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ABSTRACT Currently, Internet of Things (IoT) and blockchain technologies are experiencing exponential
growth in academia and industry. Generally, IoT is a centralized system whose security and performance
mainly rely on centralized servers. Therefore, users have to trust the centralized servers; in addition,
it is difficult to coordinate external computing resources to improve the performance of IoT. Fortu-
nately, the blockchain may provide this decentralization, high credibility and high security. Consequently,
blockchain-based IoT may become a reasonable choice for the design of a decentralized IoT system. In this
paper, we propose a novel blockchain-based threshold IoT service system: BeeKeeper. In the BeeKeeper
system, servers can process a user’s data by performing homomorphic computations on the data without
learning anything from them. Furthermore, any node can become a leader’s server if the node and the
leader desire so. In this way, BeeKeeper’s performance can continually increase by attracting external
computing resources to join in it. Moreover, malicious nodes can be scrutinized. In addition, BeeKeeper
is fault tolerant since a user’s BeeKeeper protocol may work smoothly as long as a threshold number of
its servers are active and honest. Finally, we deploy BeeKeeper on the Ethereum blockchain and give the
corresponding performance evaluation. In our experiments, servers can generate their response with about
107 ms. Moreover, the performance of BeeKeeper mainly depends on the blockchain platform. For instance,
the response time is about 22.5 s since the block interval of Ethereum blockchain is about 15 s. In fact, if we
use some other blockchain with short block interval, the response time may be obviously short.

INDEX TERMS IoT, blockchain, secret sharing, secure multi-party computing.

I. INTRODUCTION
With the emergence of the Internet of Things (IoT), the num-
ber of innovative applications is rapidly increasing [1].
Current IoT systems generally consist of designated low-
power and lightweight devices with sensors. The devices
are responsible for collecting data from the surrounding
environment and may exchange data with other devices,
servers or platforms. In conventional IoT systems, the col-
lected data, which may be used in future processes,
are stored in centralized cloud servers. Thereby, users
have to trust that the centralized servers protect their
private and sensitive data, which are generally unen-
crypted. Despite the indisputable benefits provided by these
services, centralization IoT systems might face the following
challenges:

• If the centralized servers stop functioning properly,
the entire system faces the risk of becoming para-
lyzed [2]. Moreover, the system may suffer from DoS
attacks.

• Generally, most data stored in servers are unencrypted.
Therefore, users reveal sensitive data, such as identity,
healthcare, behavior and private life information, to the
corresponding servers [5]. Moreover, this can lead to
an illegitimate use of personal information (as demon-
strated by the Snowden incidence).

• A huge volume of data streams is produced by IoT
devices at high speeds. According to a recent report by
Gartner [3], about one million new IoT devices may be
sold every hour by 2021. However, centralized servers
may be neither sufficiently efficient nor sufficiently
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scalable to address these enormous amounts of IoT
data.

• Data stored by servers have a risk of being modi-
fied or deleted by the servers. In addition, users only
have limited control over how their data are used or
processed.

Blockchain, which is first proposed by Bitcoin [6], is a
tamper-resistant timestamp ledger of blocks that is utilized
to share and store data in a distributed manner. Blockchain
has attracted enormous attention from academics and prac-
titioners (e.g., in computer science, finance and law) due
to its excellent properties such as decentralization, secu-
rity, anonymity, privacy and tamper resistance [4]. Recently,
blockchain has been widely utilized in non-monetary applica-
tions, including securing robotic swarms [7], verifying proof
of location [8] and the sharing of healthcare data [9]. Due to
the features of blockchain, blockchain may be a good solution
to resolving problems facing centralized IoT. The advantages
of blockchain for improving conventional IoT systems are
described as follows:
• Decentralization. Blockchain decentralization denotes
the following: (i) there are no centralized nodes control-
ling the system, (ii) blockchain nodes may freely join
in or leave the blockchain network, and (iii) nodes may
communicate with others directly without any third-
party involvement. Therefore, a blockchain-based IoT
may conveniently attract external nodes to join in the
system to improve the system’s performance. More-
over, blockchain-based IOT can effectively resist DOS
attacks.

• Collective verification and tamper resistance. Collec-
tive verification means that all publicly verifiable data
of a transaction should be verified by all record nodes
before this transaction is recorded in the blockchain.
Tamper resistance indicates that once some data have
been recorded in the blockchain (based on PBFT con-
sensus [22]), the data cannot be modified or deleted.
Consequently, blockchain may provide high credibility
to users and devices of IoT.

• Privacy. Some blockchain platforms provide anonymity
and amount confidentiality (e.g., Zcash [23] and Mon-
ero [24]). The two aspects provide strong privacy to
users. Therefore, blockchain-based IoT helps users and
devices hide sensitive data such as identity and balance
information.

• Smart contracts Blockchain offers a functionality of
smart contracts [25], which are programs recorded on
the blockchain and can be triggered by events. Thereby,
smart contracts can assist devices in being more intelli-
gent since the behavior of an IoT device can be specified
by smart contracts.

In daily life, there is an interesting career called a
beekeeper. Specifically, bees are mainly responsible for hon-
estly bringing nectar from flowers to their beehive. The bee-
keeper may gather honey from the beehive at a suitable time,
although he does not have to care about how the ‘‘beehive’’

processes the nectar into honey. Furthermore, the ‘‘beehive’’
also does not have to care about who will gather the honey
and who sends nectar to the beehive. However, the ‘‘beehive’’
wishes to help the beekeeper to process the nectar since it can
obtain some reward from the process. In this process, each
party may perform simple tasks and only needs to focus on
its own task.

Similar to the above process, we propose a blockchain-
based threshold IoT system: BeeKeeper. In a basic instance
of this system, there are three parties: a leader, the leader’s
devices and a certain number of servers. The leader is similar
to the ‘‘beekeeper’’. Devices act like the ‘‘bees’’. Servers
and the blockchain network are analogous to the ‘‘beehive’’.
In this system, any blockchain node may become one of
the leader’s servers if both the node and leader desire so.
Furthermore, servers can obtain a certain amount of reward
according to their efforts in processing the leader’s data.
Moreover, BeeKeeper’s users store data in the blockchain
rather than in cloud servers.

A. OUR CONTRIBUTIONS
In summary, the contributions of this paper are as follows:

1) We propose a threshold secure multi-party computing
(TSMPC) protocol. In TSMPC, servers may perform
homomorphic computations on shares and then gener-
ate responses, although servers cannot learn anything
from the shares. In addition, the leader may recover
the desired result by collecting a threshold number
of correct responses. Moreover, malicious nodes can
be checked out since shares and responses are ver-
ifiable. Finally, the protocol may perform smoothly
as long as a certain number of servers are active and
honest.

2) We propose a blockchain-based threshold IoT system
based on TSMPC: BeeKeeper. BeeKeeper has sev-
eral additional features. First, if some data have been
recorded in the blockchain, the data cannot be modi-
fied or deleted, and the publicly verifiable part of the
data is credible. Second, nodes perform significantly
less verification than TSMPC. Third, any node may
become a leader’s server if both the node and leader
desire so. To the best of our knowledge, this is the
first work to design a blockchain-based IoT system
where servers may help users to process encrypted data
without learning anything from the data. Fourthly, Bee-
Keeper may conveniently attract external computing
resources to join in the system to improve the system
performance. Finally, a server may obtain a certain
amount of reward according to its efforts in processing
data. Moreover, the clients of the leader, devices and
servers do not have to keep a large amount of mem-
ory or use significant computing resources.

3) A prototype system is implemented to evaluate the
feasibility of BeeKeeper. The prototype system is built
upon the Ethereum private blockchain with four record
nodes. Moreover, we use the transaction simulator to
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simulate the leader, servers and devices to generate
and send transactions to evaluate the performance of
BeeKeeper.

B. ORGANIZATION
The remainder of the paper is organized as follows.
An overview of BeeKeeper is given in Sec. III. Sec. IV
briefly introduces the preliminaries. The system setting and
model are discussed in Sec. V. We describe the construction
of the BeeKeeper system in Sec. VI. A scenario is set up
for the performance evaluation in Sec. VII. Finally, a short
conclusion is given in Sect. VIII.

II. RELATED WORK
Currently, blockchain-based IoT is a hot topic. Previous
works have mainly focused on four aspects: authentica-
tion (or access control), smart applications, data storage (or
the integrity of transferred data) and cloud computing (or
edge computing). To the best of our knowledge, previous
papers did not include two aspects: (i) They did not real-
ize that servers may perform homomorphic computations
on encrypted data without decrypting the data. Moreover,
in previous papers, data transferred to servers are typically
unencrypted or servers (or computing nodes) can decrypt
the transferred data. This leads to a risk of releasing sen-
sitive information since the servers may learn the details
of the received data. (ii) They also did not realize that
external computing resources can conveniently join in the
blockchain-based IoT system to improve the system perfor-
mance. In greater detail, servers should perform some authen-
tication from authorities before joining the system. Previous
works are summarized as follows:
• Authentication. Authorities use blockchain and smart
contracts to perform authentication or issue creden-
tials to users or devices [10]–[13]. Sonnino et al. [13]
used public and private attributes to control who has
the ability to use the credentials. Specifically, only
users, who own private and public attributes included
in the credential, may use the credentials. In addi-
tion, smart applications were investigated in [1], [14],
and [15] with the blockchain and smart contract.
Lamichhane [14] designed a Decentralized Autonomous
Organization (DAO) [25] to intelligently manage waste
with smart contracts. While Dorri et al. [1], [15] pro-
posed a partial centralized scheme since they used the
private blockchain to record data.

• Integrity. In [16]–[19], the blockchain was used as a
storage tool of IoT systems to record data that may
be plaintext, ciphertext or hash values. In particular,
Rahulamathavan et al. [16] used attribute-based encryp-
tion to ensure that encrypted data can be decrypted and
verified only by specific miners or users that possess
selected attributes. However, this protocol is partly cen-
tralized since attribute authorities are responsible for
generating system parameters and generating attributes
for users and miners. Therefore, this paper might face a

risk in that the attribute authorities may decrypt all data.
In addition, although the blockchain only records hash
values of transferred data, the data receivers may decrypt
the data to learn details about the data. In [17]–[19],
the blockchain was simply used to prove the integrity of
transferred data. Moreover, the data, which are typically
unencrypted, are stored in receiver locations via a peer-
to-peer file storage protocol. Briefly, [16]–[19] suffered
a risk of releasing sensitive information.

• Cloud computing and edge computing.
Sharma et al. [20] and Pahl et al. [21] proposed protocols
wherein cloud servers or fog nodes can help users
process data, and the blockchain was used to ensure
the integrity of the transferred data. However, because
that data, stored by servers, are unencrypted or can be
decrypted by receivers, [20], [21] also faced the risk of
releasing sensitive information.

III. AN OVERVIEW OF BeeKeeper
In a basic instance of the BeeKeeper system, a leadermay per-
form a (t, n)-threshold BeeKeeper protocol among n servers,
and it completely controls a certain number of devices (The
record node is the full node who maintains a full copy of
blockchain. While server, leader and device are light-clients
of blockchain. All parties communicate with each other via
transactions of blockchain). Specifically, the devices may
send encrypted data to the blockchain, and each of the servers
has the ability to perform homomorphic computations on the
encrypted data. However, the servers cannot learn anything
about the encrypted data as long as more than n − t servers
are honest. When the leader wants to obtain a result that can
be calculated by the encrypted data, it will send a query to
the servers via blockchain transactions. After this process,
active servers may generate responses with the encrypted data
according to the query. Then, they send encrypted responses
to the leader via blockchain transactions. At this point, only
the leader can decrypt the encrypted responses since only it
has the corresponding decryption key. Finally, if the leader
can collect at least t correct responses, it can recover the
desired result. Then, the leader’s smart contract will auto-
matically return some reward to the corresponding servers.
An overview of BeeKeeper’s working process is described
in Fig.1. The features of BeeKeeper are summarized as fol-
lows:
• Decentralization. There are no third-party authorities
to provide any authentication. Moreover, any node may
become a leader’s server if both the node and the leader
desire so. In addition, data are stored on the blockchain
rather than in cloud servers.

• Confidentiality, homomorphism and threshold. In a
basic instance, a leader may implement a (t, n)-threshold
BeeKeeper protocol among n servers, and the leader’s
devices store encrypted data on the blockchain. First,
the encrypted data are always confidential if more
than n − t servers are honest. Second, if t servers
honestly respond to the leader’s query by performing
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FIGURE 1. An overview of BeeKeeper. After an initialize transaction has been presented in the blockchain,
the users perform the following. Step 1: devices send record transactions to the blockchain network. Step 2:
The leader sends a query transaction to query some result. Step 3: The servers read a query transaction and
related record transactions from the blockchain. Step 4: After locally computing, the servers generate their
responses and then send respond transactions to the blockchain network. Step 5: The leader collects respond
transactions and obtains t correct responses. Step 6: The leader recovers the result with the t correct
responses.

homomorphic computations on the encrypted data, then
the leader can recover his desired result with correspond-
ing t responses. Finally, no one (including the leader)
can learn anything with fewer than t responses. More-
over, the system is such that even if some of a user’s
servers are off-line, damaged or malicious, the user’s
protocol may still perform correctly as long as t servers
are active and honest.

• Verifiability or public verifiability. Key data stored in
the blockchain are verifiable. The verification can be
off-chain computation or can be performed by smart
contract. Specifically,
– Anyone can verify that the verification key is valid.
– A server can verify whether his core share

is correctly computed by the corresponding
leader.

– The leader can verify whether responses are cor-
rectly computed by corresponding servers.

• Credibility. Before a transaction is recorded in the
blockchain, record nodes may verify all publicly
verifiable data of the transaction. Consequently, once
a transaction has been recorded on the blockchain,
the transaction’s publicly verifiable data are credi-
ble. Moreover, due to the blockchain’s tamper-resistant
nature, data cannot be modified or deleted if they have
been recorded on the blockchain.

• Lightweight. Indeed, record nodes of BeeKeeper are
heavy since they are the full nodes who maintains a
full copy of blockchain. However, the leader, leader’s
devices and servers are lightweight. Specifically, they
do not require substantial memory and computation
resources since (i) all related data are recorded on
the blockchain, (ii) most verification computations
are performed by the blockchain’s record nodes, and

(iii) servers help the leader process encrypted data to
obtain the desired results.

IV. PRELIMINARIES
Bitcoin [6] is a decentralized payment scheme whereby every
participant maintains its own local copy of the whole trans-
action history, called the blockchain, which is a ‘‘chain’’
of ‘‘blocks’’. The blockchain is maintained by anonymous
record nodes, called miners, by executing the PoW that
extends the blockchain. In Bitcoin, payers broadcast transac-
tions, and record nodes collect transactions into their local
blocks. A block contains two parts: a block body and a
block header. Specifically, a block body contains transac-
tions, while a block header contains the following: the hash
value of the previous block, current Unix time, target value,
nonce and merkle root of the transactions. The record nodes
are connected by a reliable peer-to-peer network. Bitcoin
consistency relies on the idea of computational puzzles—
a.k.a. the moderately proof-of-work concept presented by
Dwork and Naor [28]. Specifically, in Bitcoin, the computa-
tional puzzle is the following: a block is valid if its block
header’s cryptographic hash value is smaller than the pre-
selected target value. To address the computational puzzle,
each record node continually changes the nonce until it finds
a solution (nonce) satisfying the computational puzzle. If a
record node finds a solution to the cryptographic puzzle first,
then its block becomes the new block of the blockchain.
Because this process is very hard as well as the winner of
each block competition may obtain a large reward; therefore,
the record nodes of Bitcoin are also called miners, and the
competition process is called mining. Then, when a miner
finds a solution for a new block first, it will immediately
broadcast its block including the solution to other nodes.
Next, upon verifying the block, others will accept the block
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and add this block as a new block to its local blockchain.
Then, all miners continue the mining process on their updated
blockchain. The creator of the block is rewarded with bitcoins
(the coins of Bitcoin) via the coinbase transaction. Conse-
quently, bitcoins are created and distributed among miners.
Moreover, this creator is also rewarded with the transactions
fees of all transactions included in the block created by
the creator. Furthermore, Bitcoin assumes that a majority of
computational power is controlled by honest players.

The smart contract was proposed by Nick [27] in 1994.
A smart contract is a user-defined program code that repre-
sents the implementation of a contractual agreement. With
smart contracts, contractual parties may structure their rela-
tionships efficiently in a self-executing manner. A smart con-
tract’s code and its state are stored on the blockchain, and it
is enforced by record nodes, who update the contract’s state
on the blockchain accordingly. The smart contract will be
invoked whenever it receives a corresponding coin (or data)
from a user or another smart contract. Furthermore, a user (or
smart contract) may either receive messages (coins or data)
from a smart contract or send coins (or data) to a smart
contract.

Specifically, a smart contract consists of a storage file, pro-
gram code and an account balance. Any user may generate a
smart contract by sending a transaction to the blockchain net-
work. Then, the smart contract cannot be modified or deleted
once it has been recorded in the blockchain. For instance,
a user may send coins (or data) to a smart contract by
including the message and the address of the contract in its
transaction. Then, the contract can send coins (or data) to the
user (or another user) or another smart contract using a special
instruction in its program code.

In the present paper, before the leader and servers
begin operating, they should mortgage coins in smart
contracts. Moreover, if a leader or server sends some inac-
curate data, then anyone may input the corresponding evi-
dence in the ‘‘wrongdoer’’’s smart contract. After that,
the finder may obtain a reward from the ‘‘wrongdoer"’s smart
contract.

A. TRANSACTION AND BLOCK
In the blockchain, a transaction contains two parts: the trans-
action header and the payload. The transaction header and
payload are shown in Table 1.

The structure of a block used in BeeKeepr can be described
in Table 2.

V. SYSTEM SETTING AND MODEL
In this section, we introduce the system setting and model.
Wewill first describeBlockchain Network andCryptographic
Keys used in the system.

A. BLOCKCHAIN NETWORK AND CRYPTOGRAPHIC KEYS
BeeKeeper consists of record nodes and light nodes.
Specifically, all record nodes are connected by a reliable
peer-to-peer network, and each light node connects to a

TABLE 1. Format of transaction.

TABLE 2. Format of block.

certain number of record nodes. Record nodes are responsible
for maintaining the blockchain via a Practical Byzantine
Fault-tolerance (PBFT) consensus scheme and storing the
entire blockchain list. Time is divided into epochs. In an
epoch, record nodes collect and verify transactions sent to
the blockchain network, and they record valid transactions
in their local blocks. By performing the PBFT consensus
scheme, some record node’s block will become the valid
block of the epoch. Then, all record nodes will join in the next
epoch to build the next block. However, light nodes store all
block headers, rather than the entire blockchain list.

Moreover, in BeeKeeper, there is no trusted public key
infrastructure. Specifically, any node can generate an arbi-
trary number of key-pairs by itself. In the blockchain network,
all users communicate with each other via transactions on the
blockchain. Additionally, each record node can poll a random
oracle [31] as a random bit source. Moreover, by mortgaging
a certain amount of coins with a smart contract, a light node
can become a leader or server with his address. Moreover,
the security of the shares of our system relies on the secu-
rity of Shamir’s (t, n)-secret sharing (SSS) [29]. Specifi-
cally, we extend SSS to obtain a threshold secure multi-party
computing (TSMPC) protocol that will be described in the
Appendix, and the security of TSMPC is based on SSS.

In the implementation of BeeKeeper, we utilize secp256k1-
based [33], which is an elliptic curve, ECDSA [34] as
the signature scheme Sig(·), secp256k1-based ECIES [35]
as the encryption scheme Enc(·) and SHA-256 [6] as the
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hash function H(·). In addition, we use elliptic curve point
multiplication to compute commitments and use pairing
computations [32] to verify the validations of commitments.
Specifically, we utilize a high-speed elliptic curve library [30]
to compute them with the 254-bit Barreto-Naehrig
curve (BN-curve) [32], which can provide 128 bits of
security.

Moreover, a node is honest if it follows all protocol instruc-
tions and is perfectly capable of sending and receiving infor-
mation. On the other hand, a node is malicious if it can
deviate arbitrarily from protocol instructions. Finally, in a
blockchain system, all users communicate with each other
via transactions of blockchain, and they only trust messages
presented at blockchain.

B. ASSUMPTIONS
According to the PBFT [26] consensus scheme, the
PBFT-based blockchain does not fork if at least 2

3 of the
record nodes are honest. To obtain a non-forked blockchain,
we utilize the PBFT-based blockchain in the BeeKeeper sys-
tem and assume that at least 2

3 of the record nodes are honest.
Therefore, once a transaction has appeared in the PBFT-based
blockchain, the transaction cannot be modified or deleted.
Moreover, we assume that the digital signature Sig(·), encryp-
tion scheme Enc(·) and hash functionH(·) used in BeeKeeper
are ideal such that no one can violate Sig(·), Enc(·) orH(·). In
addition, we assume that the leader and servers are partially
trusted. Specifically, the data sent by them should be verified;
otherwise, the data are not credible. Finally, we assume that
a leader may completely control his devices. In other words,
the leader and his devices trust each other.

C. IoT DEVICE
In the BeeKeeper system, a device has limited storage and
energy. Therefore, it is not suitable for storing the entire
blockchain or all block headers. In this paper, a device’s tasks
are described as follows:

• Collect original data from out-of-system.
• Encrypt the original data.
• Generate transactions including the encrypted data.
• Send the transactions to the blockchain network.

VI. BeeKeeper
In this section, we present how BeeKeeper works. We will
first describe transactions used in the system.

A. TRANSACTIONS
The payload of transaction might contain secret or public data
that may be used in verifications or computations. According
to the payload, transactions can be divided into 4 types,
initialize transaction, record transaction, query transaction
and respond transaction, which can be described by Tinitialize,
Trecord , Tquery and Trespond as follows:

Time is also divided into epochs. In each epoch, record
nodes will generate a block belonging to the epoch via the
selected consensus scheme. In addition, record nodes are
responsible for verifying all publicly verifiable data of trans-
actions before the transactions are included in the blockchain.
If any publicly verifiable data are invalid, then honest record
nodes will reject the corresponding transactions. The trans-
action will then not be included in the blockchain. Moreover,
because we adopt the Practical Byzantine Fault-tolerance
consensus scheme, if a transaction has been presented to the
blockchain, then all nodes can consider that the transaction’s
publicly verifiable data are credible.

Furthermore, record nodes may perform two types of ver-
ifications on transactions. The first type is basic verification,
which should be performed on all transactions. Basic verifi-
cations have the following requirements:
• The transaction should be well-formed.
• The transaction’s inputs should have not been used pre-
viously.

• The transaction’s signature should be valid.
• The sum of the input coins should be equal to the sum
of the output coins.

In addition to basic verifications, record nodes may perform
payload verifications for initialize transactions and respond
transactions. This means that in the payloads of initialize
transactions and respond transactions, there are publicly ver-
ifiable data that can be verified by record nodes. If a transac-
tion is found on the blockchain, then the record nodes have
accepted the transaction’s publicly verifiable data. Therefore,
the transaction’s receiver can assume that the transaction’s
publicly verifiable data are credible. Thus, the receiver sim-
ply needs to perform some other verifications that can be
performed only by the receiver. In this way, most of the
verification computations are performed by record nodes,
which helps to decrease the servers’ and leader’s verification
computations significantly. Fig.2 describes the verifications
of initialize transactions, record transactions, query transac-
tions and respond transactions.

B. CONSTRUCTION OF BeeKeeper
To clearly introduce the Beekeeper system, in this subsection,
we describe a basic instance that contains a leader, the leader’s
device and n servers. Specifically, Sr1, Sr2, · · · , Srn denote
the IDs of the n servers, IDL is the leader’s ID, and
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FIGURE 2. Record node verifications in BeeKeeper. All transactions must be verified by record
nodes before they are written in the blockchain. For query transactions and record transactions,
record odes simply need to perform basic verifications. Fr initialize transactions and respond
transactions, record nodes should perform basic verifications and payload verifications.

TABLE 3. Symbols of BeeKeeper.

IDD describes the device’s ID. Essentially, more complex
instances, containing multiple devices, can be constructed
with a basic instance. The symbols used in the paper are
shown in Table 3.

At first, the leader and n servers should have published
smart contracts to mortgage a certain amount of guarantee
coins on the blockchain. If someone sends inaccurate data that
are verifiable, then the discoverer can send his evidence to
the bumbler’s smart contract to prove that the bumbler sent an
inaccurate data. Then, the discoverer can automatically obtain
a reward from the bumbler’s smart contract.

In addition, the leader should publish a certain number
of pre-functions and the pre-functions’ IDs. Specifically,
the pre-functions will be used to tell servers how the servers
compute on the encrypted data. Moreover, the pre-functions’
IDs are used to index the pre-functions.

After mortgaging guarantee coins and publishing pre-
functions and the functions’ IDs, the Beekeeper system can
be performed as follows:

• Step 1: Initialization. The leader randomly samples
a polynomial F(x) of degree t − 1 from Fp[x] as the

following polynomial.

F(x) = at−1x t−1 + at−2x t−2 + · · · + a1x + score,

where score, a1, · · · , at−1 ∈ Fp and at−1 6= 0. Let

f (x) = at−1x t−1 + at−2x t−2 + · · · + a1x.

Then, we have F(x) = f (x)+score. The leader computes

f (x)2 = q2t−2x2t−2 + q2t−3x2t−3 + · · · + q2x2.

After that, the leader randomly samples l(x) of degree
t − 1 from Fp[x] as follow:

l(x) = ct−1x t−1 + ct−2x t−2 + · · · + c1x.

Let

h(x) = f (x)2 − l(x)

= b2t−2x2t−2 + b2t−3x2t−3 + · · · + b1x. (1)

Then, the leader generates a verification key VK as
follow:

VK = {g, gat−1 , · · · , ga1 , gscore , gb2t−2 , gb2t−3 , · · · , gb1 ,

gct−1 , gct−2 , · · · , gc1}

For i from 1 to n, the leader does as follows:

– Compute CFi = F(Sri) and Chi = h(Sri).
– Compute CMCFi = gCFi and CMChi = gChi , which

will be used to verify the correctness ofCFi andChi.
– Encrypt CFi,Chi with Serveri’s public key pki into
CCFi = Encpki (CFi) and CChi = Encpki (Chi) via
ECIES.

– Encrypt score with the device’s public key pkD into
Cscore via ECIES.

CFi and Chi are Serveri’s core share. Moreover, for CFi
and Chi, only Serveri can decrypt them since only Si
has the corresponding secret key ski. Then, the leader
generates an initialize transaction Tinitialize as follows:
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After that, leader sends Tinitialize to blockchain network.
• Step 2: Record node verify Tinitialize. Honest record
nodes should verify all new distribute transactions
before appending them to the blockchain. Specifically,
when a record node receives a Tinitialize, it will verify
the transaction’s verification key (VK ) at first and then
verify other data with the VK . If Tinitialize passes the
verifications, then the record node accepts the Tinitialize
and writes it to his local block; otherwise, the record
node will reject Tinitialize. The verifications are described
as follows:
– First, verify the verification key VK . The record

node verifies whether the polynomials f (x), h(x)
and l(x), committed in the verification key, are
well-formed. Specifically, the record node does as
follows:
∗ Randomly sample a number x0 ∈ Fp.
∗ Compute

g1 = (gat−1 )x
t−1
0 (gat−2 )x

t−2
0 · · · (ga1 )x0

= gat−1x
t−1
0 +···+a1x0

= gf (x0)

g2 = (gb2t−2 )x
2t−2
0 (gb2t−3 )x

2t−3
0 · · · (gb1 )x0

= gb2t−2x
2t−2
0 +···+b1x0

= gh(x0)

g3 = (gct−1 )x
t−1
0 (gct−2 )x

t−2
0 · · · (gc1 )x0

= gct−1x
t−1
0 +···+c1x0

= gl(x0)

∗ It is easy to see that

e(g1, g1) = e(gf (x0), gf (x0))

= e(gf (x0)
2
, g), e(g2g3, g)

= e(gh(x0)gl(x0), g).

If

e(g1, g1) = e(g2g3, g); (2)

then, the record node accepts that f (x), h(x) and
l(x) satisfy relationships and forms mentioned in
Eq.1; otherwise, it rejects Tinitialize and stops his
verifications.

– Second, verify commitments CMCFi ,CMChi , i from
1 to n. Specifically, the record node computes as
follows:

∗ Compute

CF∗i = (gat−1 )Sr
t−1
i · · · (ga1 )Sri (gscore )

Ch∗i = (gb2t−2 )Sr
2t−2
i · · · (gb1 )Sri

∗ If

CF∗i = CMCFi and Ch
∗
i = CMChi; (3)

then, the record node accepts that CMCFi and
CMChi are correctly computed by the leader;
otherwise, it rejects Tinitialize and stop his
verifications.

If any data cannot pass corresponding verification, then
the record node rejects the Tinitialize.

Remark 1: Because the record node randomly samples the
number x0, Eq.2 and Eq.3 are sufficient to prove the validation
of the verification key.
• Step 3: Servers verify core shares. i from 1 to n, when
Serveri sees Tinitialize at the blockchain, the server only
needs to perform the following computations:
– DecryptCCFi andCChi . Then, the server obtainsCFi

and Chi.
– If

CMCFi = gCFi and CMChi = gChi ,

then the server accepts that Tinitialize is valid; oth-
erwise, it can send its evidence (include IDTinitialize ,
CFi and Chi) to the leader’s smart contract. After
sending this evidence via a transaction, the server
can obtain a reward from the leader’s smart contract.

• Step 4: Record. After seeing Tinitialize, the leader’s
device decrypts Cscore and then obtains the cor-
rect score since it possesses the leader’s private key.
Then, the device generates record transactions that
are T1,T2, · · · ,Tu. Specifically, i from 1 to u, let
di,1, di,2, · · · , di,mi denote the device’s i-th set of data
that will be recorded in Ti. Then, with i from 1 to u and
j from 1 to mi, the device computes

si,j = di,j − score.

Then, it generates transactions T1,T2, · · · ,Tu as
follows:

Next, the device sends T1,T2, · · · ,Tu to the blockchain
network.

• Step 5: Query. When the leader wants to obtain a
result DATA that can be computed with the payloads of
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T1,T2, · · · ,Tu, it can generate and send a query trans-
action Tquery containing corresponding record transac-
tions’ IDs and pre-defined functions’ IDs. Next, if t
servers send t correct responses to the leader, then the
leader can recover the correctDATA. For instance, leader
wants to get a result DATA that can be obtained with
T1 and T2, and DATA can be described as the following
equation:

DATA = d1,1d1,1 + d1,2d1,2 + · · · + d1,m1d1,m1

+ d2,1 + d2,1 + · · · + d2,m2 , (4)

where di,j is the plaintext of the si,j and the servers
only know si,j rather than di,j. Then, the Tquery can be
described as follow:

In the Tquery, fmul and fadd are pre-defined functions.
Moreover, IDfmul and IDfadd denote both functions’ IDs.
Specifically, fmul means that leader wants to obtain data1
as follows:

data1 = d1,1d1,1 + d1,2d1,2 + · · · + d1,m1d1,m1 .

While fadd means that the leader want to obtain data2 as
follows:

data2 = d2,1 + d2,2 + · · · + d2,m2 .

Overall, the query transaction Tquery means that the
leader wants to obtain data1 + data2. After that,
the leader sends Tquery to the blockchain network.

• Step 6: Respond. After Tquery is recorded on the
blockchain, any server can see it. Then, if a server wishes
to respond to the query, it will generate a response
according to Tquery. Then, the server will secretly send
his response to the leader via a transaction. If the leader
collects at least t responses correctly computed by corre-
sponding servers, then the leader can recover the correct
DATA as mentioned in Eq.4. To introduce the process,
without loss of generality, we assume that the t servers
are Server1, Server2, · · · , Servert and that they wish
to respond to Tquery. According to Tquery, the servers
can obtain s1,1, s1,2, · · · , s1,m1 and s2,1, s2,2, · · · , s2,m2 ,
which are recorded in T1 and T2. First, with i from 1 to t ,
Serveri computes as follows:

Respi =
∑m1

j=1
(CFi + s1,j)(CFi + sj)

−m1 · Chi +
∑m2

j=1
(CFi + s2,j).

Then, Serveri encrypts Respi into

CRespi = EncpkL (Respi)

with the leader’s public key pkL . Then, Serveri computes
a commitment about Respi as follows:

CMRespi = gRespi .

Then, Serveri generates a respond transaction T irespond
containing the leader’s ID, CMRespi and CRespi . Trespond
can be described as follows:

Overall, the servers Server1, Server2, · · · , Servert gen-
erate CResp1 , CResp2 , · · · , CRespt and CMResp1 , CMResp2 ,
· · · , CMRespt . Then, Server1, Server2, · · · , Servert gen-
erate transactions T 1

respond , T
2
respond , · · · , T

t
respond , respec-

tively. Because only the leader has the corresponding
secret key skL , only the leader can decrypt CResp1 ,
CResp2 , · · · , CRespt . After that, the servers send T

1
respond ,

T 2
respond , · · · , T

t
respond to the blockchain network.

• Step 7: Record node verification T 1
respond , T

2
respond ,

· · · , T trespond . After receiving the respond transactions
T 1
respond , T

2
respond , · · · , T

t
respond , a record node should

verify the validations of their CMResp1 , CMResp2 and
CMRespt (Record node can perform these verification
with off-chain computation or smart contract. After that,
the record node can determine whether received transac-
tions are valid). Specifically, with i from 1 to t , the record
node performs the following:
– Compute

gCFi = (gat−1 )Sr
t−1
i · · · (ga1 )Srigscore

= gat−1Sr
t−1
i +···+a1Sri+score

gChi = (gb2t−2 )Sr
2t−2
i · · · (gb1 )Sri

= gb2t−2Sr
2t−2
i +···+b1Sri

– With s1,1, s1,2, · · · , s1,m1 , s2,1, s2,2, · · · , s2,m2 and
the bilinear map e, the record node further computes

E1
i = e(gCFigs1,1 , gCFigs1,1 )e(gCFigs1,2 , gCFigs1,2 )

· · · e(gCFigs1,m1 , gCFigs1,m1 )

E2
i = e(gCFigs2,1gCFigs2,2 · · · gCFigs2,m2 , g)

– If

E1
i E

2
i /e(g

Chi , gm1 ) = e(CMRespi , g),

then the record node assumes that CMRespi is
valid; otherwise, it will reject invalid respond
transactions.

• Step 8:Recover.Because T 1
respond , T

2
respond , · · · , T

t
respond

are found on the blockchain, the transactions pass
all previous verifications. Therefore, the leader simply
needs to perform the final verification that can be per-
formed only by itself. Specifically, with i from 1 to t ,
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the leader decrypts CRespi and then obtains Respi. If

CMRespi = gRespi ,

then leader accepts that Respi is correctly computed
by Serveri; otherwise, it rejects the response and can
send its evidence (including IDTrespond and Respi) to the
Serveri’s smart contract. The leader can then obtain a
reward.
If all the t responses are correct, then the leader uses
Lagrange interpolation to reconstruct a polynomial as
follows:

F̃(x) =
t∑
i=1

Respi
t∏

j=1,j6=i

x − Srj
Sri − Srj

.

Finally, the leader calculates F̃(0), which is the result
DATA, as mentioned at Eq.4.

VII. PERFORMANCE EVALUATION
In this section, we give a performance evaluation of
BeeKeeper, which may be broken up into three parts, by per-
forming BeeKeeper on the Ethereum blockchain. The first
part studies the processing time of the cryptographic and
mathematical computations. The time needed for processing
transactions is studied in the second part. The last part further
analyzes the processing time of blocks when different trans-
actions are sent to the blockchain network. The section starts
with the prototype system setting.

A. PROTOTYPE SYSTEM SETTING
BeeKeeper’s efficiency mainly depends on the blockchain
platform, computing platform and performance of the cryp-
tographic schemes. For instance, in this paper, we use the
Ethereum blockchain as the platform. Specifically, in the
Ethereum blockchain, a block may contain transactions of at
most 62,360 bytes, its average block interval is approximately
15 s, and its transaction payload contains at most 1,014 bytes
of data. Consequently, BeeKeeper’s efficiency is significantly
limited by the blockchain platform. Therefore, if we use a
more efficient blockchain platform, we might obtain a better
throughput.

We use laptops and virtual machines to implement the
prototype system. Specifically, our laptop’s configuration is
described as follows: an Intel i5-5300 CPU at 2.30 GHz, 4 GB
of memory, and theWindows 10 OS. On a local area network,
we deploy a local blockchain via go-ethereum, which is a
Go implementation of the Ethereum protocol [36]. In the
blockchain network, we deploy four record nodes (miners),
and we use a transaction simulator [36] to simulate the
leader, servers and devices to generate and send transactions.
Moreover, we record the BeeKeeper system’s key data in the
transaction’s payload.

In the execution, we implement a (2,3)-threshold Bee-
Keeper prototype system that contains a leader, three servers
and three devices. Specifically, if the leader can collect two

TABLE 4. Average time cost of cryptographic schemes.

correct responses from two servers, then the leader can obtain
the correct desired result.

Additionally, Ethereum possesses an embedded signa-
ture scheme: the ECDSA based on the secp256k1 elliptic
curve [33]. For convenience, we use the scheme to sign
messages. Furthermore, to encrypt key data recorded in the
payloads of initialize transactions and respond transactions,
we use ECIES, an encryption scheme, with the elliptic curve
secp256k1 to encrypt some data via the receiver’s public
key, where the cipher block has a length of 64 bytes. This
results in each encryptedmessage having a length of 64 bytes.
Moreover, the encrypted data can only be decrypted by the
corresponding receivers since only the receiver has the corre-
sponding private key.

Furthermore, for committing data and verifying committed
data, we utilize a high-speed pairing library [30] based on
the BN-curve. Specifically, after selecting a basepointG, data
are committed via a point multiplication ofG, and committed
data are verified by their pairing computation. For instance,
let G be the basepoint of the BN-curve. Then, the secret s can
be committed as sG. Therefore, a commitment has a length
of 64 bytes (512 bits) since any point on the BN-curve has
two coordinates, and each coordinate is 32 bytes. Moreover,
the bilinearmap e (pairing computing) based on the BN-curve
is used to verify the correctness of the commitments. We have
e(ga, gb) = e(gab, g). For instance, if we want to verify
ab = c and we do not want to reveal a, b and c, then we
may use the following equation to verify ab = c.

e(ga, gb) = e(gc, g).

B. PROCESSING TIME OF CRYPTOGRAPHIC SCHEMES
Generally, the time cost of performing cryptographic schemes
will influence the time for processing transactions. Therefore,
in this sub-section, we study the time cost of the crypto-
graphic schemes. Specifically, we purely perform these cryp-
tographic schemes without blockchain.

For each point multiplication, point addition, pairing, field
addition, field multiplication, encryption, decryption, signing
and signature verification, we perform 1000 experiments to
obtain their average time cost, and the average time cost is
described in Table 4.
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C. GENERATE TRANSACTIONS
In the BeeKeeper system, different transactions may have
different usages and payloads. For instance, an initialize
transaction includes a verification key, some commitments,
some server IDs and some encrypted messages. A respond
transaction only contains a leader’s ID, an encrypted response
and a commitment. Moreover, the sizes of the payloads of
initialize transactions and respond transactions are fixed,
while the sizes of the payloads of record transactions and
query transactions are variable. Therefore, transaction may
have different generation processes and generation times.
Consequently, in this sub-section, we study the generation
time of transactions by deploying transaction simulator with-
out sending them to the blockchain. We discuss initialize
transactions first.

In the prototype system, we implement a (2,3)-threshold
BeeKeeper instance. Therefore, the payload of Tinitialize may
include a verification key, three servers’ IDs, six commit-
ments about secret polynomials, six encrypted data of six core
data and six commitments of the six core data, as mentioned
in Section VI-B. According to the last sub-section, these
data have a length of 1056 bytes. However, the payload of a
transaction, in the Ethereum blockchain, can include at most
1014 bytes. In other words, one transaction’s payload cannot
contain this much data, i.e., 1056 bytes. Therefore, we have
to divide Tinitialize into T VKinitialize and T

non−VK
initialize to record all the

data. T VKinitialize and T
non−VK
initialize have a same and unique sub-ID

recorded in their transaction header. Others can use the sub-
ID to determine whether T VKinitialize and T

non−VK
initialize are generated

from the same verification key. Specifically, both transactions
can be described as follows:

Indeed, record transactions and query transactions may
have payloads of variable size. In the implementation,
the sizes of the record transactions and query transac-
tions are fixed. Specifically, they can be described as
follows:

TABLE 5. Payloads of transactions used in our simulation.

TABLE 6. Average time cost of processing transactions.

In the above query transaction, IDmul and IDT 1
record

mean that
the leader wants to obtain a result that can be described with
the following equation.

data1 =
31∑
i=1

(score + s1,i)(score + s1,i).

Additionally, IDadd and IDT 2
record

mean that the leader wants
to obtain a result that can be described with the following
equation.

data2 =
31∑
i=1

(score + s2,i).

Finally, data1+data2 is what the leader really wants to know.
Specifically,

data1 + data2 =
31∑
i=1

(score + s1,i)(score + s1,i)

+

31∑
i=1

(score + s2,i).

A respond transaction’s payload contains a query transac-
tion’s ID, an encrypted response and a commitment of the
response. Specifically, Serveri’s respond transaction can be
described as follows:
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For the experiment, the sizes of the four transactions’
payloads are shown in Table 5. For each of T VKinitialize, T

non−VK
initialize ,

Trecord , Tquery and Trespond , we generate 1000 transactions to
obtain their average generation time cost, and their average
time costs are shown in Table 6.

D. VERIFY TRANSACTIONS
In the system, before a transaction is appended to the
blockchain, record nodes must verify the transaction. Specif-
ically, record nodes verify all publicly verifiable data of the
transaction. Moreover, if a transaction has appeared in the
blockchain, then the transaction’s publicly verifiable data
are credible. Consequently, others (e.g., the leader, servers
and devices) do not have to verify the transaction’s publicly
verifiable data. This significantly reduces the verification
computations of the leader, servers and devices. In this sub-
section, we study the transactions’ verification time cost.
These transactions have been generated by the transaction
simulator. Therefore, in this sub-section, we purely verify
transactions without sending them to the blockchain. All
publicly verifiable data of transactions are summarized as
follows:

• All transactions’ signatures are publicly verifiable data
that can be verified by record nodes. Therefore, if a
transaction has appeared on the blockchain, then the
transaction’s signature is credible, and others do not
need to verify the signature.

• In addition to signatures, the payloads of the initialize
transactions and respond transactions contain publicly
verifiable data that can be verified by record nodes.
Specifically, they are the initialize transaction’s ver-
ification key, the commitments of core shares, and
the respond transaction’s commitments of responses.
Consequently, if an initialize transaction (or a respond
transaction) has appeared on the blockchain, then the
transaction’s publicly verifiable data are credible. There-
fore, the transaction’s receiver does not need to verify the
publicly verifiable data.

In this way, the transaction’s receiver simply needs to verify
some key data that can be verified only by itself. Generally,
in the system, the key data are very small and can be verified
efficiently.

For each of T VKinitialize, T
non−VK
initialize , Trecord , Tquery and Trespond ,

we generate 1000 transactions and then obtain their average
verification time cost, which are shown in Table 6. Specif-
ically, in Table 6, S is a signing computation, V denotes a
signature verification, PM describes a point multiplication
on the ECC, PA is a point addition on the ECC, Pairing
means a pairing computation, E is an encryption, D denotes
a decryption, FM describes a field multiplication, and FA is
a field addition. For instance, ‘‘2PM+3PA+1V+6Pairing’’

FIGURE 3. The highest number of the same transactions recorded in a
block.

denotes that the corresponding computations contain 2 point
multiplications, 3 point additions, 1 signature verification and
6 pairing computations.

However, if BeeKeeper is not based on the blockchain,
then the system will lose several properties, such as tamper
resistance and decentralization, and transaction receivers will
perform more verification computations than the blockchain-
based BeeKeeper. For convenience, the non-blockchain-
based BeeKeeper is called the pure BeeKeeper. If the pure
BeeKeeper system is deployed, then the following can
occur:
• All data are stored by centralized nodes. Therefore, stor-
age might be modified by the centralized nodes.

• All related users should independently verify all publicly
verifiable data including the verification key and com-
mitments.

• Servers and devices might be heavier than the
blockchain-based BeeKeeper.

For instance, in a pure BeeKeeper system, if a leader receives
a respond transaction, then it will verify all verifiable data
by itself; otherwise, it would not trust the transaction’s data.
Therefore, it requires approximately 111.092 ms to verify the
transaction’s data.

However, if the BeeKeeper is based on a blockchain net-
work, which is the key point of the paper, then the leader
only needs 4.963 ms to verify some special data since other
data have been verified by record nodes. Therefore, by com-
bining with the blockchain, BeeKeeper significantly reduces
the servers’, leader’s and devices’ verification computations.
Comparisons between the pure BeeKeeper and blockchain-
based BeeKeeper are shown in Table 7.

E. ETHEREUM-BASED BeeKeeper
We run our BeeKeeper on the Ethereum blockchain. After
generating a certain number of blocks, the block interval
tends to be stable. Specifically, generating 1000 blocks takes
approximately 4.3 hours. In other words, generating a block
takes approximately 15.2 s on average. Furthermore, in the
Ethereum blockchain, a block can record transactions of at
most 62,360 bytes, a transaction with an empty payload is
308 bytes, and a transaction’s payload can record at most
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TABLE 7. Comparisons between pure BeeKeeper and blockchain-based BeeKeeper.

FIGURE 4. (t,n)-threshold secure multi-parties computation (TSMPC) protocol.

1014 bytes of data. Therefore, a transaction’s size should be
from 308 bytes to 308+1014=1322 bytes.

According to Table 5 and the above, in our implementation,
any transaction’s size can be calculated. The transactions
sizes are shown in Table 8. A block can record transactions of
at most 62,360 bytes. Therefore, if a block only records iden-
tical transactions, then the number of recorded transactions is
limited. The limits are described in Fig.3.

In our experiments, because different transactions have
different significance; therefore, the most significant trans-
action should be processed earliest. Moreover, more signif-
icant transactions should be processed more early than less

TABLE 8. Transaction sizes in our simulation.

significant transactions. In the Ethereum blockchain, record
nodes (miners) earlier process the transaction with more
fee. Therefore, we set different transactions having different
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FIGURE 5. Work process of BeeKeeper.

TABLE 9. Transaction fee.

transaction fees. When different transaction are pending in
the record node transaction pool, transactionswith higher fees
will be recorded earlier. In the BeeKeeper system, the ini-
tialize transaction is the base of later transactions. Therefore,
it should have the highest priority. To quickly respond to the
leader’s query, we set that query transaction as the second
priority and respond transaction has the third priority. Finally,
the record transaction has the lowest priority. In this way,
the system’s response rate will be obviously increased. For
our experiments, their transaction fees are shown in Table 9.

In our experiments, after an initialize transaction has
appeared on the blockchain, three devices send record

transactions to the blockchain network at high frequency.
The record transactions are the same as mentioned in
Sec. VI-B. Every block can contain at most 47 record
transactions. Let the data recorded in the payloads of the
record transactions, which are generated by devices, be called
‘‘device data’’. Then, a block can store device data of at most
46,624 bytes. Because the blockchain generates a block per
approximately 15 seconds on average, the system can record
at most 3108.26 bytes of device data per second on average.
At some later time, the leader sends a query transaction to
the blockchain network, and the blockchain height is n at
this time. The query transaction will be recorded on the
blockchain in the n + 1-th block since a query transaction
has a higher transaction fee than a record transaction. Then,
servers may see the query transaction and then send the
corresponding respond transactions to the blockchain net-
work. Because a respond transaction has a higher transaction
fee than record transactions, they can be recorded on the
blockchain more quickly than record transactions. In addi-
tion, the time to verify a respond transaction is approximately
107 ms. Therefore, two respond transactions can be recorded

VOLUME 6, 2018 43485



L. Zhou et al.: BeeKeeper: Blockchain-Based IoT System With Secure Storage and Homomorphic Computation

on the blockchain in the n+ 2-th block. Consequently, when
the n+ 2-th block is generated, the leader can obtain the two
response transactions. Finally, the leader can recover
his desired data. The process only takes approximately
22.5 seconds on average.

BeeKeeper’s efficiency mainly depends on the blockchain
platform. For instance, in this paper, we use the Ethereum
blockchain as the platform. Specifically, Ethereum’s blocks
can contain transactions of at most 62,360 bytes, its aver-
age block interval is approximately 15 s, and its transac-
tion payload contains at most 1014 bytes of data; therefore,
the BeeKeeper’s efficiency is significantly limited by the
blockchain platform. Therefore, if we use some other, more
suitable blockchain platform, then we might obtain a better
performance.

VIII. CONCLUSION
In this paper, we propose a blockchain-based threshold
IoT service system: BeeKeeper. In the BeeKeeper system,
a leader may apply a (t, n)-threshold BeeKeeper protocol
among n servers. After that, the leader’s devices can send
transactions, including encrypted data, of collected data to
the blockchain network. The servers have abilities to per-
form homomorphic computations on the encrypted data.
However, they cannot learn anything from the encrypted
data as long as n − t servers are honest. According to
the leader’s query, servers may generate responses for the
leader. If the leader can collect at least t correct responses,
then it can recover the desired result; otherwise, it cannot
obtain anything. Moreover, most of the data recorded in
transactions are verifiable or even publicly verifiable. There-
fore, receivers may check whether received data are cor-
rectly computed, and record nodes help others to reduce
their verification computations by verifying publicly verifi-
able data. Furthermore, because all data collected by devices
are recorded in the blockchain and because servers can help
the leader to process the data, the leader, leader’s devices
and servers do not need large memory and computational
resources.

APPENDIX
In the following contents, we propose a threshold secure
multi-parties computation (TSMPC) protocol that may be
considered as a (t, n)-threshold verifiable homomorphic con-
fidential storage scheme. The protocol contains two parties.
They are a leader and n servers. Specifically, in the TSMPC
protocol, the leader converts his data {d1, d2, · · · , dm} into
n sets and then sends the n sets to n servers, respectively.
After that, when the leader wants to know some result that is
F(d1, d2, · · · , dm), it will send a query about the demand to
servers. If leader can collect at least t correct responses from
t servers, then it can recover the correct F(d1, d2, · · · , dm).
While if the leader can only collect less than t responses,
then it cannot get any data. With the TSMPC, leader can
obtain the desired result without computing the function
F(d1, d2, · · · , dm) by himelf.

TABLE 10. Symbols of TSMPC.

A. CONSTRUCTION OF TSMPC
Symbols, used in the scheme, are summarized at Table 10.

The TSMPC can be described as follows:
• Initialize. Let Fp be a finite field with character p.
Leader randomly samples a polynomial F(x) of degree
t − 1 from Fp[x] as follows:

F(x) = at−1x t−1 + at−2x t−2 + · · · + a1x + score,

where score, a1, · · · , at−1 ∈ Fp and at−1 6= 0. Let

f (x) = at−1x t−1 + at−2x t−2 + · · · + a1x.

Then we have F(x) = f (x) + score. Leader randomly
samples l(x) of degree t − 1 from Fp[x] as follow:

l(x) = ct−1x t−1 + ct−2x t−2 + · · · + c1x.

After that leader computes

h(x) = f (x)2 − l(x)

= b2t−2x2t−2 + b2t−3x2t−3 + · · · + b1x.

g is a generator of cyclic groupG. Then leader publishes
a verification key VK as follow:

VK = {g, gat−1 , · · · , ga1 , gscore , gb2t−2 , gb2t−3 , · · · , gb1 ,

gct−1 , gct−2 , · · · , gc1}

• Verify committed polynomials. Anyone, includ-
ing servers, can verify whether polynomials f (x),
h(x) and l(x), committed in the verification key, are well-
formed and sound. Specifically, it can do as follows:
– Randomly sample t different numbers x1, x1, · · · ,
xt ∈ Fp.

– j from 1 to t , compute

gfj = (gat−1 )x
t−1
j (gat−2 )x

t−2
j · · · (ga1 )xj

= gat−1x
t−1
j +at−2x

t−2
j +···+a1xj

ghj = (gb2t−2 )x
2t−2
j (gb2t−3 )x

2t−3
j · · · (gb1 )xj

= gb2t−2x
2t−2
j +b2t−3x

2t−3
j +···+b1xj
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glj = (gct−1 )x
t−1
j (gct−2 )x

t−2
j · · · (gc1 )xj

= gct−1x
t−1
j +ct−2x

t−2
j +···+c1xj

– If e(gfj , g
f
j ) = e(ghj g

l
j, g), for j from 1 to t , then the

verifier accepts that f (x), h(x) and l(x), committed
by verification key, are well-formed and sound.
Otherwise, it rejects and return to step Inilialize.

• Distribute. For i from 1 to n, leader computes

CFi = F(Sri) and Chi = h(Sri),

where Sri is the i-th server Serveri’s ID. After that, leader
encrypts {CFi,Chi} into Ccore

i = Encpki (CFi,Chi) with
Serveri’s public key pki. Leader sends Ccore

i to Serveri,
respectively. For Ccore

i , only Serveri can decrypt the
encrypted data since only it has the corresponding secret
key. After obtaining CFi and Chi, Serveri can verify the
soundness of {Fi, hi} with verification key

{g, gat−1 , · · · , ga1 , gscore , gb2t−2 , gb2t−3 , · · · , gb1 ,

gct−1 , gct−2 , · · · , gc1}.

Specifically, it computes

CF∗i = (gat−1 )Sr
t−1
i · · · (ga1 )Sri (gscore )

Ch∗i = (gb2t−2 )Sr
2t−2
i · · · (gb1 )Sri

If CF∗i = gFi and Ch∗i = ghi , then Serveri accepts CFi
and Chi, otherwise it rejects.

• Publish. Leader computes

si = di − score

for 1 ≤ i ≤ m. Then leader publishes s1, s2, · · · , sm
that can be seen by anyone including the servers. How-
ever, only the servers can use s1, s2, · · · , sm to generate
responses since they have CFi and Chi, respectively.

• Query. If the leader wants to get a result, then it may
send a query to servers. The query is that the leaderwants
to get a DATA that can be calculated as the following
equation:

DATA = di1di2 + di3di4 + · · · + dik1−1dik1
+ dik1+1 + · · · + +dik1+k2 , (5)

where 1 ≤ i1, i2, · · · , ik1+k2 ≤ m.
• Respond. i ∈ [1, n], if Serveri wishes to respond the
leader’s query, then it may generate a response Respi by
calculating with s1, s2, · · · , sm, CFi and Chi as follows:

Respi = (CFi + si1 )(CFi + si2 )+ · · · + (CFi + sik1−1 )

× (CFi + sik1 )+ (CFi + sik1+1 )

+ · · · + (CFi + sik1+k2 )−
k
2
Chi

After that, Serveri encrypts Respi into CRespi =
EncpkL (Respi) with leader’s public key pkL . Then,
Serveri sends CRespi to leader.

• Recover. If leader collects at least t correct and different
responses, it can recover theDATA as described in Eq. 5.

Without loss of generality, we assume the t resoibses
come from Server1, Server2, · · · , Servert .
At first, the leader decrypts CResp1 , CResp2 , · · · ,
CRespt and then verify the validations of Resp1,
Resp2, · · · , Respt . Specifically, i from 1 to t , leader
computes

gCFi = (gat−1 )Sr
t−1
i · · · (ga1 )Sri (ga0 )

= gat−1Sr
t−1
i +···+a1Sri+score

gChi = (gb2t−2 )Sr
2t−2
i · · · (gb1 )Sri

= gb2t−2Sr
2t−2
i +···+b1Sri

After that, with si1 , si2 , · · · , sim and bilinear map e(·, ·),
leader further computes

E1
i = e(gCFigsi1 , gCFigsi2 )e(gCFigsi3 , gCFigsi4 )

· · · e(gCFig
sik1−1 , gCFig

sik1 )

E2
i = e(gCFii g

sik1+1gCFii g
sik1+2 · · · gCFii g

sik1+k2 , g)

If

E1
i E

2
i /e(g

Chi , g
k1
2 ) = e(gRespi , g),

then leader considers that Respi is correctly computed
by Serveri. Essentially, if all Resp1,Resp2 · · · Respt are
correctly computed by senders, then leader can recover
the DATA with Resp1,Resp2 and Respt . Specifically,
leader can reconstruct a polynomial of degree t − 1 by
Lagrange interpolating as follow:

F̃(x) =
t∑
i=1

Respi
t∏

j=1,j 6=i

Srj − x
Srj − Sri

Finally, F̃(0) equals to DATA. Consequently, leader
obtains the correct DATA.
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