS TO REDUCE DATASETS
To train an intelligent security solution for AmI environ-
ments, in general, it is employed a non-structured dataset D.
The size (cardinality) of this dataset grows up as time
passes (1), as it is formed by accumulating the historical
data generated by all devices and components in the AmI
environment.

card {D}t→∞→∞ (1)

Among the different types of non-structured datasets we
can find, D might be considered half-structured. In fact,
within D it is possible to identify subsets 3i with a uniform
structure (2). The index i takes values from a set of indexes I ,
employed as identifiers (they may be numbers, n-tuples, etc.)

P = {3i, : i ∈ I } (2)

When dividing D in a set P of sub-datasets 3i (disjoint
and non-empty) a partition of D is constructed, which (thus)
verifies a series of mathematical properties (3).

∀i ∈ I ,3i ⊆ D and 3i 6= ∅

∀i, j ∈ I , i 6= j, 3i ∩3j 6= ∅⋃
i∈I

3i = D (3)

To correctly identify and construct the sub-datasets 3i, it
is possible (and advisable) to follow a systematic procedure.

In this procedure, and depending on the application, a set
of classification (and relevant) variables C must be created
as first step. Each one of these classifiers must refer available
meta-information about data. For example, in themost typical
case, the device type that generated the datum and its location
identify subsets with a homogenous structure.

It can be seen that, as more classifiers (or classification
variables) are defined (i.e. as the cardinality of C goes up)
a higher number of structured sub-datasets 3i with a smaller
sizer will made up the partition P. Thus, P depends on the set

of classifiers C (4).

P = P (C) = PC (4)

In general, we will say that a partition Pα is a refinement
of a partition Pβ of D, if each element 3αi of Pα is a subset
of some element 3βi of Pβ . It is also said that Pα is finer
thanPβ , or thatPβ is coarser thanPα . In practice, this concept
implies that Pα is constructed fragmenting even more the
partition Pβ . In our context, that means the set of classifiers α
has more elements (it includes more classification variables)
than β (5).

card {α} ≥ card {β} H⇒ Pα ≤ Pβ (5)

The selection of the set of classification variables is very
important, because as the more variables are considered,
the fragmentation level of the original dataset D increases
(the generated partition PC is finer); and subsets3i are more
strongly structured. Sub-datasets with a stronger structure are
easier to process, but (on the other hand) finer partitions are
composed by more elements (sets), so learning algorithms
must analyze more datasets. For every system, then, there is
an equilibrium point between the structuration level of sub-
datasets and the number of subsets generated; which enables
processing the historical dataset in the minimum time.

In general, the number of possible partitions to be defined
for a certain set is calculated using the Bell number B. In our
particular case, this number may be computed using a recur-
sive expression (6).

BD =
card{D}−1∑

k=0

(
card {D} − 1

k

)
Bk being B0 = B1 = 1

(6)

Once the set of classification variables C has been defined
in the first step (taking into account all previous consider-
ations), in the second step it must be decided the range of
values Vi that each of the variables ci can take (7).

∀ci ∈ C∃Vi =
{
vji, j = 1, . . . ,Ni

} ...ci = vji (7)

Most common classification variables are physical param-
eters (e.g. the geographical location of sensors), and, there-
fore, they are continuous variables. This is not acceptable
to create efficient processing application, so these variables
must be quantified and discretized in order to define the
ranges Vi where classification variables take values. Each
variable ci may take Ni different values.
At this point, it is possible to define a mathematical vector

relationG, called ‘‘chopping function’’ that generates all sub-
sets 3i in a systematic manner (8).

G (D,C,V1, . . . ,Vi, . . . ,VN )

=

 g1 (D,C,V1, . . . ,Vi, . . . ,VN ). . .

gS (D,C,V1, . . . ,Vi, . . . ,VN )

 = PC

gi (D,C,V1, . . . ,Vi, . . . ,VN ) = 3i (8)
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The classification problem is said to be well-posed if for
the selected classification variables and their ranges of val-
ues, the chopping function generates a completed partition
of D (9).

∀d ∈ D∃3i ∈ PC
...d ∈ 3i

being (v1, . . . , vi, . . . , vN )metainformation of d

and metainformation of ∀λi ∈ 3i (9)

Basically, for each N -tuple of values it must be obtained a
sub-set 3i; so, there is a relation between the values Ni and
the number of elements S in the partition PC (10).

S =
N∏
k=1

Nk (10)

Once the second step is completed, in the third step, if the
number of structured sub-datasets that we have constructed is
too large, it may be reduced by merging elements to obtain a
coarser partition (11).

3∗i =
⋃

k=i,j,...

3k (11)

When obtained the partition PC of D with all the desired
structured sub-datasets 3i, we can work with each subset
individually, taking advantage of its structure. Hereinafter we
continue the analysis focusing on a unique sub-dataset: to
process the entire dataset it is only necessary to repeat the
operation for every element in the partition PC .

Reducing a dataset 3i is finding a second dataset 3R
i with

a smaller number of elements (i.e. with a smaller cardinality)
whose ‘‘distance’’ to the original set is the minimum (12).

3R
i = min

3̃

J
(
3i, 3̃

)
(12)

The distance function J (·, ·) represents any metric to be
used for the calculation of the reduced dataset. The distance
function may be defined in time, geometrically, or consid-
ering statistical elements among other possibilities. The dis-
tance definition is very important as it allows maintaining
the most relevant characteristics of the original dataset for a
certain given application. In that way, if the distance function
is not correctly selected for our application, the reduced
dataset will not adequately represent the original one even if
calculations are correct.

On the other hand, the optimization problem (12) defined
by the metric J is solved in a different manner depending on
the type of considered distance. Therefore, the first step is to
select an adequate distance function.

As can be seen, besides, the optimization problem presents
a degree of freedom: the cardinality (size) M of the reduced
dataset (13). In general, asM goes up, better approximations
(reduced sets) may be obtained; however, sets are larger and
more time is required to process them. In this context, M is
also called ‘‘order of the reduced set’’.

M = card
{
3R
i

}
(13)

In our application, as datasets are created to train intelligent
security systems, the most important aspect to be preserved
is the statistical distribution of values (as the final objective
is to detect anomalous behaviors).

In this context, we can imagine the data generated by sen-
sors in the AmI environment follows a certain and unknown
modelM (14) [33]. This model, for example, may represent
the physical laws that control the evolution of the sensed
variables [34]. This model considers two parameters: the
state variables Es representing the current state of the system;
and the control variables Eη representing the initial and/or
spatial configuration of the environment. SetsU , V and Z are
appropriate vector spaces. As modelM represents a physical
system, then, sets U , V and Z are defined on the field of real
numbers.

M : U ×W → Z

M (Es, Eη) = 0Es ∈ U ⊆ Rpu Eη ∈ W ⊆ Rpw (14)

However, this deterministic model does not correctly rep-
resent reality, as there are some uncertainties Eθ in all real sys-
tems that must be also considered (15). Eθ represents the total
addition of uncertainties caused by all randomness sources:
geometry, initial conditions, approximations in the model,
etc [33].

M
(
Es, Eη; Eθ

)
= 0 Eθ ∈ U ⊆ Rpu (15)

Then, we could encapsulate all parameters in relation to the
system state Ex =

[
Es, Eθ

]
. As uncertainties are not deterministic

(they are random components), the new solution of modelM
is not a vector, but a random variable.

At this point we consider a probability space (�,F , ℘)
that represents the sensor output, and the metric space (T , 6)
with the distance 6. Being � the sample space, F ⊆ 2�

the event space and P : F → [0, 1] the probability
measure. Then, a measurable function X : � → T is a
random function with domain� and range T if it verifies that
X−1 (B (T )) ⊂ F , beingB (T ) the Borel σ -field generated by
the open sets in T under the metric 6.

For our application, where sensors of AmI environments
produce measures represented by real numbers, we must
consider that T = R andB (T ) = B (R), the Borel σ -algebra.
With these hypotheses, set 3i can be understood as a

historical result record of the random experiment represented
by the probability space (�,F , ℘). Then, random func-
tion X may be reconstructed calculating its statistical param-
eters (moments µ, marginal distributions F(·) and correlation
matrix r) from values in 3i. Although 3i only contains
particular realizations of the random experiment, the prob-
ability theory guarantees that for an enough great number of
results, the statistical parameters of the set converge to the
real ones (16).

µ (q) = E
[
Xq
]

r = E [X · X ]

F (xi) = P (X ≤ xi) (16)
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In our case, as the number of realizations in 3i increases
with time, this procedure must be performed after a certain
minimum initialization time. This conclusion, furthermore, is
coherent with the theory of learning and intelligent systems.

Then, we could construct a second random variable X̃ (17)
that is called ‘‘reduced order model for X ’’, built with only
M different elements; but whose statistical behavior is equiv-
alent to the behavior of the original function X [31].

X̃ (�) = (x̃1, . . . , x̃M ) ⊂ X (�) (17)

Together with each element x̃k it is necessary to define a
probably value p̃k , so the pairs (x̃k , p̃k) provide a satisfactory
approximation of the target function, and describe a random
function with similar probability laws to X . In other words,

it must be found two optimal vectors
−→

x̃opt ,
−→

p̃opt such that, for a
given value ofM parameter, it is obtained the closest possible
random function X̃ to the target function X .
Considering function X is defined by sub-dataset 3i, and

comparing the above description to the expression (12), it is
easy to understand that the reduced order model for X , X̃ ,
is in fact the reduced sub-dataset 3R

i we are looking for. It is
important to note that, the reduced sub-dataset will have only
2M elements (or two M -dimensional vectors), in contrast to
the original sub-data set that may have hundreds of thousands
of elements.

For this reduced order model it is also possible to define
the statistical parameters (18), as in expression (16). It must
be noted that function 1(·) returns the unit if the logical
expression in the argument is true, and zero in any other case.

µ̃ (q) =
M∑
k=1

p̃k · x̃k q

r̃(j) =
M∑
k=1

p̃k · x̃k · x̃k+j

F̃ (xi) =
M∑
k=1

p̃k1 (x̃k ≤ xi) (18)

At this point, in order to finally obtain the reduced sub-data
set3R

i , it is necessary to solve two last problems: the selection

of the metric J , and the selection of vectors
−→

x̃opt ,
−→

p̃opt .
For our purpose we employ a special type of reduced

order models called Stochastic Reduced Order Mod-
els (SROM) [32], where distance between random functions
are defined considering their most important statistical char-
acteristics. Errors in the estimation of these statistical ele-
ments are weighted and aggregated in order to evaluate the
distance (19).

J
(
X , X̃

)
=

3∑
k=1

ρkek

(
−→

x̃opt ,
−→

p̃opt
)

(19)

Weights ρk may be defined as desired, depending on the
application and the importance of each statistical element.
The first error element is due to differences in the moments

of the two random variables (20). In particular, it is obtained
the aggregated relative quadratic deviation for moments from
first order to qmax order.

e1

(
−→

x̃opt ,
−→

p̃opt
)
=

1
2

qmax∑
q=1

(
µ̃ (q)− µ (q)

µ (q)

)2

(20)

The second component is calculated from errors in the
correlationmatrix (21); and the third element is obtained from
differences in marginal distributions (22).

e2

(
−→

x̃opt ,
−→

p̃opt
)
=

1
2

M∑
j=1

(
r̃ (j)− r (j)

r (j)

)2

(21)

e3

(
−→

x̃opt ,
−→

p̃opt
)
=

1
2

∫ (
F̃ (xi)− F (xi)

)2
dxi (22)

In order to calculate vector
−→

x̃opt ,
−→

p̃opt first the value of M
must be selected [31]. This approach permits choosing the
value ofM depending on the computing resources in the AmI
environment (as more powerful instruments are available,
higher datasets may be considered). Besides, it is much easier

to solve the optimization problem onlywith vectors
−→

x̃opt ,
−→

p̃opt ,
than considering the value of M variables as well.

Furthermore, to simplify calculations in the optimization

problem, vectors
−→

x̃opt ,
−→

p̃opt are not computed together but

sequentially. First
−→

x̃opt is obtained by means of any method
guaranteeing the possibility to reach the optimum solution.
Later, the optimization problem is finally addressed consid-

ering only
−→

p̃opt as variable.

In order to calculate the optimumvector
−→

x̃opt , it is not possi-
ble to selectM random samples from the original data set3i,
as it is not guaranteed they represent values in 3i in the best
manner. On the other hand, processing the entire sub-dataset
3i to obtain values that represent the entire variation range
is not possible in terms of computation time and software
resources. Therefore, we select the following strategy.

First it is obtained a vector Eξ composed of R samples,
independent and randomly taken from 3i. It must be guar-
anteed that M � R. Then, using an appropriate technique,

vector
−→

x̃opt is extracted from vector Eξ . There are different
valid approaches to do that [31], such as pattern classification
of integer optimization; however, as in this work our objective
is to create a lightweight and efficient security mechanism,
we choose the technique named as ‘‘dependent thinning’’.

Dependent thinning, basically, employs any of the avail-
able algorithms to obtain samples of a hard-core Poisson pro-

cess to thin vector Eξ and calculate
−→

x̃opt . In these algorithms,

elements in
−→

x̃opt must fulfill a geometric requirement (23),
that guarantees values from all the variation ranges are taken.

d
(
x̃i, x̃j

)
> d0 i, j = 1, . . . ,M; i 6= j (23)

Function d (·, ·) represents a Euclidean distance such as d1,
d∞ or the traditional d2. Besides, d0 is a constant value
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employed as control variable to construct the set
−→

x̃opt . It is
important to note that, in these algorithms, there is only one
degree of freedom, i.e. only one parameter (d0 or M ) can be
selected freely, the other depends on the selected value. For
example, for d0 = 0, necessarily M = R.

Once obtained the vector
−→

x̃opt , it is possible to solve the

optimization problem to calculate
−→

p̃opt , and the reduced sub-
dataset 3R

i is constructed, as the solution of a SROM model.

C. REDUCING DATASETS WITH NO ERROR
USING THE INFORMATION THEORY
The previously described procedure presents two practical
problems. First, it is necessary to calculate the statistical
parameters of the complete and original sub-dataset 3i,
which is very costly in terms of processing time, software
resources, memory, etc., as this set may contain hundreds of
thousands of measures. And, second, the proposed method
assumes the original modelM is time-invariant, which is not
true in general, as physical conditions, system configurations,
etc., tend to change with time.

In order to address these problems, we introduce some
information theory techniques into the previously described
method based on SROMmodels. As SROMmodel enable the
construction of reduced datasets as close as desired (with an
error as small as desired) to the original dataset; in terms of
information theory we say is a lossless procedure (i.e. com-
pression). In this section we try to simplify calculations but
also using lossless techniques. Sub-section D will describe a
lossy technique.

As modelM may change in time, its solution is no longer
a random variable, but a stochastic process φ(t; x). This
stochastic process, as variations in physical laws are soft,
is locally stationary. In a locally stationary process, statistical
distributions change in time, but we can consider they remain
constant within time windows with a size of Twin time units
(or Nwin samples) (24).

X = φ (t0; x) = φ (t0 + ε; x) ∀ε ≤ Twin (24)

On the other hand, as usual in information theory solutions,
we are considering the stochastic process is ergodic (thus the
process statistic parameters match temporary).

Only for the objective of this paper, we consider each sub-
dataset3i has amatrix structure: rows represent time instants,
columns represent different devices (see Figure 5).

Then, we are processing this matrix column by column.
First, we take a time window w[n] so the stochastic process is
stationary within it. Using this window as a sliding window
we perform a spectral analysis of each column. This analysis,
based on the Short-Time Fourier Transform (STFT), enables
us to process data using digital processing techniques and
reduce the size of the original dataset 3i. Figure 6 shows the
block diagram of the proposed algorithm.

As can be seen, we consider a square window as it
allows representing variations in the frequency spectrum in
more resolution. In general, the STFT of the samples within

FIGURE 5. Matrix structure of the sub-datasets.

FIGURE 6. Block diagram of the proposed processing algorithm.

the window will only have relevant values up to a certain
limit or bandwidth fb (25).

fb =
Q1

Q2
π ≤ fNyq = π (25)

In terms of the number of data in the dataset, evolution
of the sensed physical variable has been sampled using a
rate above the minimum required value (the Nyquist fre-
quency fNyq). In particular, the sampling rate is Q2

Q1
times

above the limit. Therefore, it is possible (using interpolation
and decimated techniques) to remove some data with loss of
information. At the end, it is possible to remove Q2 samples
per group of Q1 data.
Details about how to implement interpolation and deci-

mated devices are not provided in this paper. They are very
well-known components (basic elements for the digital pro-
cessing field), whose effects in the frequency spectrum can be
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seen in Figure 6. However, a complete mathematical analysis
of these elements is not the objective of this work and it can
be found in the state-of-the-art.

Performing this processing using time analysis is not
always feasible, as time reference is not often provided
together with data in AmI environments. Nevertheless, fre-
quency analysis is possible even if no time information is
available.

Once the number of samples has been reduced as much as
possible, the statistical parameters for this i-th time window
in the l-th column are calculated (26)

µi,l (q) = E
[
Xqi,l
]

ri,l = E
[
Xi,l · Xi,l

]
Fi,l

(
xj
)
= P

(
Xi,l ≤ xj

)
(26)

Once obtained all these parameters, the window is sliced
to the next position. This process should be repeated for
each time windows in each column. However, if sub-datasets
are very large, that may still require too much time. There-
fore, in order to make processing time acceptable, statistical
parameters will only be obtained for some time windows.
Results for the other windows will be obtained by interpo-
lation [35].

FIGURE 7. Sequence of intra-results and interpolated results.

In general, statistical results will be calculated only for one
window per group of L time windows (27). Figure 7 rep-
resents the sequence of calculations. Two different types of
results will be then obtained:
• Intra-result: It represents the real statistical parameters
for a certain time window w = w0. These states will
be noted as SB or B. At least, two intra-results must be
calculated at the beginning of the processing algorithm.

• Interpolated result: It refers to the results obtained by
interpolating two intra-results. These results are really
fast to obtain but present a bigger uncertainty. The error
goes up whenmore temporal distance exists between the
intra-results employed to interpolate. These states will
be notes as SI or I .

The processing time goes down as a higher value is selected
for L parameter. However, due to the introduced uncertainties
during the interpolation process, the difference between the
best reduced sub-dataset and the original one is bigger than if
only intra-results are employed.

Result =

{
B w = kL k ∈ N
I others

(27)

One finished the described procedure three different matrix
will be obtained: the matrix µ (q) of moments, the matrices r
of correlations and the matrix F of marginal distributions.
In all these three matrices, the cell (i, j) represents the value
of the corresponding statistical parameter for the i-th time
window in the l-th column (device). The statistical distance
is, then, defined according to this new situation (28-30).

ei,j1

(
−→

x̃opt ,
−→

p̃opt
)
=

1
2

qmax∑
q=1

(
µ̃i,j (q)− µi,j (q)

µi,j (q)

)2

(28)

ei,j2

(
−→

x̃opt ,
−→

p̃opt
)
=

1
2

∑M

j=1

(
r̃i,j (j)− ri,j (j)

ri,j (j)

)2

(29)

ei,j3

(
−→

x̃opt ,
−→

p̃opt
)
=

1
2

∫ (
F̃i,j (xk)− Fi,j (xk)

)2 dxk (30)

At this point three different decisions can bemade to obtain
the reduced sub-dataset 3R

i :
• Calculating a reduced dataset of 2M elements per time
window and device (column). In this case, expressions
proposed in the previous section are directly applied
to reduce the dataset using SROM models. With this
option, the total obtained reduction is the smallest, but
intelligent system can only be trained to detect very
small distortions in the system behavior.

• Calculating a reduced dataset of 2M elements per device
(column) or time window. In this case, we employ the
same reduced sub-dataset to represent an entire device
of time window. Expressions related to SROM models
must be slightly modified to aggregate errors due to time
windows or devices (depending on the calculation being
performed) (31) [34]. This option provides equilibrium
between the calculation of a very detailed dataset (first
option) and a very reduced sub-dataset (the third option).

• Calculating a reduced dataset of 2M elements for all
devices (columns) or timewindows. In this case only one
sub-dataset represents the entire stochastic process.With
this option the most reduced dataset is obtained. Expres-
sions related to SROM models must be modified to
aggregate errors due to time windows and devices (32).

J
(
X , X̃

)
=

∑
i or j

3∑
k=1

ρke
i,j
k

(
−→

x̃opt ,
−→

p̃opt
)

(31)

J
(
X , X̃

)
=

∑
i,j

3∑
k=1

ρke
i,j
k

(
−→

x̃opt ,
−→

p̃opt
)

(32)

Considering any of the described decisions, a reduced sub-
dataset will be obtained by following a lossless compression
procedure.

D. REDUCING DATASETS ARBITRARILY
USING THE INFORMATION THEORY
In the previous section we have improved the efficiency
of calculations about SROM models, using information
theory techniques to reduce the original sub-datasets.
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However, we have proposed a design to avoid the loss of
information, what has imposed a limit to the data reduction
we can obtain. If certain loss of information was tolerated,
then, it would be possible to go beyond these limits. This
section is focused on this hypothesis.

Thus, in this case, before performing the spectral analysis
proposed in the previous section, we are quantifying the
values stored in the original dataset3i (33). This procedure is
irreversible and generates a loss of information that degrades
the data in the dataset.

∀λ ∈ 3i
...λ ∈ [λmin, λmax]

Quant
−→

λ̂ ∈ 3̂i
...λ̂ ∈

{
λ1, . . . , λQ

}
(33)

In fact, as no information about the quality of the stored
data is available, in all previous sections we are considering
they have an infinite quality. In this last proposal the quality
is reduced to a finite value.

In order to quantify the data in the dataset we are employ-
ing Q different values (33). The value of Q may be chosen
freely, but it determines the quality of the obtained quantified
sub-dataset 3̂i.
If we consider the second theorem of the informa-

tion theory (Shannon’s source coding theorem) together
with the Hartley’s theorem, we obtain a theorem that can
be used to estimate the quality of the data after their
quantification (34-35).

Q =
√
1+ (S/N ) (34)

(S/N ) = Q2
− 1 (35)

In this context the Signal-Noise relation (SNR) represents
the quality of the data after the quantification. In this case,
the added noise must be understood as numerical, stochas-
tic or quantification noise (it does not have an electrical ori-
gin) As Q goes up and more values are employed to quantify,
the final quality is higher. In general, thus, as the (S/N )
ration is closer to zero the quality of the quantified dataset 3̂i
decreases.

In fact, this process does not reduce the size of the original
sub-dataset 3i, but it allows removing much more samples
during the spectral analysis. Of course, this improvement is
much more important as Q goes down (although the obtained
quality is worse).

This effect is possible as, in general, quantified signals
present several times in a row the same value, which means
they evolve slower. Then, in the frequency spectrum, relevant
values will be around zero, which means that the sampling
frequency is well above its minimum value (the Nyquist’s
limit). Thus, using interpolation and decimation techniques a
lot of samples will be removed (without decreasing the input
quality or SNR). Figure 8 represents this phenomenon.

The second and last technique which will allow us to
arbitrarily reduce the size of a dataset 3i after quantifying it,
is the reduction of the sampling rate below its minimum value

FIGURE 8. Frequency spectrum of a signal and its quantified version.

(the Nyquist’s limit). This procedure is also irreversible, and
produces in general the ‘‘smearing’’ of data. The reduction in
the quality of data may be estimated, so it is possible to select
(for each application) the compression level in terms of the
minimum admissible quality of the input data.

We assume we want to reduce the sampling rate below
the Nyquist limit (36). Then, as discrete signals are
2π -periodic in the frequency spectrum, collisions and inter-
ferences between different replicas will appear.

fb =
Q1

Q2
π > fNyq = π (36)

The signal power of the spectrum replicas that collide with
the main area in the frequency spectrum (i.e. � ∈ [−π, π]),
represent a new noise (this time with an electrical origin) that
causes the reduction in the signal (data) quality. This new
noise Nc may be easily estimated (37).

x [n]
STFT (FFT )
−→ X [k]

Nc = 2 ·
∑
k≥π

|X [k]|2 (37)

Then, if we consider the quantified sub-dataset has a qual-
ity of SNR0 = (S/N0), it is possible to estimate the deterio-
ration in the data quality because of the use of sub-sampling
techniques. From the calculated frequency spectrum we can
obtain a ratio that includes the signal power, the stochastic
noise and the electric noise (38).

SNR∗c =
S + N0

Nc
(38)

In order to obtain the final quality of the data after being
quantified and sub-sampled, we only have to operate both
previous results (39). With this procedure we can also obtain
the deterioration percentage D(%) due to sub-sampling (40).

SNRc = (S/Nc) =
SNR∗c · SNR0
SNR0 + 1

(39)

D (%) = 100 ·
(
1−

SNR∗c
SNR0 + 1

)
(40)

The calculation of the final reduced sub-dataset is equal to
the described solution in the previous section once performed
the sub-sampling.
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IV. EXPERIMENTAL VALIDATION
In order to evaluate the performance of the proposed solu-
tions, six different experiments were carried out. The first five
experiments were based on numerical simulations. The last
experiment was performed in a real scenario deployment.

The first experiment was designed to evaluate the impact
of parameter M in the precision and statistical closeness
between the original dataset and the reduced one. A dataset is
constructed with fifteen million (15M) entries, produced by
one hundred and fifty (150) different sensors. Using SROM
models (as explained in section III.B, without considering
any information theory technique) the proposed dataset is
reduced, considering different values for M parameter. Dis-
tance (error) between the original statistical parameters and
the parameter of the reduced set is evaluated.

The second experiment is proposed to evaluate the
improvement in the processing time that is obtained when
employing information theory techniques in a lossless sce-
nario. Using the same original dataset proposed for the first
experiment, the mean processing time required to reduce
the dataset is evaluated, considering only the SROM models
and considering, besides, information theory techniques. The
experiment is repeated for different values of the M param-
eter, the L parameter (number of interpolated results) and
theNwin parameter (window size where the stochastic process
is considered stationary).

The third experiment was very similar to the second one.
Using the proposed dataset, it was reduced using SROM
models and information theory techniques in a lossless sce-
nario, as explained in Section III.C. The experiment was
repeated for different values of theM parameter, the L param-
eter (number of interpolated results) and the Nwin parame-
ter (window size where the stochastic process is considered
stationary). Distance (error) between the original statistical
parameters and the parameter of the reduced set is evaluated.

The fourth experiment was designed to evaluate the per-
formance of the proposed solution in scenarios where certain
information losses are tolerated. This experiment was very
similar to the previous one. The proposed dataset was reduced
using SROM models and information theory techniques,
as explained in Section III.D. The experiment was repeated
for different values of the Q parameter (i.e. different data
qualities). Distance (error) between the original statistical
parameters and the parameter of the reduced set is evaluated.

Finally, the fifth experiment was proposed to evaluate the
improvement in the processing time that is obtained when
employing information theory techniques in a lossy scenario.
Using the same original dataset proposed for the first experi-
ment, the mean processing time required to reduce the dataset
is evaluated, considering only the SROM models and (on the
other hand) lossy algorithms. As in the fourth experiment,
this last validation was repeated for different values of the Q
parameter (i.e. different data qualities).

In all these first five experiments, we employ theMATLAB
software as simulation platform, where very efficient algo-
rithms to calculate statistical parameters and other similar

elements are available. In particular, MATLAB 2017b was
employed. This tool was deployed in a Linux (Ubuntu 16.04)
machinewith 8GBof RAMmemory and an Intel i7 processor.

All previously described experiments are focused on eval-
uating the performance of the proposed dataset processing
techniques. However, it is necessary to prove that the obtained
reduced dataset is valid to train future intelligent security
systems. Therefore, in the sixth and final experiment this
validation was performed.

In this experiment, a real deployment of twenty-five sen-
sors based on the Samsung Artik 020 platform was developed
(see Figure 9). These sensors were producing data, each
one, at a rate of 1 datum/s. Sensors were deployed in the
first floor of the B-building in the Telecommunication school
(at Technical University of Madrid).

FIGURE 9. Sensors based on the Samsung Artik 020 architecture.

The produced dataset was employed to train an intelligent
security system based on the game theory [7]. Results about
the success rate when detecting cyber-physical attacks were
registered.

The dataset constructed by sensors was also reduced using
the three proposed techniques: SROMmodels, lossless infor-
mation theory techniques, and lossy algorithms. SROMmod-
els were configured to produce datasets of M = 20 data.
Other important parameters such as L or Q were configured
as indicated: L = 50, Nwin = 3600, Q = 32.
A security solution was trained with each one of these

reduced datasets. Results about the success rate when detect-
ing cyber-physical attacks were registered. Results are com-
pared to the success rate obtained during the first part of the
experiment.

V. RESULTS
This section presents and discusses some results of the exper-
iments described in the previous section.

In order to remove from the results of the experiments
(as much as possible) variations in the simulations due to
exogenous variables (e.g. delays in the operations performed
by the operating systems), for each case twelve different sim-
ulations were performed. The average of all these measures
was obtained to calculate the final results.

Figure 10 shows the results of the first experiment. As can
be seen, the total error decreases as M goes up, being prac-
tically zero for values above M = 600. Any case, for very
small values of M parameter, such as M = 2, the total error
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FIGURE 10. Results of the first experiment. Statistical distance between
the original dataset and the reduced one.

is also assumable, as it is around 10% which is the typical
error for standard measurement systems.

In fact, obtained results for the first experiments are coher-
ent with previously reported experiences in the state-of-the-
art about SROM models [32].

For the second experiment, to be able to compare results
when using information theory technologies to results when
no information theory technique is considered, we are obtain-
ing only one reduced dataset for all time windows and devices
in the original sub-dataset.

With this consideration, it is possible to perform this
second experiment. Results are shown on Figure 11
and Figure 12.

FIGURE 11. Results of the second experiment. Improvement in the
processing time depending on L: lossless scenario.

As it can be seen, the behavior in both figures is simi-
lar, as (at the end) both increasing the value of L param-
eter or increasing the value of Nwin parameter, causes the
number of time windows to be evaluated to decrease.

Results show that, using information theory technologies,
it is possible to reduce the processing time in one magnitude
order (for small values of M parameter). However, as M

FIGURE 12. Results of the second experiment. Improvement in the
processing time depending on Nwin: lossless scenario.

goes up, the required time to solve the underlying optimiza-
tion problem in SROM models increases exponentially and
dominates in the aggregated total time, so all curves converge.
This point is reached around M = 1000.

The second experiment proves the proposed information
theory techniques are useful to reduce the processing time,
however, it is necessary to evaluate the error associated with
this new approach. Figure 13 and Figure 14 show the results
of the third experiment.

FIGURE 13. Results of the third experiment. Statistical distance between
the original dataset and the reduced one depending on L: lossless
scenario.

As it can be seen, as in the previous experiment, the behav-
ior is similar in both figures. WhenM presents a small value,
error associated to the SROMmodel dominates the total error,
and there is no dependency on L or Nwin. However, as M
increases and the error due to the statistical calculations goes
down, errors caused by interpolation and the assumption that
the stochastic process is locally stationary are relevant.

There is, nevertheless, an important difference. As errors
due to interpolation techniques are higher, as L parameter
goes up (being M a high value) the total error can reach the
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FIGURE 14. Results of the third experiment. Statistical distance between
the original dataset and the reduced one depending on Nwin: lossless
scenario.

value of 2%. However, errors caused by considering stochas-
tic process as locally stationary are much smaller, so the total
error only reaches a maximum value around 1%.

The fourth and fifth experiments are focused on evaluat-
ing the proposed solutions for lossy scenarios. In the fourth
experiment the statistical distance (error) associated to these
techniques is evaluated. In the fifth experiment the improve-
ment in the processing time is estimated. Figure 15 shows the
results of the fourth experiment. Figure 16 shows the results
of the fifth experiment.

FIGURE 15. Results of the fourth experiment. Statistical distance between
the original dataset and the reduced one depending on Q: lossy scenario.

As can be seen on Figure 15, in this case, error increases
around 50% in respect to the use of common SROM models
(see Figure 10), so the maximum error (for M = 2) is
around 18%. That is because errors are accumulative, and
error caused by the loss of information is never negligible;
furthermore, it is similar to the maximum error generated by
standard SROMmodels. It can be also seen how, when errors
due to SROM models are practically zero (M = 1000) the
total error remains around 8% (because of the reduction in
the data quality).

FIGURE 16. Results of the fifth experiment. Improvement in the
processing time depending on Q: lossy scenario.

This error drastically decreases when the number of quan-
tification level increases. Thus, if we consider thatQ = 1024,
the behavior is similar to the one obtained for standard SROM
models.

This degradation in the precision (quality) of the reduced
dataset allows, on the other hand, an important reduction in
the processing time (see Figure 16). A reduction of almost
three orders of magnitude may be obtained if the number of
quantification levels is reduced from Q = 1024 to Q = 4.
In this case, however, as M parameter goes up, the total
processing time converges to a unique value due to the impor-
tant resource consumption when solving the optimization
problem associated to SROM models.

Therefore, the use of information theory techniques (both
lossless solution and lossy algorithms) is only advisable
when M is configured with small and medium values (up to
M = 900 approximately).

FIGURE 17. Results of the sixth experiment. Success rate.

Finally, during the sixth experiment, once the good perfor-
mance of the proposed technologies was proved, we evaluate
the utility of our proposal. Figure 17 shows the results of the
sixth experiment where the success rate for the same security
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system, but trained using different reduced and non-reduced
datasets, is compared.

As can be seen, the success rate is very similar when
employing the non-reduced dataset, a dataset reduced using
only SROMmodels and a dataset reduced using SROMmod-
els and lossless information theory techniques. In all cases
it is around 96%. However, this rate decreases around 10%
when lossy information theory techniques are employed (the
rate is near 88%). On the other hand, the processing time
is much lower when employing lossy techniques, so (as the
success rate is still acceptable) they are a very good option
for systems operating at real-time.

VI. CONCLUSIONS
In this paper we have investigated and proposed a procedure
to reduce large datasets, with the objective of enabling new
security techniques to detect cyberattacks in a fast and effi-
cient way.

The proposed solution is based on the use of Stochastic
Reduced Order Models (SROM) which are complemented
with information theory techniques to improve the processing
time and the compression rate. Information theory techniques
are valid for both lossless and lossy scenarios.

Using the Nyquist’s and Shannon’s theorems, as well
as spectral analysis technologies, it is possible to reduce
datasets before using SROM models, to calculate the final
reduced datasets preserving the statistical properties of the
original set.

Results showed that reduced datasets are valid solutions
to train intelligent security systems, maintaining the success
rate in the same level as if standard datasets were employed.
Besides, numerical simulations proved that the obtained pro-
cessing time enables the use of the proposed solution in real-
time applications, contrary to traditional approaches.
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