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ABSTRACT Diagnosability is an important parameter for evaluating the reliability of multiprocessor
systems. t/t-diagnosability and t/k-diagnosability are both new indexes for measuring the reliability of
a system. An n-dimensional augmented cube network (AQn) is a variant of an n-dimensional hypercube
network. In this paper, we first prove that an n-dimensional augmented cube network is (4n − 8)/
(4n − 8)-diagnosable, which implies that the t/t-diagnosability of AQn is approximately two times larger
than its classical t-diagnosability. Some useful properties of AQn not reported by previous studies are
proposed. By employing these new properties, we prove that AQn is t/k-diagnosable, which implies that the
t/k-diagnosability is approximately (k+ 1) times larger than 2n− 1, i.e., the t-diagnosability of AQn, where
t = 2(k + 1)n− ((3(k + 1)(k + 2))/2)+ 1, k 6 (4n/9)− (13/9), and n > 5.

INDEX TERMS System-level diagnosis, t/t-diagnosability, t/k-diagnosability, PMC model, augmented
cube networks.

I. INTRODUCTION
It is an indisputable fact that a multiprocessor system incor-
porates a very large number of processors (or nodes/units)
due to the development of integration technology. With the
increase in the number of processors in a multiprocessor
system, system designers should consider some novel issues
caused by this increase. One of the most important among
them is the reliability of the system. Naturally, the faulty
nodes in a system are an important reason for the decrease
in system reliability. To maintain the reliability of a system,
the system should be designed such that it contains automated
fault tolerant features. Fault tolerance mainly involves two
steps. The first step is called fault identification, in which
the faulty processors are diagnosed. The second step is called
system configuration [1], in which either faulty processors
(previously diagnosed in the first step) are replaced with
additional processors or other good processors in the system
are redistributed to run those tasks that were running on the
faulty processors.

In automated fault diagnosis, there exist two diagnosis
models. One of them is called the logic-circuit-level model,
in which each unit of a system can be tested solely by utilizing
precalculated test data. The shortcoming of this model is that
it requires a large amount of data. The other model, called

the system-level diagnosis model or the Preparata,Metze, and
Chien (PMC) model, was first proposed by [2]. In the PMC
model, for a system consisting of n nodes, its diagnostic graph
can be represented by a directed graph G(V ,E), an edge
(i, j) ∈ E denotes that node u tests node v, and each edge of
G(V ,E) is endowed with a testing result of either 1 or 0. The
collection of all testing results is called a syndrome, repre-
sented by σ . σ (i, j) denotes the result of node i testing node j.
The PMC model assumes that if node i judges node j to be
faulty (respectively, fault-free), then σ (i, j) = 1 (respectively,
σ (i, j) = 0); it also assumes that the result of i testing j is
reliable if and only if node i is fault-free. This test invalidation
rule is shown in Table 1. Many results of the automated fault
diagnosis of multiprocessor systems under the PMC model
have been obtained (see [3]–[10]).

TABLE 1. Invalidation rule of the PMC model.

Acomplete diagnosis refers to one inwhich all faulty nodes
can be identified. A correct diagnosis refers to one in which
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no fault-free node can be diagnosed as faulty. In automated
fault diagnosis, a complete and correct diagnosis is undeni-
ably an ideal diagnosis for a system. According to the test
results obtained by the testing nodes, the diagnosis automati-
cally implemented by a t-diagnosable system is a complete
and correct diagnosis. However, for most t-diagnosable
systemswithN nodes, the value of the diagnosability t , which
is the maximal number of faulty nodes that a system can
guarantee to diagnose, is much smaller than N . In other
words, if the number of faulty nodes exceeds the diag-
nosability of a system, then the diagnosis implemented by
the t-diagnosable system may not be effective. To resolve
this issue, many methods have been suggested over the
past few decades [25], [32]–[35]. One of them is to increase
the diagnosability of a system by allowing some nodes to
be incorrectly identified. For example, [25] introduced the
t/t-diagnosability; its corresponding diagnosis is called a
t/t-diagnosis. A system is said to be t/t-diagnosable if it
can locate a t-node set containing all faulty nodes in the
system provided that the number of faulty nodes in the system
is no more than t [25]. Reference [14] extended the results
presented in [25] and proved that at most one fault-free node
can be identified as faulty.

It is worth mentioning that [1] introduced another diagnos-
ability, called t/k-diagnosability; its corresponding diagnosis
is called a t/k-diagnosis (1 6 k 6 t). Different from the
t/t-diagnosis, the t/k-diagnosis allows at most k nodes to be
diagnosed as faulty, which results in the t/k-diagnosability of
most regular interconnection networks being larger than the
t/t-diagnosability. For example, the t/k-diagnosability of an
n-dimensional hypercube network, denoted by Qn, is 4n− 9,
n > 4, k = 3 [1], which is approximately two times larger
than 2n−2, the t/t-diagnosability ofQn. The latter is approx-
imately two times larger than n, the classical t-diagnosability
of Qn.

Several topologies can be employed to model multipro-
cessor systems. Among them, the hypercube network is
one of the most useful topologies. The reason for this
is that the hypercube network has many advantages, such
as symmetry, regularity, recursion, having a simple and
optimal routing algorithm, and so on. The hypercube network
has been used as the topology structure in many parallel
processor systems (such as CM-2, ip-SC-806, and nCUBE)
and may be the base structure of nanometer computers in
the future [36]. However, Qn is not the best topology. Some
variants of Qn have been introduced, for example, the locally
twisted cube [18], the BC graph [26], augmented cubes [29],
the exchanged hypercube [37], the crossed cube [17], and
so on. As a variant of Qn, augmented cubes have been
widely studied. For example, Hong and Hsieh [38] discussed
the strong diagnosability and conditional diagnosability of
augmented cubes; the distinguishing number of augmented
cubes was studied by Chan [39]; and Hsieh and Shiu [40]
presented the cycle embedding of augmented cubes. In addi-
tion, results corresponding to the connectivity and pancon-
nectivity of augmented cubes can be found in [41]–[43].

The reason that augmented cubes attract considerable atten-
tion may be that they have some properties superior to those
of Qn; for example, the diameter of an augmented cube is
approximately half of n, i.e., the diameter of Qn, and an
augmented cube possesses a few embedding properties that
are not possessed by Qn.
In the paper, we will discuss the t/t-diagnosability and

t/k-diagnosability of augmented cubes, which have not been
studied in previous research. The remainder of this paper
is as follows: After introducing some novel properties of
the augmented cube network, we propose and prove the
t/t-diagnosability of an augmented cube network in section 3.
In section 4, we first derive a low bound of the cardinality of
the neighbors of the k-node set in augmented cubes and then
present the t/k-diagnosability of an augmented cube network.
In section 5, we draw our conclusions and present some final
remarks.

II. PRELIMINARIES
The fault diagnostic graph of a multiprocessor system is
often represented by an undirected graph G(V ,E), where the
vertices in V and the edges in E correspond to processors and
communication links in the network, respectively. For V1 ⊆
V , G − V1 is a subgraph of G induced by all the nodes in V
but not in V1, andG[V1] is a subgraph ofG induced by all the
nodes in V1. |G| or |V | is the number of nodes contained inG.
The length of a path P(u, v) in G is the number of edges in
the path P(u, v). The neighborhood set of a node v is NG(v) =
{u|(u, v) ∈ E} (in brief, N (v)), and the neighborhood set of
V1 is NG(V1) = {u|(u, v) ∈ E, v ∈ V1}−V1 (in brief, N (V1)).
The distance between u and v, denoted by d(u, v), refers to
the length of the minimum path between u and v. A node w
is called a common neighbor of the nodes w1,w2, · · · ,wk
if and only if d(w,wi) = 1 for each i ∈ {1, 2, · · · , k}.
Suppose that S ⊂ V , v ∈ S; let PNS (v) (in brief, PN(v),
no confusion) represent the set of the private neighbors of v,
PNS (v) = {u ∈ V − S|(u, v) ∈ E,∀w ∈ S, (u,w) /∈ E}.
For all terms and notations not defined in this paper, please

see [27]. The concept of the n-dimensional augmented cube
AQn is provided below. Here, we adopt the definition of [29].
Definition 1: The one-dimensional augmented cube AQ1

is a complete graph with two vertices. For n > 2, AQn can be
obtained by taking two copies of the augmented cube AQn−1,
denoted by AQ0

n−1 and AQ1
n−1, and adding 2 × 2n−1 links

between them as follows: Let V (AQ0
n−1) = {0x2 · · · xn−1xn :

xi ∈ {0, 1}} and V (AQ1
n−1) = {1x2 · · · xn−1xn : xi ∈

{0, 1}}. A node X = 0x2 · · · xn−1xn of AQ0
n−1 is adjacent to

a node Y = 1y2 · · · yn−1yn of AQ1
n−1 if and only if either (1)

xi = yi for 2 6 i 6 n or (2) xi = yi for 2 6 i 6 n.
By Definition 1, we have that for each node v ∈ V (AQn),
the degree of v, denoted as deg(v), is 2n − 1. For the sake
of convenience, we introduce the following notation AQn =
AQ0

n−1�AQ
1
n−1, which denotes the recursive construction of

n-dimensional augmented cubes AQn.
Lemma 1 [29]: AQn is (2n − 1)-regular, and its connec-

tivity is κ(AQn) = 2n− 1, n ≥ 1.
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The t/t-diagnosability of the diagnostic capability of a
graph is defined as follows.
Definition 2: A graph G is t/t-diagnosable if all the faulty

nodes can be isolated to within a set of at most t nodes having
at most one fault-free node, provided that the number of faults
at any given time is at most t . The t/t-diagnosability of G is
the maximum number t such that G is t/t-diagnosable.
Lemma 2 [25]: Let S be a system with n nodes. Then,

S is t/t-diagnosable if and only if for each X ⊂ V (S) with
|X | = 2i and i ∈ {1, 2, · · · , t}, |N (X )| > t − i+ 1.

III. t/t-DIAGNOSABILITY OF AUGMENTED CUBES
Before proving the t/t-diagnosability of augmented cubes,
some results need to be established.
Lemma 3 [28]: Let G = (V ,E) be a k-connected graph,

S ⊆ V , S 6= φ.
(i) If |V − S| ≤ k − 1, then NG(S) = V − S.
(ii) If |V − S| ≥ k , then |NG(S)| ≥ k .
Lemma 4 [42]: For two nodes x, y in AQn, |NAQn

({x, y})| > 4n − 8. In particular, if x = a1a2 · · · an−1an
and y = a1a2 · · · ai · · · an−1an(2 6 i 6 n − 1), then
|NAQn ({x, y})| = 4n− 8.
Lemma 5 [30]: Let V1 ⊂ V (AQn), with |V1| = 3 (respec-

tively, 4); then, |N (V1)| > 6n− 17 (respectively, 8n− 28).
Theorem 1: For n > 6, AQn is (4n − 8)/(4n − 8)-

diagnosable.
Proof: By Lemma 2, we need to prove only the

following result: for each i ∈ {1, 2, · · · , 4n − 8} and each
X ⊂ V (AQn) with |X | = 2i, |N (X )| > (4n − 8) − i + 1.
Let AQn = AQ0

n−1 � AQ1
n−1, X0 = X ∩ V (AQ0

n−1),X1 =
X ∩ V (AQ1

n−1). Without loss of generality, |X1| 6 |X0|.
Case 1: i = 1.
In this case, |X | = 2; by Lemma 4, the result is true.
Case 2: 2n− 6 6 i 6 4n− 8.
Since |V (AQn) − X | = 2n − 2i > 2n − 2(4n − 8) >

2n−1(n > 6), by Lemma 1 and Lemma 3, |N (X )| > 2n−1 =
(4n− 8)− (2n− 6)+ 1 > (4n− 8)− i+ 1. The result is true.
Case 3: 2 6 i 6 2n− 7.
We prove that the result is true in this case by induction on

n. For n = 6, 2 6 i 6 5, we need to prove that |N (X )| >
17 − i. When i = 2, |X | = 4, by Lemma 5, we have that
|N (X )| > 20 > 17 − i. When i > 3, consider the following
cases:
Case 3.1.1: X1 6= ∅.
Since |X1| + |X0| = 2i and 25 − |Xr | > 9, by Lemma 3,

we have that |NAQr5 (Xr )| > 9, r = 0, 1; hence, |NAQ6 (X )| >
|NAQ1

5
(X1)| + |NAQ0

5
(X0)| > 18 > 17− i.

Case 3.1.2: X1 = ∅.
Let X0 = {xj|j = 1, 2, · · · , 2i}. By Lemma 5,

we have that |NAQ6 (X )| > |NAQ0
5
(X0)| + |NAQ1

5
(X0)| >

|NAQ1
5
({x1, x2, x3, x4})| − (2i− 4)+ 2i > 16 > 17− i.

Suppose that n − 1 > 6; our claim is true for AQn−1.
Next, we will show that the result is true for n. Consider the
following cases.

Case 3.2.1: X1 = ∅.
Let X0 = {xj|j = 1, 2, · · · , 2i}. If 2n − 8 = 2(n −

1) − 6 6 i 6 2n − 7 6 4(n − 1) − 8, by Case 2,
we have that |NAQ0

n−1
(X0)| > (4(n − 1)) − 8 − i + 1.

If 2 6 i 6 2n − 9 = 2(n − 1) − 7, by the induction
assumption, we have that |NAQ0

n−1
(X0)| > (4(n−1))−8−i+1.

Note that |NAQ1
n−1

({x1, x2, x3, x4})| > 4. Then, |NAQn (X )| =

|NAQn (X0)| = |NAQ0
n−1

(X0)|+|NAQ1
n−1

(X0)| > |NAQ0
n−1

(X0)|+
|NAQ1

n−1
({x1, x2, x3, x4})| > (4(n − 1) − 8 − i + 1) + 4 =

(4n− 8)− i+ 1.
Case 3.2.2: X1 6= ∅.
Let X = {xj|j = 1, 2, · · · , 2i}. Consider the following

cases:
Case 3.2.2.1: |X1| = 1.
Without loss of generality, let X1 = {x1},X0 =

{xj|j = 2, 3, · · · , 2i}; then, |NAQ1
n−1

(X1)| = 2(n − 1) − 1.
If i = 2n − 7, by the induction assumption, we have that
|NAQ0

n−1
({x5, x6, · · · , x2i})| > 4(n − 1) − 8 − (i − 2) + 1 =

(4n − 8) − i − 1, and then |NAQn (X )| > |NAQ1
n−1

(X1)| +
|NAQ0

n−1
(X0)| > |NAQ1

n−1
(X1)|+|NAQ0

n−1
({x5, x6, · · · , x2i})| >

2(n − 1) − 1 + (4n − 8) − i − 1 − 3 = (4n − 8) − i +
1 + (2n − 8) > (4n − 8) − i + 1. If 2 6 i 6 2n − 8, then
1 6 i − 1 6 2(n − 1) − 7; by Case 1 and the induction
assumption, we have that |NAQ0

n−1
({x3, x4, · · · , x2i})| > 4(n−

1)−8−(i−1)+1 = (4n−8)− i−2. Then, we determine that
|NAQn (X )| > |NAQ1

n−1
(X1)| + |NAQ0

n−1
({x3, x4, · · · , x2i})| >

2(n−1)−1+ (4n−8)− i−2 = (4n−8)− i+1+ (2n−6) >
(4n− 8)− i+ 1.
Case 3.2.2.2: |X1| > 1.
Let |X1| = 2j + r1, |X1| = 2k + r2, r1, r2 ∈ {0, 1}, 1 6

j 6 k < i, 2i = 2(j + k) + r1 + r2. Then, 1 6 j 6
k 6 2(n − 1) − 6. We claim that |NAQ1

n−1
(X1)| > 4(n −

1) − 8 − j + 1 − r1. To prove that the claim is true, let
X1 = {x1, x2, · · · , xr1 , y1, y2, · · · , y2j}; then, |NAQ1

n−1
(X1)| >

|NAQ1
n−1

({y1, · · · , y2j})| − r1. When j = 1 (respectively, j =
2(n− 1)− 6), by Case 1 (respectively, Case 2), we have that
|NAQ1

n−1
({y1, · · · , y2j})| 6 4(n−1)−8− j+1; when 2 6 j 6

2(n− 1)− 7, according to the induction assumption, we also
have that |NAQ1

n−1
({y1, · · · , y2j})| > 4(n−1)−8−j+1. Hence,

our claim is true. Similarly, we have that |NAQ0
n−1

(X0)| >
4(n−1)−8− k+1− r2. Then, |NAQn (X )| > |NAQ1

n−1
(X1)|+

|NAQ0
n−1

(X0)| > (4(n−1)−8−j+1−r1)+(4(n−1)−8−k+1−

r2) = (4n−8)−i+1+(4n−15− 1
2 (r1+r2)) > (4n−8)−i+1.

Theorem 2: For n > 6, the t/t-diagnosability of AQn is
4n− 8.

Proof: We need only to prove that AQn is not
(4n− 7)/(4n− 7)-diagnosable. Consider a pair complement
nodes x = xnxn−1 · · · x1, y = xn · · · x̄i · · · x̄1(2 6 i 6 n − 1);
by Lemma 4, we have that |NAQn ({x, y})| = 4n − 8 <

(4n − 7 − 1 + 1). By Lemma 2, it is true that AQn is not
(4n− 7)/(4n− 7)-diagnosable.
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IV. t/k-DIAGNOSABILITY OF AQn
In this section, the following terminologies and notations
are used. For AQn, suppose that X ,Y ,Z ∈ V (AQn). Let
X = x1x2 · · · xn,Y = y1y2 · · · yn,Z = z1z2 · · · zn, where
xi (yi, zi) is 0 or 1 (i = 1, 2, · · · , n). Define an operator
⊕ as follows: Z = X ⊕ Y if and only if zi = xi ⊕ yi,
where 0 ⊕ 0 = 0, 1 ⊕ 0 = 1, 0 ⊕ 1 = 1, 1 ⊕ 1 = 0.
For the sake of convenience, we use 0i (respectively, 1i) to

denote

i︷ ︸︸ ︷
0 · · · 0 (respectively,

i︷ ︸︸ ︷
1 · · · 1). Let Oi = 0i−110n−i and

Si = 0i−11n−i+1. Suppose that A = a1a2 · · · aiai+1 · · · an; we
useAi (respectively,Ai) to denote a1a2a3 · · · ai−1aiai+1 · · · an
(respectively, a1a2 · · · ai−1ai · · · an). Obviously, Ai = A⊕Oi,
Ai = A⊕ Si.
To present the t/k-diagnosability of AQn, the properties of

AQn described below are necessary. For the sake of conve-
nience, for the three nodes A,B,C ∈ V (AQn), let NAB =
N (A) ∩ N (B),NAC = N (A) ∩ N (C),NBC = N (B) ∩
N (C),NAB(C) = (N (A)∩N (C))∪ (N (B)∩N (C))−N (A)∩
N (B) ∩ N (C)− {A,B}.
The following Property 1 follows [31].
Property 1: Suppose that A,B ∈ V (AQn), d(A,B) = 1;

then,
1) If B = A⊕ Oi, then |NAB| = 2.
2) If B = A ⊕ Si, then if i ∈ {1, n}, then |NAB| = 2.

Otherwise, |NAB| = 4.
Since the proof of the following Property 2 is easily

obtained from [31], we omit it.
Property 2: Suppose that A,B ∈ V (AQn), d(A,B) = 2;

then,
1) If B = A⊕ Oi ⊕ Oj, then if i + 1 = j(i 6 n − 2), then
|NAB| = 4. Otherwise, |NAB| = 2.

2) If B = A ⊕ Oi ⊕ Sj, i + 2 6 j, then if i + 2 = j, then
|NAB| = 4. Otherwise, |NAB| = 2.

3) If B = A ⊕ Oi ⊕ Sj(i > j + 1), then if i − 1 = j, then
|NAB| = 4. Otherwise, |NAB| = 2.

4) If B = A⊕ Si ⊕ Sj(|i− j| > 1), then if |i− j| = 2, then
|NAB| = 4. Otherwise, |NAB| = 2.
Property 3: Let A,B,C ∈ V (AQn); if d(A,B) = 1,

d(A,C) = 1, d(B,C) = 1, then |NAB(C)| 6 2.
Proof: Case 1: B = A⊕ Oi.

Case 1.1: i = 1. According to Property 1, A,B share 2
common neighbors: A1,A2. Then, C = A1 or C = A2.
IfC = A1, thenNAC = {A2,B} andNBC = {A2,A}; the result
is true. If C = A2, then NAC = {A1,B} and NBC = {A1,A};
the result is also true.
Case 1.2: 2 6 i 6 n − 1. According to Property 1, A,B

share 2 common neighbors: Ai,Ai+1. If C = Ai, then NAC =
{Ai+1,B,Ai−1,Ai−1} and NBC = {Ai+1,A}; the result is true.
Similarly, we conclude that whenC = Ai+1, the result is true.
Case 1.3: i = n.
According to Property 1, A,B share 2 common neighbors:

An−1,An−1. If C = An−1, then NAC = {Ai−2,B} and

NBC = {A,Ai−1}; the result is true. Similarly, we conclude
that when C = An, the result is true.
Case 2: B = A⊕ Si.
Case 2.1: i = 1.
According to Property 1, A,B share 2 common neighbors

A2,A1. If C = A2, then NAC = {A1,A2,A3,B} and NBC =
{A,A1}, and then NAB(C) = {A2,A3}; the result is true.
Similarly, we conclude that when C = A1, the result is true.
Case 2.2: 2 6 i 6 n− 1.
According to Property 1, A,B share 4 common neighbors:

Ai,Ai−1,Ai−1,Ai+1. If C = Ai, then NAC = {Ai+1,B} and
NBC = {A,Ai+1}; the result is true. Similarly, we conclude
that when C is one of {Ai−1,Ai−1,Ai+1}, the result is true.
Property 4: For any three nodes A,B,C ∈ V (AQn),

if d(A,B) = 1, d(A,C) = 2 and d(B,C) = 1, then
|NAB(C)| 6 5.

Proof: Case 1: B = A⊕ Oi.
Case 1.1: C = B ⊕ Oj. Clearly, NBC = {Bj+1,Bj}(j 6

n − 1) or NBC = {Bn−1,Bn−1}(j = n). By d(A,C) = 2,
we have i 6= j. Consider the following cases:
Case 1.1.1: |j− i| = 1. If j = i+ 1 6 n− 1, then NAC =
{B,Aj+1,Aj,Ai} and NAB(C) = {Bj+1,Aj,Aj+1}. If j = i +
1 = n, then NAC = {An−2,An−2,B,Bn−1} and NAB(C) =
{An−2,An−2}. Hence, when j = i+ 1, the result is true.

On the other hand, if j = i − 1 6 n − 2, then NAC =
{B,Ai−1,Ai−1,Ai+1} and NAB(C) = {Bj,Ai−1,Ai−1}. If j =
i − 1 = n − 1, then NAC = {An−2,An−2,B,Bn−1} and
NAB(C) = {An−2,An−2,B,Bn−1}. Hence, when j = i − 1,
the result is true.
Case 1.1.2: |j− i| 6= 1. If j = i− 2 = n− 2, then NAC =
{B,An−2,An−2,An−1} and NAB(C) = {Bn−2,An−2,An−2}.
If i = j − 2 = n − 2, then NAC = {B,An,An−2,An−1}
and NAB(C) = {Bn−1,An,An−1}. For other situations, NAC =
{Ai,Aj}, and then |NAB(C)| 6 4. Hence, the result is true.
Case 1.2: C = B ⊕ Sj. When j = n, the situation is the

same as that discussed in Case 1.1. We need to consider only
the situation where j 6 n−1. By Property 2, we have NBC =
{Bj,Bj−1,Bj+1,Bj−1}(2 6 j 6 n − 1) or NBC = {B2,B1}
(j = 1). By d(A,C) = 2, we have that j 6= i and j 6= i + 1.
Now, consider the following cases:
Case 1.2.1: j = 1. Then, NAC = {B,A1} and NAB(C) =
{A1,B2,B1}; the result is true.
Case 1.2.2: 2 6 j 6 n− 1.
Case 1.2.2.1: If j = i − 1 6 n − 2, then NAC =
{B,Ai−1,Ai−1,Ai+1} and NAB(C) = {Bj,Bj−1,Ai−1,Ai−1,
Bj−1}; the result is true.
Case 1.2.2.2: If j = i − 1 = n − 1, then C = A ⊕ On−1.

This is a contradiction to the assumption that d(A,C) = 2;
hence, this situation is impossible.
Case 1.2.2.3: If j− i = 2, then NAC = {B,Ai+1,Ai,Ai+2}

and NAB(C) = {Bj,Bj−1,Ai+1,Ai+2,Bj+1}; the result is
true.
Case 1.2.2.4: If j− i > 2 or i− j > 2, then NAC = {B,Aj},

and then |NAB(C)| 6 |NAC ∪ NBC − {B}| = 6 − 1 = 5; the
result is true.
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Case 1.2.3: j = n. This case is identical to the case in the
proof of Property 3.
Case 2: B = A⊕ Si (i 6= n).
Case 2.1: C = B ⊕ Oj. Clearly, NBC = {B1,B2}

(j = 1) or NBC = {Bn−1,Bn−1} (2 6 j 6 n − 1).
By d(A,C) = 2, we have that i 6= j and j 6= i − 1. Consider
the following cases:
Case 2.1.1: j 6 n − 1. If j = i − 2, then NAC =
{B,Ai−2,Ai−1,Ai−2} and NAB(C) = {Ai−2,Ai−2,Bj}. If j 6
i − 3, then NAC = {B,Aj} and NAB(C) = {Bj+1,Bj,Aj}.
If j = i + 1, then NAC = {B,Ai+1,Ai+2,Ai} and NAB(C) =
{Bj+1,Ai+2}. If j > i + 2, then NAC = {B,Aj}, and then
|NAB(C)| 6 |NAC ∪ NBC − {A,B}| 6 4 − 1 = 3. Hence,
the result is true.
Case 2.1.2: j = n. By d(A,C) = 2, we have that i 6= n− 1

and i 6= n. Now, we need to consider only the situation where
i 6 n − 2. If i = n − 2, then NAC = {B,An,An−1,An−2}
and NAB(C) = {An,An−1,Bn−1}. If i 6 n − 3, then NAC =
{B,An} and NAB(C) = {Bn−1,Bn−1,An}. Hence, when j = n,
the result is true.
Case 2.2: C = B ⊕ Sj(j 6= n). By d(A,C) = 2, we have

that |i− j| > 1. Since B ∈ NAC , by Property 1 and Property 2,
we need only the following situation: |i− j| = 2 and 2 6 j 6
n−1. By Property 1 and the condition 2 6 j 6 n−1, we have
that NBC = {Bj−1,Bj−1,Bj,Bj+1}. If j − i = 2, then NAC =
{Aj,Aj+1,Aj,Ai} and NAB(C) = {Bj−1,Bj−1,Bj,Aj,Aj}.
If i − j = 2, then NAC = {Ai,Ai+1,Ai,Aj} and
NAB(C) = {Bj+1,Bj−1,Bj,Ai+1,Aj}. Hence, the result is
true.
Property 5: Let A,B,C ∈ V (AQn). Suppose that

d(A,B) = 1, d(A,C) = 2, and d(B,C) = 2. Then,
|NAB(C)| 6 5.

Proof: Case 1: B = A⊕ Oi.
Case 1.1: i = 1.
Case 1.1.1: C = B⊕ Oj ⊕ Ok . Without loss of generality,

assume that j < k . Then, C = A ⊕ Oi ⊕ Oj ⊕ Ok .
By d(A,C) = 2, we have that any two of i, j, k are different.
When j = 2, k = 3, we have that NAC = {A1,A4},
NBC = {B2,B3,B2,B4} and NAB(C) = {B2,B3,A4,B4}.
Hence, the result is true. When j 6= 2 or k 6= 3, NAC = φ, and
when B and C share 2 or 4 common neighbors by Property 2,
then |NAB(C)| 6 4.
Case 1.1.2: C = B ⊕ Oj ⊕ Sk . Clearly, j 6= k, k − 1

(otherwise, d(B,C) = 1). d(A,C) = 2 implies that j 6= 1.
Case 1.1.2.1: j = 2. d(A,C) = 2 implies that k = 4; then,

NAC = {A1,A3}, NBC = {B2,B3,B4,B2} and NAB(C) =
{B2,B3,B4,A3}. Hence, the result is true.
Case 1.1.2.2: j 6= 2. We claim that k 6 2. To the contrary,

if k > 2, then NAC = φ; this is a contradiction to d(A,C) =
2. Now, we need to consider only the situations of k = 1 and
k = 2.
Case 1.1.2.2.1: k = 1. d(A,C) = 2 implies that j 6= 1, 2.

If j = 3, then NAC = {A2,A2,A3,A4}, NBC = {B1,B3} and
NAB(C) = {A2,B3,A3,A4}. Hence, the result is true. If j > 4,
thenNAC = {A2,Aj},NBC = {B1,Bj} andNAB(C) = {Bj,Aj}.
Hence, the result is true.

Case 1.1.2.2.2: k = 2. We have that NAC = {Aj,A1}.
If j = 3, then NBC = {B2,B3,B2,B4} and NAB(C) =
{B3,B2,B4,A3}. If j > 3, thenNBC = {B2,Bj} andNAB(C) =
{Bj,Aj}.
Case 1.1.3: C = B ⊕ Sj ⊕ Sk . d(B,C) = 2 implies that
|j-k| 6= 0, 1. When |k − j| = 2, the case is the same as that
discussed in Case 1.1.1. Without loss of generality, assume
that j < k . We claim that j 6 2. To the contrary, suppose
that j > 3; then, NAC = φ, a contradiction to d(A,C) = 2.
Now, we need to consider only the following situation:
j 6 3, k − j > 3.
Case 1.1.3.1: j = 1. If k = 4, then NAC =

{A2,A4,A2,A3},NBC = {B1,B4} and NAB(C) =

{A4,A2,A3,B4}. If k > 5, then NAC = {A2,Ak},NBC =
{B1,Bk} and NAB(C) = {Ak ,Bk}. Hence, the result is true.
Case 1.1.3.2: j = 2. We have that NAC = {A1,Ak},NBC =
{B2,Bk} and NAB(C) = {Ak ,Bk}. Hence, the result is true.
Case 1.2: i ∈ {2, 3, 4, · · · , n− 3}.
Case 1.2.1: C = B⊕ Oj ⊕ Ok . Without loss of generality,

suppose that j < k . Similar to Case 1.1.1, we have that any
two of i, j, k are different.
Case 1.2.1.1: i = n − 3, j = n − 2, k = n or j =

n − 1, k = n. If i = n − 3, j = n − 2, k = n, we have
that NAC = {An−3,An−1}, NBC = {Bn−1,Bn−2,Bn−2,Bn},
and NAB(C) = {Bn−1,An−1,Bn−2,Bn}. If i = n − 3,
j = n − 1, k = n, we have that NAC =

{B,An−3,An−2,An−1}, NBC = {Bn−1,Bn−2,Bn−2,Bn},
and NAB(C) = {Bn−1,An−2,An−1,Bn−2,Bn}. If i 6=
n − 3, j = n − 1, k = n, we have that NAC =

{B,An−1}, NBC = {Bn−1,Bn−2,Bn−2,Bn}, and NAB(C) =
{Bn−1,Bn−2,Bn−2,An−1}. Hence, the result is true.
For other situations, not including Case 1.2.1.1,

d(A,C) = 2 implies that i, j, k are three consecutive integers.
Now, we need to discuss only the following situations in
which i, j, k are three consecutive integers.
Case 1.2.1.2: i = j−1. SinceNAC = {Ai+3,Ai} andNBC =
{Bi+1,Bi+2,Ai,Bi+3}, NAB(C) = {Bi+1,Bi+2,Ai+3,Bi+3}.
Hence, the result is true.
Case 1.2.1.3: j = i − 1 = k − 2. Since NAC =
{Ai+2,Ai−1} and NBC = {Bi−1,Bi+1}, NAB(C) =

{Ai+2,Ai−1,Bi−1,Bi+1}. Hence, the result is true.
Case 1.2.1.4: i = k + 1. Since NAC = {Ai+1,Ai−2} and

NBC = {Bi−1,Bi−2,Bi−2,Bi}, NAB(C) = {Bi−1,Bi−2,Bi−2,
Ai−2}. Hence, the result is true.
Case 1.2.2: C = B ⊕ Oj ⊕ Sk (k 6= n). d(B,C) = 2

implies that j 6= k, k − 1. At the same time, by d(B,C) = 2,
we conclude that k = n − 1 implies j 6= n. d(A,C) = 2
implies that j 6= i. We claim that k 6 i + 3. In contrast,
if k > i + 3, then NAC = φ; this is a contradiction to
d(A,C) = 2. Now, we need to consider only the situations
in which k 6 i+ 3.
Case 1.2.2.1: k = i + 1. Since d(A,C) = 2, we have that

j 6 i − 2 or j > i + 2. If j = i − 2, we have that NAC =
{Ai−2,Ai,Ai−1,Ai−2}, NBC = {Bi−2,Bi+1} and NAB(C) =
{Ai−2,Ai−1,Ai−2,Bi−2}. If j < i − 2, we have that NAC =
{Aj,Ai}, NBC = {Bj,Bi+1} and NAB(C) = {Aj,Bj}.
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Similarly, if j > i+2, we have that NAC = {Aj,Ai}, NBC =
{Bj,Bi+1}(j > i + 2) or NBC = {Bi+1,Bi+1,Bi+2,Bi+3}(j =
i + 2). Then, NAB(C) = {Aj,Bj}(j > i + 2) or NAB(C) =
{Bi+1,Ai+2,Bi+2,Bi+3}(j = i+ 2). Hence, the result is true.
Case 1.2.2.2 : k = i + 2. d(A,C) = 2 implies that j =

i − 1. Then, NAC = {Ai−1,Ai+1} and NBC = {Bi−1,Bi+2}.
Subsequently, |NAB(C)| 6 4. Hence, the result is true.
Case 1.2.2.3: k = i + 3. d(A,C) = 2 implies

that j = i + 1. Then, NAC = {Ai,Ai+2} and
NBC = {Bi+1,Bi+3,Bi+1,Bi+2}. Subsequently, NAB(C) =
{Bi+1,Bi+3,Ai+2,Bi+2}. Hence, the result is true.
Case 1.2.2.4: k = i. d(A,C) = 2 implies

that j 6= i + 1. If j 6 i − 2, then NAC =

{Aj,Ai+1} and NBC = {Bi−2,Bi,Bi−1,Bi−2}(j = i − 2)
or NBC = {Bj,Bi}(j < n − 2). Subsequently, NAB(C) =
{Bi−2,Ai−2,Bi−1,Bi−2}(j = i − 2) or NAB(C) =

{Ai−2,Ai−1,Ai−2,Bi−2}(j < n− 2). If j = i+ 2, then NAC =
{Ai+3,Ai+1,Ai+2,Ai+1}, NBC = {Bi+2,Bi} and NAB(C) =
{Ai+3,Ai+1,Ai+2,Bi+2}. If j > i+ 2, then NAC = {Ai+1,Aj},
NBC = {Bj,Bi} and NAB(C) = {Aj,Bj}. Hence, the result is
true.
Case 1.2.2.5: k < i. d(A,C) = 2 implies that i, j, k are

three consecutive integers. When k = i− 1 = j− 2, we have
that NAC = {Ai−1,Ai+2}, NBC = {Bi+1,Bi−1} and NAB(C) =
{Ai−1,Ai+2,Bi+1,Bi−1}. When k = j − 1 = i − 2, we have
that NAC = {Ai−2,Ai+1}, NBC = {Bi−2,Bi,Bi−2,Bi−1} and
NAB(C) = {Bi−2,Ai−2,Bi−2,Bi−1}. Hence, the result is true.
Case 1.2.3: C = B ⊕ Sj ⊕ Sk . d(B,C) = 2 implies that
|j-k| 6= 0, 1. When |k − j| = 2, the case is the same as that
discussed in Case 1.2.1. Now, we need to consider only the
following situation: |j − k| > 2. Without loss of generality,
assume that j < k − 2. We claim that j 6 i + 1. In contrast,
suppose that j > i + 2; then, NAC = φ, which contradicts
d(A,C) = 2. Next, we need to discuss only the following
situations.
Case 1.2.3.1: j = i + 1. Then, NAC = {Ai,Ak}, NBC =
{Bi+1,Bk} and NAB(C) = {Ak ,Bk}. Hence, the result is true.
Case 1.2.3.2: j = i. If k = j + 3, then NAC =

{Ai+1,Ai+2,Ai+3,Ai+1}, NBC = {Bi,Bi+3} and NAB(C) =
{Ai+1,Ai+2,Ai+3,Bi+3}. If k > j+3, thenNAC = {Ai+1,Ak},
NBC = {Bi,Bk} and NAB(C) = {Ak ,Bk}. Hence, the result is
true.
Case 1.2.3.3: j = i − 1. d(A,B) = 2 implies that k =

i + 2. Then, NAC = {Ai−1,Ai+1}, NBC = {Bi−1,Bi+2} and
NAB(C) = {Ai−1,Ai+1,Bi−1,Bi+2}. Hence, the result is true.
Case 1.2.3.4: j < i − 1. d(A,C) = 2 implies that k =

i or k = i+1. If k = i, thenNAC = {Aj,Ai+1},NBC = {Bj,Bi}
andNAB(C) = {Aj,Bj}. If k = i+1 and j = i−2, thenNAC =
{Ai−2,Ai,Ai−2,Ai−1}, NBC = {Bi−2,Bi+1} and NAB(C) =
{Ai−2,Bi−2,Ai−2,Ai−1}. If k = i + 1 and j < i − 2, then
NAC = {Aj,Ai}, NBC = {Bj,Bi+1} and NAB(C) = {Aj,Bj}.
Hence, the result is true.
Case 1.3: i = n− 2.
Case 1.3.1: C = B⊕ Oj ⊕ Ok . Without loss of generality,

suppose that j < k . Similar to Case 1.1.1, we have that any
two of i, j, k are different.

Case 1.3.1.1: j = n − 3, k = n. We have that
NAC = {An−3,An−1}, NBC = {Bn−3,Bn}, and NAB(C) =
{An−3,An−1,Bn−3,Bn}.

For other situations, not including Case 1.3.1.1, d(A,C) =
2 implies that i, j, k are three consecutive integers. Now,
we need to discuss only the situation in which i, j, k are three
consecutive integers.
Case 1.3.1.2: j = k − 1 = n − 1. Then, NAC =
{B,An−1,An−3,An−3} and NBC = {Bn−1,Bn,Bn−2,Bn−2}.
Subsequently, NAB(C) = {Bn−1,Bn,Bn−2,An−3,An−3}.
Hence, the result is true.
Case 1.3.1.3: j = n − 3, k = n − 1. Since

NAC = {An−3,An} and NBC = {Bn−3,Bn−1}, NAB(C) =
{An−3,An,Bn−3,Bn−1}. Hence, the result is true.
Case 1.3.1.4: j = n − 4, k = n − 3. Then,

NAC = {An−4,An−1} and NBC = {Bn−4,Bn−3,Bn−4,Bn−2}.
Subsequently, NAB(C) = {Bn−4,Bn−3,Bn−4,An−4}. Hence,
the result is true.
Case 1.3.2: C = B⊕Oj⊕Sk (k 6= n). d(B,C) = 2 implies

that j 6= k, k − 1. d(A,C) = 2 implies that j 6= i. We claim
that k > n − 4. In contrast, suppose that k < n − 4; then,
NAC = φ, which contradicts d(A,C) = 2. Next, we need to
consider only the following situations.
Case 1.3.2.1: k = n − 1. Since d(A,C) = 2

and d(B,C) = 2, we have that j 6 n − 4. Then,
NAC = {An−4,An−2,An−3,An−4}(j = n − 4) or NAC =
{Aj,An−2}(j < n−4), whileNBC = {Bj,Bn−1}. Subsequently,
NAB(C) = {An−4,Bn−4,An−3,An−4} or NAB(C) = {Aj,Bj}.
Hence, the result is true.
Case 1.3.2.2: k = i = n − 2. d(A,C) = 2

and d(B,C) = 2 imply that j 6 n − 4. Then,
NAC = {An−4,An−2,An−3,An−4}(j = n − 4) or NAC =
{Aj,An−2}(j < n−4), whileNBC = {Bj,Bn−1}. Subsequently,
NAB(C) = {An−4,Bn−4,An−3,An−4} or NAB(C) = {Aj,Bj}.
Hence, the result is true.
Case 1.3.2.3 k = n − 3. By d(A,C) = d(B,C) = 2,

we have that j = n or j = n − 1. If j = n,
then NAC = {An−3,An−1}, NBC = {Bn,Bn−3}, and thus
NAB(C) = {An−1,An−3,Bn,Bn−3}. If j = n − 1, then
NAC = {An−3,An},NBC = {Bn−1,Bn−3}, and thusNAB(C) =
{An,An−3,Bn−1,Bn−3}. Hence, the result is true.
Case 1.3.2.4: k = n − 4. By d(A,C) = d(B,C) = 2,

we have that j = n − 3. Then, NAC = {An−4,An−1},
NBC = {Bn−4,Bn−2,Bn−3,Bn−4}, and thus NAB(C) =
{Bn−4,An−4,Bn−3,Bn−4}.
Case 1.3.3: C = B ⊕ Sj ⊕ Sk . d(B,C) = 2 implies that
|j-k| 6= 0, 1. When |k − j| = 2, the case is the same as that
discussed in Case 1.3.1. Without loss of generality, assume
that j < k . When k = n, the proof of the case can be obtained
by the proof of Case 1.3.2. Now, we need to consider only the
following situation: j 6 k − 3 and k 6= n.
Since d(A,C) = 2, we have that k = i = n − 2 or k =

i + 1 = n − 1. If k = n − 2, then NAC = {Aj,Ai+1}, NBC =
{Bj,Bi} and NAB(C) = {Aj,Bj}. If k = i + 1 and j = k − 3,
then NAC = {An−4,An−2,An−4,An−3}, NBC = {Bn−4,Bn−1}
and NAB(C) = {An−4,Bn−4,An−4,An−3}. If k = i + 1 and
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j < k − 3, then NAC = {Aj,Ai}, NBC = {Bj,Bk} and
NAB(C) = {Aj,Bj}. Hence, the result is true.
Case 1.4: i = n− 1.
Case 1.4.1: C = B⊕ Oj ⊕ Ok . Without loss of generality,

suppose that j < k . Similar to Case 1.1.1, we have that any
two of i, j, k are different. Since d(A,C) = 2, the case of
j < n − 3 and k = n − 2 is impossible, and the case of
k < n− 2 is also impossible. Thus, we need to consider only
the following subcases.
Case 1.4.1.1: k = n. If j = n − 2, then NAC =
{An−3,An−3,An−1,An−2} and NBC = {Bn−2,Bn,Bn−2,A};
subsequently, NAB(C) = {An−3,An−3,An−1,Bn−2,Bn−2}.
If j = n − 3, then NAC = {An−3,An−3,An−1,An−2}
and NBC = {Bn−3,Bn}; subsequently, NAB(C) =

{An−3,An−3,Bn−3,An−2}. If j < n − 3, then NAC =

{Aj,An−1} and NBC = {Bj,Bn}; subsequently, NAB(C) =
{Aj,Bj}. Hence, the result is true.
Case 1.4.1.2: j = n − 3, k = n − 2. We have that

NAC = {An−3,An}, NBC = {Bn−3,Bn−2,Bn−3,Bn−1}, and
NAB(C) = {Bn−3,Bn−2,Bn−3,An−3}. Hence, the result is
true.
Case 1.4.2: C = B⊕Oj⊕Sk (k 6= n). d(B,C) = 2 implies

that j 6= k, k − 1. d(A,C) = 2 implies that j 6= i. Consider
the following cases:
Case 1.4.2.1: k < j. Since d(A,C) = 2, the case of

k < n − 3 and j = n − 2 is impossible; the case of
j < n− 2 is also impossible. Now, we consider the following
cases:
Case 1.4.2.1.1: j = n. By d(A,C) = 2, we have that k 6=

n − 2. If k = n − 3, then NAC = {An−3,An−1,An−2,An−3},
NBC = {Bn−3,Bn} and NAB(C) = {An−3,Bn−3,An−2,An−3}.
If k < n − 3, then NAC = {An−1,Ak}, NBC = {Bk ,Bn} and
NAB(C) = {Ak ,Bk}. Hence, the result is true.
Case 1.4.2.1.2: k = n − 3, j = n − 2. Then, NAC =
{An−3,An}, NBC = {Bn−2,Bn−3,Bn−3,Bn−1} and NAB(C) =
{An−3,Bn−2,Bn−3,Bn−3}. Hence, the result is true.
Case 1.4.3: C = B ⊕ Sj ⊕ Sk . d(B,C) = 2 implies that
|j-k| 6= 0, 1. When |k − j| = 2, the case is the same as that
discussed in Case 1.4.1. Without loss of generality, assume
that j < k . When k = n, the proof of the case can be obtained
by the proof of Case 1.4.2. Now, we need to consider only the
following situation: j 6 k − 3 and k 6= n. Since d(A,C) = 2,
we have that k = i = n − 1. Then, NAC = {Aj,An}, NBC =
{Bj,Bn−1} and NAB(C) = {Aj,Bj}.
Case 1.5: i = n.
Case 1.5.1: C = B⊕ Oj ⊕ Ok . Without loss of generality,

suppose that j < k . Similar to Case 1.1.1, we have that any
two of i, j, k are different. Since d(A,C) = 2, the following
cases are impossible: (1) j = n − 2, k = n − 1, (2) k =
n − 2, j = n − 4, (3) k 6 n − 3, and (4) k − j > 3. Thus,
we need to consider only the following subcases.
Case 1.5.1.1: j = n − 3, k = n − 1. We have that

NAC = {An−3,An−3,An−2,An−1} and NBC = {Bn−3,Bn−1}.
Subsequently, NAB(C) = {An−3,An−3,An−2,Bn−3}. Hence,
the result is true.

Case 1.5.1.2: j = n − 3, k = n − 2. We have that
NAC = {An−3,An−1}, NBC = {Bn−3,Bn−2}, and NAB(C) =
{An−3,An−1,Bn−3,Bn−2}. Hence, the result is true.
Case 1.5.2: C = B⊕Oj⊕Sk (k 6= n). d(B,C) = 2 implies

that j 6= k, k − 1. d(A,C) = 2 implies that j 6= i. We need to
consider only the following cases.
Case 1.5.2.1: k < j. Since d(A,C) = 2, the following

cases are impossible: (1) j = n − 1, k = n − 2, (2) j =
n−2, k < n−3 and (3) j 6 n−3. Thus, we need to consider
only the following subcases.
Case 1.5.2.1.1: k = n − 3, j = n − 1. Then,

NAC = {An−3,An−1,An−2,An−3}, NBC = {Bn−3,Bn−1} and
NAB(C) = {An−3,Bn−3,An−2,An−3}. Hence, the result is
true.
Case 1.5.2.1.2: k < n − 3, j = n − 1. Then, NAC =
{An−1,Ak}, NBC = {Bk ,Bn−1} and NAB(C) = {Ak ,Bk}.
Hence, the result is true.
Case 1.5.2.1.3: k = n − 3, j = n − 2. Then,

NAC = {An−3,An−1}, NBC = {Bn−2,Bn−3,Bn−3,Bn−1} and
NAB(C) = {Bn−2,Bn−3,Bn−3,An−3}. Hence, the result is
true.
Case 1.5.2.1.4: j < k . By j 6= k − 1 and d(A,C) = 2,

we conclude that this case is impossible.
Case 1.5.3: C = B ⊕ Sj ⊕ Sk . d(B,C) = 2 implies that
|j-k| 6= 0, 1. When |k − j| = 2, the case is the same as that
discussed in Case 1.5.1. Without loss of generality, assume
that j < k . d(A,C) = 2 means that k 6= n. Now, we need to
consider only the following situation: j 6 k − 3 and k 6= n.
Since d(A,C) = 2, we have that k = n − 1. Then, NAC =
{Aj,An−1}, NBC = {Bj,Bn−1}, and thus NAB(C) = {Aj,Bj}.
Hence, the result is true.
Case 2: B = A⊕ Si.
Case 2.1: i = 1.
Case 2.1.1: C = B⊕ Oj ⊕ Ok . Without loss of generality,

suppose that j < k . By d(A,C) = 2 and d(B,C) = 2,
we have that j = 1 and k > 2. If k = 3, then
NAC = {A2,A2,A3,A4}, NBC = {B1,B3} and NAB(C) =
{A2,B3,A3,A4}. If k > 3, then NAC = {A2,Ak}, NBC =
{B1,Bk} and NAB(C) = {Ak ,Bk}. Hence, the result is true.
Case 2.1.2: C = B⊕Oj⊕Sk (k 6= n). d(B,C) = 2 implies

that j 6= k, k − 1. Consider the following cases:
Case 2.1.2.1: k 6 j− 1. By d(A,C) = 2 and d(B,C) = 2,

we have that k = 2. Then, NAC = {A1,Aj}, NBC = {Bj,B2}
and NAB(C) = {Aj,Bj}. Hence, the result is true.
Case 2.1.2.2: k > j + 1. d(A,C) = 2 implies that j = 1

and k > 4. If k = 4, then NAC = {A2,A3,A2,A4}, NBC =
{B1,B4}, and thus NAB(C) = {A2,A3,B4,A4}. If k > 4,
then NAC = {A2,Ak}, NBC = {B1,Bk}, and thus NAB(C) =
{Ak ,Bk}. Hence, the result is true.
Case 2.1.3: C = B ⊕ Sj ⊕ Sk . d(B,C) = 2 implies that
|j-k| 6= 0, 1. When |k − j| = 2, the case is the same as that
discussed in Case 2.1.1. Without loss of generality, assume
that j < k . When k = n, the case is the same as that discussed
in Case 2.1.1. Now, we need to consider only the following
situation in which j 6 k − 3 and k 6= n. By d(A,C) = 2 and
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j 6 k − 3, we conclude that j = 2. Then, NAC = {A1,Ak},
NBC = {B2,Bk} and NAB(C) = {Ak ,Bk}.
Case 2.2: i ∈ {2, 3, · · · , n− 1}.
Case 2.2.1: C = B⊕ Oj ⊕ Ok . Without loss of generality,

suppose that j < k . By d(A,C) = 2 and d(B,C) = 2,
we need to consider only the following cases:
Case 2.2.1.1: j = i and k > i + 1. If k = i + 2, then

NAC = {Ai+1,Ai+1,Ai+2,Ai+3}, NBC = {Bi,Bi+2}, and thus
NAB(C) = {Bi+2,Ai+1,Ai+2,Ai+3}. If k > i+2, then NAC =
{Ai+1,Ak}, NBC = {Bi,Bk}, and thus NAB(C) = {Bk ,Ak}.
Hence, the result is true.
Case 2.2.1.2: j = i − 1. If k = i, then NAC =

{Ai1 ,Ai−1,Ai,Ai+1}, NBC = {Bi−1,Bi}, and NAB(C) =
{Ai1 ,Bi,Ai,Ai+1}. If k > i, then NAC = {Ai−1,Ak}, NBC =
{Bi−1,Bk}, and NAB(C) = {Ak ,Bk}. Hence, the result is true.
Case 2.2.1.3: j 6 i−2 and k = i. Then, NAC = {Ai+1,Aj},

NBC = {Bj,Bk} and NAB(C) = {Aj,Bj} (if i = 2, the case
does not exist and thus is not considered here). Hence, the
result is true.
Case 2.2.1.4: j = i − 3 and k = i − 1. Then, NAC =
{Ai−3,Ai−2,Ai−1,Ai−3}, NBC = {Bi−3,Bi−1} and NAB(C) =
{Ai−3,Bi−3,Ai−2,Ai−3} (if i < 3, the case does not exist and
thus is not considered here). Hence, the result is true.
Case 2.2.1.5: j < i − 3 and k = i − 1. Then, NAC =
{Aj,Ai−1}, NBC = {Bj,Bi−1} and NAB(C) = {Aj,Bj}
(if i < 4, the case does not exist and thus is not considered
here). Hence, the result is true.
Case 2.2.1.6 j = i − 3 and k = i − 2. Then, NAC =
{Ai−3,Ai−1}, NBC = {Bi−3,Bi−1,Bi−3,Bi−2} and NAB(C) =
{Ai−3,Bi−3,Bi−3,Bi−2} (if i < 4 or i = n− 1, the case does
not exist and thus is not considered here).
Case 2.2.2: C = B ⊕ Oj ⊕ Sk (k 6= n). d(A,C) = 2

implies that k 6= i. d(B,C) = 2 implies that j 6= k, k − 1.
By d(A,C) = 2 and d(B,C) = 2, we need to consider only
the following cases:
Case 2.2.2.1: i < k 6 j − 1. By d(A,C) = 2 and

d(B,C) = 2, we have that k = i + 1. d(B,C) = 2
implies that the situation in which k = j − 1 = n − 1
is impossible. If k = j − 1 < n − 1, then NAC =
{Ai,Ai+2}, NBC = {Bi+1,Bi+2,Bi+1,Bi+3}, and NAB(C) =
{Bi+2,Bi+1,Bi+3,Ai+2}. If k < j − 1, then NAC = {Ai,Aj},
NBC = {Bi+1,Bj} and NAB(C) = {Aj,Bj}. Hence, the result
is true.
Case 2.2.2.2: k < i 6 j − 1. By d(A,C) = 2 and

d(B,C) = 2, we have that k = i− 1.
If i = j− 1 = n− 1, then NAC = {An−2,An−2,An−1,An},

NBC = {Bn−2,Bn−1,Bn,Bn−2}, and NAB(C) = φ. If i =
j− 1 < n− 1, then NAC = {Ai−1,Aj}, NBC = {Bi−1,Bj} and
NAB(C) = {Aj,Bj}. Hence, the result is true.
Case 2.2.2.3: k 6 j − 1 < i. By d(A,C) = 2 and

d(B,C) = 2, we conclude that one of the following three
conditions holds: 1) i = j; 2) j = i − 1 and k 6 j − 2; or
3) j = i− 2 and k = j− 1.

1) If i = j and k = j−1, thenNAC = {Ai−1,Ai,Ai−1,Ai+1},
NBC = {Bi,Bi−1,Bi−1,Bi+1}, and NAB(C) = φ. Hence, the
result is true.

If i = j and k < j − 1, then NAC = {Ak ,Ai+1}, NBC =
{Bi,Bk} and NAB(C) = {Ak ,Bk}. Hence, the result is true.

2) j = i − 1 and k 6 j − 2. If k = j − 2, then NAC =
{Ai−3,Ai−2,Ai−3,Ai−1}, NBC = {Bi−1,Bi−3} and NAB(C) =
{Ai−3,Ai−2,Ai−3,Bi−3}. If k < j−2, thenNAC = {Ak ,Ai−1},
NBC = {Bi−1,Bk} and NAB(C) = {Ak ,Bk}. Hence, the result
is true.

3) If j = i − 2 and k = j − 1, then NAC =

{Ai−3,Ai−1},NBC = {Bi−3,Bi−3,Bi−2,Bi−1}, andNAB(C) =
{Ai−3,Bi−3,Bi−3,Bi−2, }. Hence, the result is true.
Case 2.2.2.4: i 6 j + 1 < k . By d(A,C) = 2 and

d(B,C) = 2, we conclude that either i = j and k > j+3 or j =
i+1 and k = j+2.We discuss both situations in the following.
1) i = j, k > j + 3. If k = j + 3, then NAC =
{Ai+1,Ai+2,Ai+1,Ai+3}, NBC = {Bi,Bi+3}, and NAB(C) =
{Ai+1,Ai+2,Bi+3,Ai+3}. Hence, the result is true.

If k > j+ 3, then NAC = {Ai+1,Ak}, NBC = {Bi,Bk}, and
NAB(C) = {Bk ,Ak}. Hence, the result is true.

2) If j = i + 1 and k = j + 2, then NAC =

{Ai,Ai+2}, NBC = {Bi+1,Bi+2,Bi+1,Bi+3}, and NAB(C) =
{Bi+1,Bi+2,Ai+2,Bi+3}. Hence, the result is true.
Case 2.2.2.5: j + 1 < i < k . By d(A,C) = 2 and

d(B,C) = 2, we conclude that k = i + 1. Then, NAC =
{Ai,Aj}, NBC = {Bj,Bi+1}, and NAB(C) = {Aj,Bj}. Hence,
the result is true.
Case 2.2.2.6: j + 1 < k < i. By d(A,C) = 2 and

d(B,C) = 2, we conclude that k = i − 1. Then, NAC =
{Ai−1,Aj}. If k = j + 2, then NBC = {Bj,Bi−1,Bj,Bi−2}
and NAB(C) = {Bj,Aj,Bj,Bi−2}. If k > j + 2, then NBC =
{Bj,Bi−1} and NAB(C) = {Bj,Aj}. Hence, the result is true.
Case 2.2.3: C = B ⊕ Sj ⊕ Sk . d(B,C) = 2 implies that
|j-k| 6= 0, 1. By d(A,C) = 2, we conclude that any two of
i, j, k are different. When |k − j| = 2, the case is the same
as that discussed in Case 2.1.1. Without loss of generality,
assume that j < k . When k = n, the case is the same as that
discussed in Case 2.2.2. Now, we need to consider only the
following subcases in which j 6 k − 3 and k 6= n.
Case 2.2.3.1: i < j 6 k − 3. By d(A,C) = 2, we have

that i = j − 1. Then, NAC = {Ai,Ak}, NBC = {Bj,Bk}, and
NAB(C) = {Ak ,Bk}. Hence, the result is true.
Case 2.2.3.2: j < i and j 6 k−3. By d(A,C) = 2, we have

that either j = i− 1 or |i− k| = 1. If j = i− 1, then NAC =
{Aj,Ak}, NBC = {Bj,Bk} and NAB(C) = {Aj,Bj,Ak ,Bk}.
If i = k − 1, then NAC = {Ai,Aj}, NBC = {Bj,Bk} and
NAB(C) = {Bj,Aj} . If i = k + 1, then NAC = {Ak ,Aj},
NBC = {Bj,Bk} and NAB(C) = {Bj,Aj}. Hence, the result is
true.
Case 2.3: i = n. This case is included in Case 1.
Property 6: Let A,B,C ⊆ V (AQn). Suppose that

d(A,B) = 2, d(A,C) = 2, d(B,C) = 2. Then,
|NAB(C)| 6 6.

Proof:
Case 1: C = A⊕ Oi ⊕ Oj(i < j).
Case 1.1: B = C ⊕Ok ⊕Ol(k < l). By Property 2 and the

symmetry of A,B,C , we need to consider only the following
three cases: 1) j = i+1(i 6 n−2) and l = k+1(k 6 n−2);
2) j = i+1(i 6 n−2) and l = k+2 = n; and 3) j = i+2 = n
and l = k + 2 = n.
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Case 1.1.1: j = i + 1(i 6 n − 2) and l = k +
1(k 6 n − 2). Then, NAC = {Ai,Ai+1,Ai+2,Ai} and
NBC = {Ck ,Ck+1,Ck+2,Ck}. Without loss of generality,
suppose that j 6 k . By d(A,B) = 2, we conclude that
either j = k or j = k − 1. Then, either NAB(C) =
{Ai+1,Ai+2,Ai,Ck+1,Ck+2,Ck}(j = k) or NAB(C) =
{Ai,Ai+1,Ai+2,Ck ,Ck+1,Ck+2}(j = k − 1). Hence,
the result is true.
Case 1.1.2: j = i + 1(i 6 n − 2) and l =

k + 2 = n. Then, NAC = {Ai,Ai+1,Ai+2,Ai} and
NBC = {Cn,Cn−2,Cn−2,Cn−1}. By d(A,B) = 2,
we conclude that n − 3 6 j 6 n − 1. Then, either
NAB(C) = {An−4,An−3,An−2,Cn,Cn−2,Cn−1}(j = n − 3),
NAB(C) = {An−2,An−1,Cn,Cn−2}(j = n − 2) or NAB(C) =
{An−2,Cn−1}(j = n− 1). Hence, the result is true.
Case 1.1.3: j = i + 2 = n and l = k + 2 = n.

By d(A,B) = 2, we conclude that this case is impossible.
Case 1.2: B = C⊕Ok⊕Sl(l 6= n). By Property 2, we need

to consider only the following four cases: 1) j = i + 1(i 6
n− 2) and l = k + 2; 2) j = i+ 1(i 6 n− 2) and l = k − 1;
3) j = i + 2 = n and l = k + 2; and 4) j = i + 2 = n and
l = k − 1.
Case 1.2.1: j = i + 1(i 6 n − 2) and l =

k + 2. Then, NAC = {Ai,Ai+1,Ai+2,Ai} and NBC =

{Ck ,Ck+1,Ck+2,Ck}. By d(A,B) = 2, we conclude that
either j = k − 1, j = k , j = k + 2 or j = k + 3, and
then either NAB(C) = {Ai,Ai+1,Ai+2,Ck ,Ck+1,Ck+2}(j =
k − 1), NAB(C) = {Ai+1,Ai+2,Ai,Ck+1,Ck+2,Ck}(k =
j), NAB(C) = {Ai,Ai,Ai+2,Ck ,Ck ,Ck+2}(j = k +
2) or NAB(C) = {Ai,Ai+1,Ai,Ck ,Ck+1,Ck}(j = k + 3).
Hence, the result is true.
Case 1.2.2: j = i+ 1(i 6 n− 2) and l = k − 1. A similar

argument to that made in Case 1.2.1 can be used here.
Case 1.2.3: j = i + 2 = n and l = k +

2. Then, NAC = {An−2,An−1,An−2,An} and NBC =

{Ck ,Ck+1,Ck+2,Ck}. By d(A,B) = 2, we conclude that
either k = n − 4 or k = n − 3, and then either NAB(C) =
{An−2,An−2,An,Ck ,Ck+1,Ck}(k = n − 4) or NAB(C) =
{An−2,An−2,An−1,Ck ,Ck+2,Ck}(k = n − 3). Hence,
the result is true.
Case 1.2.4: j = i + 2 = n and l = k − 1.

Then, NAC = {An−2,An−1,An−2,An} and NBC =

{Ck ,Ck−1,Ck−1,Ck+1}. By d(A,B) = 2, we conclude that
either k = n − 3 or k = n − 2, and then either NAB(C) =
{An−2,An−2,An,Ck ,Ck−1,Ck−1}(k = n − 3) or NAB(C) =
{An−2,An−2,An−1,Ck−1,Ck−1,Ck+1}(k = n − 2). Hence,
the result is true.
Case 1.3: B = C ⊕ Sk ⊕ Sl(l < k). By Property 2,

we need to consider only the following two cases: 1) j =
i + 1(i 6 n − 2) and l = k + 2; and 2) j = i + 2 = n and
l = k + 2.
Case 1.3.1: j = i + 1(i 6 n − 2) and l = k + 2.

Note that when l = k + 2, we have that B = C ⊕
Sk ⊕ Sl = C ⊕ Ok ⊕ Ok+1, which implies that an argu-
ment similar to that made in Case 1.1.1 can be used in this
case.

Case 1.3.2: j = i+2 = n and l = k+2. A similar argument
to that made in Case 1.1.2 can be used to prove that the result
is true in this case.
Case 2: C = A⊕ Oi ⊕ Sj(j 6= n).
Case 2.1: B = C ⊕ Ok ⊕ Ol(k < l). Noting that

A = C ⊕Oi⊕ Sj and C = B⊕Ok ⊕Ol(k < l), by Case 1.2,
we conclude that the result is true.
Case 2.2: B = C⊕Ok⊕Sl(l 6= n). By Property 2, we need

to consider only the following three cases: 1)j = i + 2 and
l = k + 2; 2) j = i − 1 and l = k + 2; and 3) j = i − 1 and
l = k − 1.
Case 2.2.1: j = i + 2 and l = k + 2. Then, NAC =
{Ai,Ai+1,Ai+2,Ai} and NBC = {Ck ,Ck+1,Ck+2,Ck}.
By d(A,B) = 2, we conclude that either k = i − 1,
k = i − 2, k = i + 1 or k = i + 2.
Then, either NAB(C) = {Ai,Ai+1,Ai,Ck ,Ck+2,Ck}(k =
i − 1), NAB(C) = {Ai,Ai+2,Ai,Ck ,Ck+1,Ck}(k =

i − 2), NAB(C) = {Ai,Ai+1,Ai+2,Ck+1,Ck+2,Ck}(k =
i − 1) or NAB(C) = {Ai+1,Ai+2,Ai,Ck ,Ck+1,Ck+2}(k =
i+ 2).
Case 2.2.2: j = i− 1 and l = k + 2. Note that if j = i− 1,

then C = A ⊕ Oj ⊕ Sj+2. Hence, we can use an argument
similar to that made in Case 2.2.1 (respectively, Case 1.2.3)
to prove the case where j+ 2 6= n (respectively, j+ 2 = n).
Case 2.2.3: j = i − 1 and l = k − 1. By the assumption,

we have that C = A ⊕ Oj ⊕ Sj+2 and B = C ⊕ Ol ⊕ Sl+2.
We can use a similar argument to that made in Case 2.2.1 to
prove this case.
Case 2.3: B = C ⊕ Sk ⊕ Sl(k < l, l 6= n). By Property 2,

we need to consider only the situation where l = k+1. On the
other hand, l = k + 1 implies that B = C ⊕ Ok ⊕ Ok+1.
Furthermore, by Case 2.1, we conclude that the result is true.
Case 3: C = A ⊕ Si ⊕ Sj(i < j). By Property 2, we need

to consider only the situation where j = i + 1. On the other
hand, j = i+1 implies that C = A⊕Oi⊕Oi+1. Furthermore,
by Case 2, we conclude that the result is true in this case.
Theorem 3: For any subset S ⊂ V (AQn) with |S| = α,

where 1 6 α 6 2n− 1, the following conditions hold.
i) If there exist two nodes x, y ∈ S such that d(x, y) = 1,

then there exists a node v ∈ {x, y} such that |PN (v)| > 2n −
2.5α − 1. Otherwise,
ii) There exists a node v ∈ S such that |PN (v)| > 2n −

3α + 1.
Proof: For the sake of convenience, we introduce the

following notations: suppose that u, v,w ∈ V (AQn); let
Nuv(w) = (N (u) ∩ N (w)) ∪ (N (v) ∩ N (w)) − N (u) ∩ N (v) ∩
N (w)− {u, v}.
i) There exist x, y ∈ S such that d(x, y) = 1. By Property 1,

we have that x and y share two or four common neighbors.
Hence, they have 2(2n−1−1−2) or 2(2n−1−1−4) neighbors
that are not shared by them. For each node z ∈ S − {x, y},
consider the following cases:

(1) d(x, z) = 1 and d(y, z) = 1. In this case, by Prop-
erty 3, we have that |Nxy(z)| 6 2.
(2) d(x, z) = 1 and d(y, z) = 2. In this case, by Prop-

erty 4, we have that |Nxy(z)| 6 5.
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(3) d(x, z) = 2 and d(y, z) = 2. In this case, by Prop-
erty 5, we have that |Nxy(z)| 6 5.

(4) d(x, z) = 2 and d(y, z) > 2. In this case, by Prop-
erty 2, we have that N (x) ∩ N (z) 6 4. On the other hand,
d(y, z) > 2 implies that N (y) ∩ N (z) = φ. Hence, we have
that |Nxy(z)| 6 4.
In summary, for every z ∈ S − {x, y}, we have that
|Nxy(z)| 6 5. Furthermore, |PN (x)| + |PN (y)| > 2(2n −
1 − 1 − 4) − 5(α − 2) = 4n − 5α − 2. Hence, either
|PN (x)| > 2n−2.5α−1 or |PN (y)| > 2n−2.5α−1 (or both
of them) holds.

ii) We distinguish between two subcases:
Case 1: There exist two nodes x, y ∈ S such that

d(x, y) = 2. By Property 2, we have that x and y share
two or four common neighbors. Hence, they have 2(2n−1−2)
or 2(2n − 1 − 4) neighbors that are not shared by them. For
each node z ∈ S − {x, y}, consider the following cases:

(1) d(x, z) = d(y, z) = 2. In this case, according to
Property 6, we have that |Nxy(z)| 6 6.

(2) d(x, z) = 2 and d(y, z) > 2. In this case, by Property
2, we have that N (x) ∩ N (z) 6 4. On the other hand,
d(y, z) > 2 implies thatN (y)∩N (z) = φ. Hence, we have that
|Nxy(z)| 6 4.

(3) d(x, z) > 2 and d(y, z) > 2. In this case, z has no
common neighbors to share with either x or y, which implies
that |Nxy(z)| = 0.

In summary, for every z ∈ S − {x, y}, we have that
|Nxy(z)| 6 6. Furthermore, |PN (x)| + |PN (y)| > 2(2n− 1−
4) − 6(α − 2) = 4n − 6α + 2. Hence, either |PN (x)| >
2n − 3α + 1 or |PN (y)| > 2n − 3α + 1 (or both of them)
holds.
Case 2: For each pair u, v ∈ S, d(u, v) > 2. Choose a

pair of nodes x, y ∈ X ; since they have no common neighbor,
|PN (x)| = |PN (y)| = 2n− 1 > 2n− 3α + 1.
The following Lemma 6 follows [30].
Lemma 6: Let AQn = AQ0

n−1 � AQ1
n−1 and x, y ∈

V (AQ0
n−1) (respectively, x, y ∈ V (AQ1

n−1)). Then, x = y2
if and only if they have exactly two common neighbors that
belong to V (AQ1

n−1) (respectively, V (AQ0
n−1)). Moreover,

if x 6= y2, then they have no common neighbors in V (AQ1
n−1)

(respectively, V (AQ0
n−1)).

The following Lemma 7 follows [1].
Lemma 7: Suppose thatG(X ,E) is the diagnostic graph of

a system H with N nodes. Then, H is t/k-diagnosable if the
following two conditions hold:

(1) For each X ′ ⊂ X with |X ′| = k + 1, |NG(X ′)| > t − 1.
(2) For each X ′ ⊂ X with |X ′| = 2(k + q), |NG(X ′)| >

t − (k + q), where q is an integer, with 1 6 q 6 t − k .
The following Lemma 8 follows [30].
Lemma 8: Let G(X ,E) be the diagnostic graph of an n-

dimensional augmented cubeAQn andX ′ ⊂ X , with |X ′| = k .
Then:

(1) If k = 1, then |NG(X ′)| = 2n− 1.
(2) If k = 2, then |NG(X ′)| > 4n− 8.
(3) If k = 3, then |NG(X ′)| > 6n− 17.
(4) If k = 4, then |NG(X ′)| > 8n− 28.

Lemma 9: Let G(X ,E) be the diagnostic graph of an n-
dimensional augmented cube AQn and X ′ ⊂ X , with |X ′| =
k, 0 < k 6 2n− 1. Then, |NG(X ′)| > 2kn− 3k(k+1)

2 + 1.
Proof: We prove that the result is true by induction

on k . According to Lemma 8, it is easily seen that the
result is true when 1 6 k 6 4. Next, suppose that the
result is true for 4 6 k < 2n − 1. We will show that
it is also true for k + 1. By contradiction, suppose that
there exists X ′ ⊂ X , with |X ′| = k + 1, such that
|NG(X ′)| < 2(k+1)n− 3(k+1)(k+2)

2 +1. Consider the following
cases:
Case 1: There exists two nodes x, y ∈ X ′ such that

(x, y) ∈ E . By Theorem 3, one of x and y, say x, satisfies the
following: |PN (x)| > 2n−2.5α−1. LetX ′′ = X ′−{x}. Then,
NG(X ′′) = (NG(X ′)−PN (x))∪{x}; subsequently, |NG(X ′′)| =
|NG(X ′)| − |PN (x)| + 1 < 2(k + 1)n − 3(k+1)(k+2)

2 + 1 −
(2n − 2.5(k + 1) − 1) + 1 < 2kn − 3k(k+1)

2 + 1, which is a
contradiction.
Case 2: For any two nodes x, y ∈ X ′, (x, y) /∈ E .

By Theorem 3, there exists a node v ∈ S such that |PN (v)| >
2n−3(k+1). Let X ′′ = X ′−{v}. Then,NG(X ′′) = (NG(X ′)−
PN (v)); subsequently, |NG(X ′′)| = |NG(X ′)| − |PN (v)| <
2(k + 1)n − 3(k+1)(k+2)

2 + 1 − (2n − 3(k + 1) + 1) <

2kn− 3k(k+1)
2 + 1, which is a contradiction.

Lemma 10: Let G(X ,E) be the diagnostic graph of an n-
dimensional augmented cube AQn and P′ ⊂ X , with |P′| =
k+r+1, t = 2(k+1)n− 3(k+1)(k+2)

2 +1, andF = |NG(P′)|−t ,
where 0 6 k 6 4n

9 −
13
9 , n > 5, 0 6 r 6 k + 1. Then,

the following conditions are true:
(*) If r = 1, then F > 2.
(**) If 2 6 r 6 k + 1, then F > 1.
Proof: The assumption that k 6 4n

9 −
13
9 and n > 5

implies that k 6 4n
9 −

13
9 6 2n

3 −
8
3 . Moreover, k + r 6

2k + 1 6 2n − 1. By Lemma 9, we have that the following
inequality holds: F = |NG(P′)| − t > [2(k + 1 + r)n −
3(k+r+1)(k+r+2)

2 +1]−[2(k+1)n− 3(k+1)(k+2)
2 +1] = r

2 (4n−
9 − 3(r + 2k)). Note that k 6 2n

3 −
8
3 ; when r = 1, F >

r
2 (4n− 9− 3(r + 2k)) = 2n− 3k − 6 > 2. Similarly, when
r = 2, F > r

2 (4n − 9 − 3(r + 2k)) = 4n − 6k − 15 > 1.
If 3 6 r 6 k + 1, then 4n− 9− 3(r + 2k) > 9( 4n9 −

12
9 − k).

Then, by the assumption that k 6 4n
9 −

13
9 , we have that

F > 1.
Theorem 4: An n-dimensional augmented cube network

AQn is t/k-diagnosable for t = 2(k + 1)n− 3(k+1)(k+2)
2 + 1,

where k 6 4n
9 −

13
9 and n > 5.

Proof: Let G(X ,E) be the diagnostic graph of AQn.
(1) For each X ′ ⊂ X , with |X ′| = k+1, by Lemma 9, we have
that |NG(X ′)| = 2(k + 1)n− 3(k+1)(k+2)

2 + 1 > t − 1. Hence,
condition (1) in Lemma 7 is satisfied.

(2) Now, for each integer q, with 1 6 q 6 t − k , let X ′ ⊂
X be a subset of X , with |X ′| = 2(k + q). We will show

that |NG(X ′)| > t − (k + q). Let X ′ = {x(1), · · · , x2(k+q)}
denote the subset mentioned above and x(i)1 · · · x

(i)
n denote the

addresses of node x(i), i = 1, 2, · · · , 2(k + q). Consider the
following cases:
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Case 1: There exists at least one bit position, say the
ith position, such that the total number of ‘0’s is different from
the total number of ‘1’s for the ith position of these 2(k + q)
node addresses. Without loss of generality, assume that the
total number of ‘0’s is different from the total number of ‘1’s
for the ith position of these 2(k + q) node addresses and that
i = 1; this is always possible to achieve (by renumbering the
nodes). Moreover, without loss of generality, assume that the
first position of each node of {x(1), · · · , x(k+q+1)} is ‘0’.
Let P = {x(1), · · · , x(k+1)}, Q = {x(k+2), · · · , x(k+q+1)},

R = {x(k+q+2), · · · , x2(k+q)}, LPQ = {v ∈ Q|v2 ∈ P}, and
r = |LPQ|. It is obvious that r 6 k + 1. Now, consider the
following subcases:
Case 1.1: r = 0. Let Q′′ = {v = 1w2 · · ·wn|v1 =

0w2 · · ·wn ∈ Q}; then, |Q′′| = q. By Lemma 6, we have that
NG(P)∩Q′′ = φ. Then, |NG(X ′)| > |NG(P)∪Q′′|−|Q∪R| >
t + q− 1− (k + 2q− 1) = t − (k + q).
Case 1.2: 1 6 r 6 max{q, k + 1}. Let P′ = P∪LPQ, Q′ =

Q− LPQ, and Q′′ = {v = 1w2 · · ·wn|v1 = 0w2 · · ·wn ∈ Q′};
then, X ′ = P′ ∪ Q′ ∪ R, Q′′ ⊂ NG(Q′), and |Q′′| = q − r .
By Lemma 6, we have that NG(P′)∩Q′′ = φ. Hence, we have
the following inequality: |NG(X ′)| > |NG(P′) ∪ Q′′| − |Q′ ∪
R| = |NG(P′)|+ (q− r)− (k + 2q− r − 1) = |NG(P′)|+ 1−
(k + q). By Lemma 10, we have that |NG(X ′)| > |NG(P′)| +
1− (k + q) > t + 1− (k + q) > t − (k + q).
Case 2: The total number of ‘0’s at each bit position is

exactly the same as the total number of ‘1’s at the same
position for each bit position of these 2(k+q) node addresses.
Consider the following cases:
Case 2.1: q = 1. By the assumption k 6 4n

9 −
13
9 ,

we have that 0 < 2(k + 1) < 2n − 1. Then, by Lemma 9,
NG(X ′) > 4(k+ 1)n− 3(k+ 1)(2(k+ 1)+ 1)+ 1. Consider a
function of the variable k: f (k) = 4(k+1)n−3(k+1)(2(k+
1) + 1) + 1 − t + (k + 1). Next, we need to prove only that
f (k) > 0. In fact, f (k) = − 9

2k
2
+(2n− 19

2 )k+(2n−5) > 0 if
and only if g(k) = 9k2− (4n− 19)k − (4n− 10) < 0. g(k) is
a quadratic function. After a simple process of computing,
we can determine that the two roots of g(k) = 0 are as
follows: k1 = 1

18 [(4n − 19) −
√
(4n− 19)2 + 36(4n− 10)]

and k2 = 1
18 [(4n − 19) +

√
(4n− 19)2 + 36(4n− 10)]. By

the assumption that k 6 4n
9 −

13
9 and n > 5, we can determine

that k1 < k < k2, which implies that g(k) < 0.
Case 2.2: 1 < q 6 t − k . Let P = {x(1), · · · , x(k+1)},

Q = {x(k+2), · · · , x(k+q)}, and R = {x(k+q+1), · · · , x2(k+q)}.
Consider the following cases:
Case 2.2.1: There do not exist two nodes x ∈ P, y ∈ Q

such that x = y2.
Case 2.2.1.1: There do not exist two nodes u, v ∈ Q

such that u = v2. Let P′ = {x(1), · · · , x(k+1)} ∪ {x(k+2)}
and Q′ = Q − {x(k+2)}. Then, X ′ = P′ ∪ Q′ ∪ R. Let
Q′′ = {v = 1w2 · · ·wn|v1 = 0w2 · · ·wn ∈ Q′}; then,
Q′′ ⊂ NG(Q′) and |Q′′| = q − 2. By Lemma 6, we have
that NG(P′) ∩ Q′′ = φ. Hence, we have that the following
inequality holds: |NG(X ′)| > |NG(P′) ∪ Q′′| − |Q′ ∪ R| =
|NG(P′)| + (q − 2) − (k + 2q − 2) = |NG(P′)| − (k + q).

By Lemma 10, we have that F = |NG(P′)| − t > 2, which
implies that |NG(X ′)| > t − (k + q).
Case 2.2.1.2: There exist two nodes u, v ∈ Q such that

u = v2. Let P′ = {x(1), · · · , x(k+1)} ∪ {u, v} and Q′ = Q −
{u, v}. Then,X ′ = P′∪Q′∪R. LetQ′′ = {v = 1w2 · · ·wn|v1 =
0w2 · · ·wn ∈ Q′}; then, Q′′ ⊂ NG(Q′) and |Q′′| = q − 3.
By Lemma 6, we have that NG(P′)∩Q′′ = φ. Hence, we have
that the following inequality holds: |NG(X ′)| > |NG(P′) ∪
Q′′|−|Q′∪R| = |NG(P′)|+(q−3)−(k+2q−3) = |NG(P′)|−
(k + q). By Lemma 10, we have that F = |NG(P′)| − t > 1,
which implies that |NG(X ′)| > t − (k + q).
Case 2.2.2: There exists exactly l pairs of nodes x ∈ P,

y ∈ Q such that x = y2, where 1 6 l 6 max{q −
1, k + 1}. Without loss of generality, suppose that x(j) ∈
Q(k + 2 6 j 6 k + l + 1) satisfies (x(j))2 ∈ P. Let
Q0 = {x(k+2), · · · , x(k+l+1)},Q1 = Q− Q0.
Case 2.2.2.1: There do not exist two nodes u, v ∈ Q1 such

that u = v2. Let P′ = {x(1), · · · , x(k+1)} ∪ Q0 ∪ {x(k+l+2)}
and Q′ = Q1−{x(k+l+2)}. Then, X ′ = P′∪Q′∪R. Let Q′′ =
{v = 1w2 · · ·wn|v1 = 0w2 · · ·wn ∈ Q′}; then, Q′′ ⊂ NG(Q′)
and |Q′′| = q − l − 2. By Lemma 6, we have that NG(P′) ∩
Q′′ = φ. Hence, we have that the following inequality holds:
|NG(X ′)| > |NG(P′)∪Q′′|−|Q′∪R| = |NG(P′)|+(q−l−2)−
(k+2q− l−2) = |NG(P′)|− (k+q). By Lemma 10, we have
that F = |NG(P′)| − t > 1, which implies that |NG(X ′)| >
t − (k + q).
Case 2.2.2.2: There exist two nodes u, v ∈ Q1 such

that u = v2. Let P′ = {x(1), · · · , x(k+1)} ∪ Q0 ∪ {u, v}
and Q′ = Q1 − {u, v}. Then, X ′ = P′ ∪ Q′ ∪ R. Let
Q′′ = {v = 1w2 · · ·wn|v1 = 0w2 · · ·wn ∈ Q′}; then,
Q′′ ⊂ NG(Q′) and |Q′′| = q − l − 3. By Lemma 6, we have
that NG(P′) ∩ Q′′ = φ. Hence, we have that the following
inequality holds: |NG(X ′)| > |NG(P′) ∪ Q′′| − |Q′ ∪ R| =
|NG(P′)|+ (q− l−3)− (k+2q− l−3) = |NG(P′)|− (k+q).
By Lemma 10, we have that F = |NG(P′)| − t > 1, which
implies that |NG(X ′)| > t − (k + q).

V. CONCLUSIONS
The diagnosability of an interconnection network system
based on some diagnosis strategy refers to the maximum
number of faulty nodes identified correctly by the system via
the diagnosis strategy. The t-diagnosability of AQn has been
proven to be 2n− 1 in previous studies. In other words, if the
number of faulty nodes in AQn is more than 2n− 1, then the
tools of t-diagnosability do not work.

In our paper, we introduce two new diagnosis strategies
to increase the diagnosability of AQn. One of them is called
the t/t-diagnosis strategy. Under the t/t-diagnosis strategy
and the condition that the system has at most t faulty nodes,
the system can guarantee the isolation of all faulty nodes
to within a set S, with |S| 6 t . We present and prove
the result that under the t/t-diagnosis strategy, the diag-
nosability of AQn is 4n − 8, which is almost 4 times as
large as 2n − 1, the classical diagnosability of AQn. The
other strategy is called the t/k-diagnosis strategy. Under the
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t/k-diagnosis strategy and the condition that the system has at
most t faulty nodes, the system can guarantee the location of a
set S, which contains all faulty nodes in the system and has at
most k fault-free nodes. We present and prove the following
result: For two integers n > 5 and k(0 6 k 6 4n

9 −
13
9 ),

the t/k-diagnosability of AQn is 2(k + 1)n− 3(k+1)(k+2)
2 + 1,

which is 2kn − 3(k+1)(k+2)
2 + 2 times larger than 2n − 1,

the classical diagnosability of AQn.
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