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ABSTRACT Group decision making is a topic of growing interest in today’s complex societies. One of the
key technologies in this area is the prediction market, where a group of experts plays a fake stock market
with assets that represent the outcomes of an uncertain event. The particular problemwe address in this paper
is the expert selection in these markets to improve their reliability. To aggregate decisions from a particular
group of experts, instead of using prices as is typically done, we define a market deconstruction considering
player portfolios. This decision technology makes the behaviors of experts toward their decisions available
through their portfolios evolution. Our main contribution is the identification of two Persistent Homological
Invariants able to classify experts in groups based on the histories of their portfolios. Interestingly, this
translates into the definition of essentially two dominant groups. A simulation of the Prediction Market
with artificial agents allow us to interpret these two classes as rational and irrational players, following
the Microeconomic jargon. Four experiments with experts in the insurance sector help us to illustrate the
relationship between these two player types with the prediction reliability of the market.

INDEX TERMS Artificial markets, behavioral classification, Betti numbers, group decision-making, expert
selection, insurance sector, market deconstruction, market efficiency, market evolution, persistent homology,
prediction market, prediction reliability, rational player, Wasserstain distances.

I. INTRODUCTION
The subject of Decision Making has a long history and,
because of its practical importance in many aspects of human
life, it has also been studied from many different perspec-
tives [1]. The Delphi Method (DM) by the RAND corpora-
tion in the 1950s and the Surowiecki’s Wisdom of Crowds
(WoC) in 2004 have vigorously defended the view that
the aggregation of opinions of many people may render
better decisions [2], [3]. As examples of recent technology-
oriented applications of the DM, we can mention the study
of state requirements of cyberdefence [4], the identification
of core concepts of cybersecurity [5] or the estimation of
software effort and the knowledge management the Scrum
methodology [6]; as for the WoC, discovery of categories
of images [7], distributed spectrum access assisted by social
recommendation [8], mobile sensing for multimedia appli-
cations [9], the processing of distributed signals [10] and
the determination of course-offering [11] can also be offered
as examples. Some other technologies have been added to

these two milestones, such as optimization techniques to
obtain consensus among decision groups [12]–[14], prob-
ability aggregation methods [15]–[17] that are somehow
parallel to traditional data fusion approaches [18], or variants
of the DM [19].

We use a technology known as Prediction Markets (PM),
that works similarity to real Stock Exchanges, but experts
trade on shares that represent the outcomes of an uncer-
tain event [20]–[24]. This technology is a kind of WoC
approach [25] and shares with DM the fact that it
feeds the aggregated decision continuously back to the
experts, allowing them to modify their positions accordingly.
The advantages of PM we exploit in this paper are that the
entire process in PM is carried out intrinsically on line and
that the decisional status of all the experts can easily be
expressed as a vector of real numbers ready for numerical
processing, as shown below. In particular, our PM usually
involves a very small number of participants. This fact has
a great influence on the design of our PMs and, when it is
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necessary to emphasize this characteristic, we will refer to
them as Small Prediction Markets (SPM).
The particular problem we address in this paper is the

selection of experts in PMs. The idea of selecting experts
or the more relaxed approach of adjusting their contributions
have been investigated for practically all the group decision
methods mentioned above [26]–[29]. Interestingly, there are
no definite general conclusions, not only on the best way to
proceed [16], [27] but even on its own relevance [2]. It is
worth noting that the entire selection process of experts is
independent of the number of players, so wewill adhere to the
PM term, instead of the SPM, for this particular discussion.

Our approach is inspired by the financial concept ofmarket
efficiency, which characterizes how well the market is func-
tioning as an allocation mechanism [30], [31]. According
to this type of efficiency, players in the market can be
classified as rational or irrational depending on whether
or not they project their private knowledge on prices, respec-
tively [32]. However, for this much debated topic to be
used to classify experts, it has to be conveniently formal-
ized and tested. We provide a mathematical formalization
in terms of topological invariants calculated from the PM
trace data by using Persistent Homology tools [33], and we
test it on a controlled experiment consisting of four parallel
PMs with real experts in the field of insurance. Obviously,
these results are not enough to draw definitive conclusions
about this selection. Therefore, to add further support to this
classification, we developed an artificial market model for
the PM [34], [35]. This artificial model allows us to provide
an interpretation of the models of the players in terms of
the selected homological invariants. Note that although this
approach can be considered quite formal in the definition
of classification types, their final usefulness can only be
illustrated through real PM experiments.

The proposed expert selection has an additional feature
that is worth observing: it only depends on the behavior
of the participants in each implementation of the PM. This
allows to abstract the classes of the players from the real
persona although, to some extent, people tend to comply with
a particular class, as shown in our experiments.

The main contribution of this paper is to show how
two homological invariants (the 0th and 1st persistent Betti
numbers [36], [37], see also Section III) are sufficient to
characterize the experts from their behavior in the decision-
making process. Although this fact is illustrated here in the
PM field, it may well be able to translate to other group
decision-making schemes where data on how the experts
behave towards their decisions are available, for instance
the DM and its variations [19]. Additionally, as for the PM
technology, we provide a novel way of constructing predic-
tions by allowing the aggregation of decisions of arbitriarily
chosen groups of experts. Furthermore, the interpretation of
the homological classes of players in the market, and their
influence in the efficiency of the market, as rational and irra-
tional players, allows a novel approach for experimentation
in real markets [38].

The structure of this paper is as follows: first we present
both our real SPM and its artificial model in the next section.
In Section III, the application of the Persistent Homology
tools is analyzed in the artificial market model to define the
types of player. The experiments in four real SPMs are given
in Section IV to test the usefulness of our classification of real
experts. Finally, some conclusions are drawn.

II. SMALL PREDICTION MARKETS: THE REAL AND ITS
ARTIFICIAL MODEL
In many PM applications, the actual number of players
involved is quite small, either because the motivations are
not sufficiently enticing or simply because the forecasting
configuration is naturally limited [39]. As already mentioned
in the introductory section, we refer to these as SPM.

Although the forecast capacity of SPM does not decrease
compared to a standard PM [39], the small number of trading
players together with the lack of information about them, due
to the protection of personal data and the limited account
of market records they generate, make it difficult to test
hypotheses to interpret the types of players. To overcome
these limitations, we have developed an Artificial Predic-
tion Market (APM) that reproduces the same mechanism as
in the real SPM. With this APM, different player models
are checked to get some insights about the behavior types
of player. The coincidence between the Homological invari-
ants in the SPM and the APM makes these interpretations
possible, in regard to their loopy behavior, which is the
behavior characterized by these invariants, as we argue in the
next section. Here we only provide some description of how
the SPM and APM are designed.

A. THE REAL SMALL PREDICTION MARKET
One of the relevant issues to consider in the design of PMs is
the price formationmechanism [40]; evenmore if the markets
are expected to have a very small number of players, that
is if they are SPM. Within the two classic options for the
market mechanism, double side auction [41] [42] or the use
of a market maker [41], our configuration clearly requires
the second option to provide liquidity and a live experience
for the players. This choice is also in line with the suggestions
of simplicity as in [43].

The shares traded in the market embody the different
outcomes of the event we want to predict. Market prices
reflect the probabilities assigned by the market to each of the
possible outcomes. The market closes before the target event
occurs, and the last market prices are generally interpreted as
the final forecast for the outcome.

Players play with fake money (f$s) to buy and sell the
different stocks and thus build a personal portfolio which
represents her particular forecast for the PM. The use of
fake money would not have a great impact on the accuracy
of their predictions [44]. At the beginning of the game, all
players are allocated the same amount of fake money and
an initial stock portfolio. At any time during the evolution
of the market, prices are fed back to the experts who can
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FIGURE 1. Screenshot of our SPM client seen by the players. The most
important item is the horizontal bar graph showing the prices for each
share. These prices are fed back to the experts to elaborate on their
decisions. Note that since prices shown graphically, the market can be
easily played by experts in other languages.

update their portfolios. Fig. 1 shows a screen shot of this
feedback scheme. Note that the prices of each share are
displayed graphically. This fact makes this technology avail-
able to experts who speak different languages: in this partic-
ular example, even if the PM is in Spanish, it could easily
be played. This is a particularly interesting feature of this
decision-making technology. As a rewarding scheme for the
players, the winner-take-all strategy has been chosen: once
the market is closed and the event is revealed, the stock that
represents the real outcome will be valued at 100 f$, while the
rest will have no value. The final position of each player is
calculated by adding her available money plus the number of
the winning shares in her portfolio multiplied by 100. These
positions allow us to rank the players and then translate either
their positions or their ranks into a real reward.

The pseudo-code for SPM is given in Algorithm 1.
The reader can get an idea of market dynamics from the
evolution of prices, as illustrated in Figs. 2, see Section IV
for additional details about these markets. These figures show
the evolution for the daily closing prices: the initial price
is set at 50 f$ and, given that the maximum reward for the
winning asset is 100 f$, it is expected that the price of any
asset does not exceed 100 f$, although this is not enforced
by the system. The latest prices in the final stage of the
market are then converted into the probability estimate for
the outcomes to the event associated with the assets through
a simple normalization so that they add up to one.

B. PORTFOLIOS AND PREDICTION DECONSTRUCTION
Typically in PMs, the aggregation of information comes
in form of the price obtained by the different shares. However,
the controlled manipulation of this aggregate may yield
important improvements in prediction capacity. This fact
is especially relevant in SPM, since the consistency of the
aggregation of prices cannot be supported by the law of large
numbers.

The first step towards deconstructing PM prices can easily
be done using the players’ portfolios. These portfolios reflect
both the expectations of the players and the dynamics of
pricing. Given that the evolution of player portfolios is the

Algorithm 1 Real Market Dynamics

1 Initialize the market state:
2 for each player do
3 Player_state = initial_ portfolio
4 end
5 Market_state = initial_state
6 Run the market:
7 while the market is open do
8 Wait until Mov = Player (Market_state, Player_state)

/* Wait for a player to make a
movement, that is to issue a buy
or sell order. */

9 Market_state = Markey_Maker (Market_state,
Player_state, Mov)
/* Update the states of the player
and the market and publish the
prices, see Fig. 1. */

10 end
11 Wrap up the results:
12 Estimate the probability for each outcome based in the

final prices.
13 Calculate the final position for each player and rank

them.
14 End.

source of data for the topological study in the next section, it is
clarifying to obtain some insight about them: Figures 3(a-c)
show them for players no. 1, 4, 10 and 15 in the Automobile
market, see Section IV.
These portfolios play a similar role to the betting functions

on artificial models [34], although their final composition
reflects the strategies and capabilities of different players,
as well as their shortcomings in the history of the game of
a particular market. New prediction aggregations of these
final portfolios can be made by first selecting some players,
so disregarding the other portfolios, and second by defining
a function to aggregate the selected portfolios for a final
decision.

Given that in this paper we are mainly interested in the
selecting procedure, a basic linear aggregation of the
selected portfolios will be used. We elaborate on this topic
in Subsection IV.C.

C. THE ARTIFICIAL PREDICTION MARKET
Our main objective when establishing the APM is to check
patterns of the players to get insight into the loopy classes
found by Homological invariants in the real SPMs. This issue
is explained in more detail in the next section, after intro-
ducing these invariants. Here we outline its pseudocode, see
Algorithm2, which mimics our real SPM as an expeditious
comparison with Algorithm 1 can reveal.

For the market dynamics to be similar, the main parameters
that need to be transferred from the SPM to the APM are: the
tick size, the bid-ask spread and the depth of the market [45].
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FIGURE 2. Real dynamics of the SPM, given by the evolution of the prices in the four prediction experiments. Each color represents a
different asset.

Therefore, the values of these parameters, as well as the initial
allocation of money and portfolios, are set with the same
values in the SPM and APM. Additionally, we have set a
number of artificial players close to the participants in our
real markets. The total number of runs is set to allow each of
the artificial players to reach a state of equilibrium, that is,
the state in which these players no longer trade.

As the market develops, random turns are assigned to
random players who select their best move according to their
profiles. Once the movement that a player must make is
selected, the market maker updates the state of the market,
and therefore the prices, in a similar way to the real SPM.
Fig. 4 provides an illustration of evolution of the prices in an
execution of the APM. When comparing this figure with the
evolution of prices in real SPM (Figure 2) it can be observed
that the time scale is different, as is the information shown:
in the real SPM only the daily closing prices are drawn, while
for the APM each individual price movement is collected.

Regarding the evolution of portfolios in the APM, Figs. 5
illustrate them for two artificial players, each representative
of their type, as discussed in the next section.

III. PERSISTENT HOMOLOGY: INTERPRETATION AND
PLAYER CLASSIFICATION
A. PERSISTENT HOMOLOGY, BARCODE
DIAGRAMS
Algebraic Homology is a theory where the ideas from
Topology meet the computational tools of Algebra. Its main
output for our purposes is a set of features of a topological
space which are related to the existence of holes at different
dimensions, or loops when the space dimensionality is
low [46]. Persistent Homology is an adaptation of these tools
for a set of data instead of an abstract topological space. There
is excellent material to delve into these topics: see [47] for
a rigorous introduction to the Algebraic aspects, [48], [49]
for a gentle introduction to the idea of persistency and [33]
for a categorical oriented interpretation in processing data.
In this paper, we are mainly interested in its black-box appli-
cation to the traces left by players in order to classify them
in a meaningful way. Therefore, we only review the basic
concepts for the interested reader without much familiarity
with this theory, and use the interface for libraries GUDHI,
Dionysus, and PHAT in the R Language [50].
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FIGURE 3. Evolution of a sample of portfolios of experts in the real SPM (automobile). Each graph corresponds to different experts and each
color to different shares.

As data, we use the history of the portfolios of a particular
player, see Figs. 3 and 5. The dimension of these data is,
therefore, the number of shares in a particular market. Given
that the market evolves asynchronously, we only consider
those points in which the player performs an operation,
whether sale or buy, of any stock. This selection of data is
not only sensible but important since the typical number of
movements in a small market is fortunately adapted to the
complexity of the tool and no statistical treatment of these
data is needed, which might blur the topological content
of the data. At this point, it is worth remembering that the
complexity of the algorithms for the calculation of invariants

comes mainly from the number of points rather than their
dimensionality. In this sense, our computer facilities can cope
with a history of 40 or 50 points. Beyond this number, the last
50 points are selected as representative of the evolution or a
statistical processing is in order. This is not an essential
limitation of our IT infrastructure; a much larger computer
cloud and infinite patience would hardly increase this limit
in a few tens. However, new advances in quantum computing
may offer the possibility of a much more extended histories
in real time, opening the opportunity to extend this type
of analysis to real stock markets instead of the prediction
markets [51].
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Algorithm 2 Artificial Market Dynamics

1 Initialize the market state:
2 for each player do
3 Player_state = initial_ portfolio
4 if Player is predictor or speculator then
5 Ideal_portfolio = random_porfolio
6 end
7 end
8 Market_state = initial_state
9 Run the market:
10 for run= 1 to Total_number_of_runs do
11 Player = sample(1 to N_players)
12 if Player is speculator then
13 Mov = Speculator(Market_state, Player_state,

Ideal_portfolio)
14 end
15 if Player is predictor then
16 Mov = Predictor(Market_state, Player_state,

Ideal_portfolio)
17 end
18 if Player is random then
19 Mov = Random_player(Market_state,

Player_state)
20 end

/* Sell or buy movements are issued
with the corresponding player’
profile. */

21 Market_state = Marker_Maker(Market_state,
Player_state, Mov)

22 end
/* Since we only need to record the
portfolio dynamics, see Fig. 5, there
is no need of additional processing.

*/
23 End.

The result of the persistent homology tool for each player
is a kind of topological signature for him, which can be
depicted either as a barcode or as a rotated diagram [36],
see Fig. 6. Technically speaking, the calculated invariants
in these representations are the so called p-th persistent Betti
numbers, an extension of the traditional Betti numbers in the
framework of persistency, see [37] and [47], respectively.
The barcode summarizes the essential idea behind the

persistence homology: first, it shows the homological invari-
ants which can be related to loopy structures in the data
at different dimensions. In this study, we will show that the
only use of invariants at dimension 0, 0th persistent Betti
number or components, and dimension 1, 1st persistent Betti
number or loops, is sufficient for our objectives, see [50] for
this terminology. Second, given that the data do not form by
themselves a topological space to search for loops, the idea of
persistency associates data to different combinatorial spaces,
at different scales, to do so. The combinatorial spaces we use

FIGURE 4. Artificial market dynamics, as given by the evolution of prices
in a typical run. Different colors code different shares. In artificial
markets, time is measured by the number of trading movements.

here are the so called Vietoris-Rips complex, see [37] for a
mathematical definition and [50] for its practical application.

As there is no defined scale to characterize the data, it is
therefore mandatory to observe the complete pattern left by
the invariants in many of them simultaneously, namely the
scale at which an invariant appears, the scale at which it
disappears and then ponder the persistency of this invariant
through all of them. These scales can be thought essentially
in those between the minimum and the maximum distances
of any two points in the data set.

All this information is displayed in the barcode: the hori-
zontal axis showing the scale and the different invariants
drawn as different lines present at the scales where they
appear. The color in these lines codes for the dimension of
the invariant: black is for zero dimensional components, red is
for loops [50]. Rotated diagrams depict the same information
but emphasizing the scales where the invariant appears and
disappears as the axes of the representation.

However, the information transmitted by these diagrams
cannot be used straightforwardly for the intended classifica-
tion, as discussed in Subsection III-C.

B. PLAYER MODELS IN THE APM AND THEIR
TOPOLOGICAL SIGNATURES
In this subsection we address the player types corresponding
to the structure of the APM given in II-B. Following insights
provided by the Microeconomic Theory [31], we propose
three different profiles for the players: Predictor, Specu-
lator and Random. Their pseudocodes are reproduced below
(Algorithm 3).

The Predictor models the ideal player for a PM according
to a Bayesian view [52]: this player model has a apriori
expectation about the outcomes of the event which is reflected
in its ideal portfolio. Its moves tend tominimize the difference
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FIGURE 5. Portfolios evolution in the artificial market for (a) a predictor agent and (b) a random agent.

between its actual portfolio and its ideal portfolio. The Spec-
ulator model also has a reference for the outcomes and a
corresponding ideal portfolio. However, it does not intent
to reproduce such a portfolio, but simply plays the market
according to the differences between real prices and its expec-
tations, that is, it’s ideal portfolio. Finally, the Randommodel
has no reference, so the actions are a random walk on the
feasible movements.

In Fig 6, we provide some barcodes and rotated diagrams
for Players 1 (a,b), 2 (c,d), 12(e,f) and 13(g,h), respec-
tively. The Player no.1 is a Predictor, no.2 a Speculator, and
no.12 and no.13, Random players.

C. WASSERSTAIN DISTANCES: THE KEY TO CLUSTERING.
The diagrams in Fig. 6 for players 1,2,12 and 13 in the
APM indicate that only Player 2 has a loopy behavior as
shown by a red spot, while the rest only exhibits zero dimen-
sional components. A simplistic attempt to conclude with
this tool that speculators are separated from the rest, while
predictors and random players come together, is deceptive.
A careful observation of the size of the persistence of these
diagrams suggests that a more careful treatment of these
results is necessary. The solution comes from the concept
of stability, as it is formulated through the Wasserstain’s
distances. The precise definition of Wasserstain’s distances
(W-d) and its relationship to stability can be found in [37].
Here we simply emphasize the interpretation of these results
in the context of the selection of players through their topo-
logical signatures.

Since Persistent Homology can be seen as a measuring
instrument for player data that delivers a topological signa-
ture, small changes in the data set are expected to cause small
changes in the signature. W-d calculates a distance between

two topological signatures in such a way that allows a precise
formalization of this concept: small changes in the results of
the data in nearby firms, as measured by W-d.

Therefore, a small W-d between two signatures corre-
sponding to two different data sets indicates that these
two sets are very similar in terms of looping behavior.
The Wasserstain distance matrix for players 1, 2, 12 y 13 in
the APM [see Table 1], can be used to gain some insight
into this measure. Although there is a dispersion of distance
values, players can essentially be grouped into two classes
separated by an approximate distance of 0.25. Note that this
matrix corresponds to the same players whose topological
signatures are given in Fig. 6.

An illustration with a larger set of players in the APM is
shown as a cluster dendrogram in Fig.7. Players with numbers
from 1 to 11 are either predictors or speculators while players
from 12 to 20 belong to the random class. For the APM,
the W-d clearly separates players into two clusters: random
players and the rest.

Although the final interpretation of the roles of the players
is deferred until the introduction of real experts in the
next section, some interesting theoretical conclusions can
already be drawn at this stage. The predictor model is one
related to the ideal player for a prediction market: it essen-
tially provides information to the market in accordance with
predefined and immutable expectations. However, in a real
market the rational player is much closer to the speculative
model [30], [31]. Even for a prediction market, the main
hypothesis is that a player is embedded in the game as if he
were playing in the real stock market. So, the model closest
to the predictor we can reasonably expect from a player
in a prediction market is actually a speculator. The good
news from these results is that both models behave the same,
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FIGURE 6. Barcodes and rotated diagrams for the APM player models:
(a-b) Predictor, (c-d) Speculator, and (c-f) Random players.

FIGURE 7. Classification dendrogram for the three player models in the
artificial market. Players 1 to 11 are predictors or speculators, while
players 12 to 18 belong to the random model.

insofar as their loopy behavior is considered, so there is no
need to make further difference between them.

IV. EXPERIMENTS AND RESULTS
A. FORECASTING SETTING: ACTUARIAL PREMIUM RATES
Four PMs were implemented, in cooperation with actuarial
experts, with the objective of forecasting the annual vari-
ation of insurance premium rates for four different sectors
in the Spanish insurance market: Automobile, Life, Health

Algorithm 3 Pseudo Code for the Three Player Models

1 Function Predictor(Market_state, Player_state,
Ideal_portfolio) is

2 Order the potential actions (sell or buy) and stocks
according to the distance(ideal_portfolio, the actual
portfolio). The maximum first.

3 Mov= Select the first feasible action and stock.
The number of stocks is such that
distance(ideal_portfolio, the actual portfolio) is
minimized

4 return(Mov)
5 end
6 Function Speculator (Market_state, Player_state,
Ideal_portfolio) is

7 Order the potential actions (sell or buy) and stocks
according to the distance(ideal_portfolio, prices).
The maximum first.

8 Mov= Select the first feasible action and stock.
The number of stocks is the maximum allowed.

9 return(Mov)
10 end
11 Function Random_player (Market_state,Player_state)

is
12 Mov=randomly select a feasible action (sell or buy)

and a stock
13 return (Mov)
14 end

TABLE 1. Wasserstain distance matrix for players 1,2, 12 and
13 in the APM.

and Multi-Risk. The final data were published by the ICEA
Association after all of our SPMs were closed.

For each market, several actuarial experts were invited
to play for a month before the ICEA issued the actual
data of premium rates. In order to design the stocks to be
traded in each market, seven ranges of potential variation of
premium rates were calculated from data of previous years
together with additional suggestions provided by the experts,
to obtain approximately equiprobable intervals. These inter-
vals appear as different steps in the corresponding figures of
the outcomes probability estimation. They are also referred to
as the potential decisionsmade by the market. The dynamics
of the markets, given by the evolution of their prices, is shown
in Fig. 2.

Fig. 8 shows the estimated probabilities for each market
according to their prices. Actual results, given by the ICEA,
are represented by red vertical lines. As it can be observed
from this figure, even with a limited number of participants,
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FIGURE 8. SPM results for the four prediction experiments in the
Insurance sector. Final prices are normalized to provide the probability
estimation for the different quantized levels of premium year-to- year
variations.

the obtained results are quite accurate, selecting the right
interval in three of themarkets and slightlymissing the Health
market. However the forecast risk, gauged by the distribution
of the assigned probabilities, is only correct in the Auto-
mobile and Life markets, while it is quite deficient for the
other two.

B. HOMOLOGICAL PLAYER CLASSIFICATION
The application of the homological tools to the classification
of players has been discussed for the APM in Section III. Here
we follow a parallel discussion to approach the classification
of human players.

It is worth observing some of the topological signatures for
real people first. Figs. 9(a)-(h) show a random sampling of the
topological signatures of players in the Life market, given by
their barcodes and rotated diagrams. The first characteristic
that should be noted is that real people tend to offer more
complicated diagrams than artificial models, as shown by
both the distribution of persistence bars for 0-dimensional
invariants and a larger number of loops (in red).

Nevertheless, we have to resort to theW-d to make a mean-
ingful classification. Table 2 illustrates the distances between
Players 1,2,3 and 4 in the Life market. Their topological
profiles are those in Figs. 9. In addition, Fig. 10 shows the
dendrogram that summarizes the clustering between all the
players in the Life market. In total, these figures display how
the players are essentially grouped into two classes, as well
as in the APM.

Comparing the definition of these two groups in the Life
market and in the APM, and examining their W-d matrices,
we observe the following pattern: There is a group of players,
which corresponds to the predictor model in the APM,

TABLE 2. Wasserstain distance matrix for players 1,2, 3 and 4 in the life
market.

whose distances between them are essentially zero. When
the real SPM is examined, the equivalent group tends to
offer the simplest topological signatures, with essentially
zero distances between the players in this group. We call it,
the predictor group. The justification for this terminology is
derived not only from the corresponding model in the APM,
but also for its predictive capacity, as seen below.

For the other group, made up of random players in the
APM, their W-d matrix shows how these players are essen-
tially at a similar distance from themain group, and very close
each other, but not as homogeneously as the players in the
group of predictors. Their topological signatures also tend
to be a little more complicated. In real prediction markets,
this second group players also have very similar distances to
the group of predictors, but among them they are even more
dispersed than those of the APM, see Tables 1 and 2. Their
topological signatures are the most complicated found in this
study, see for example Figs. 9 (a) -(b).

Table 3 summarizes the classes found for all participants
in the four markets. Each row represents a player. The first
four columns stand for the prediction markets: 1 means that
the player belongs to the main group, while −1 assigns
the player to the second group; a 0 means that the player
did not participate in a market. The last column simply
counts the number of markets in which a player has
contributed.

The number of participants in a market ranges from thir-
teen, in the Life market, to eighteen in the Auto market.
These figures assert for the smallness of the markets in use.
Approximately 40% of the players have participated in at
least twomarkets, which allow us to obtain a preliminary idea
of the player’s perseverance to be in a particular group. Fig. 11
shows the number of markets that each expert has played
in his/her typical class minus the number of markets where
he/she changed, in percentage. In this figures, 50%means that
the expert has played the same number of markets behaving
rationally than irrationally. Only Players 1, 4 and 9, of the
thirteen people that played at least two markets, adopt any
kind of behavior with equal probability; while eight experts,
out of thirteen, have always played as rational or irrational,
but not as both.

C. PREDICTION IMPROVEMENT
Although the APM helps us to interpret the two groups of
players according to their loopy behavior, the mere existence
of these groups would not make sense from the engineering
point of view if this classification does not turn into prediction
improvements. This section examines this issue.
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FIGURE 9. Barcodes and rotated diagrams for real experts in the Life market. Players 1 and 3 are classified as irrational, while Players 2 and
4 belong to the rational class.

TABLE 3. Player classification into class ‘1’ or rational, and ‘−1’
or irrational. ‘0’ means that the expert has not played. The total number
of markets where the expert has played is shown in the last column.

Once a player’s classification scheme is available, the fore-
cast made by the PM can be adjusted using a partial aggre-
gation of the player’s estimates instead of the total market
price. As proxies for these estimates, we use their normal-
ized portfolios, interpreted as Bayesian probabilities in the
outcomes. The aggregation of portfolios of a selected group
of experts is carried out through a simple and effective linear
rule [27].

Although accuracy in PMs has been discussed in the
literature [53], the influence of market design, the stock

FIGURE 10. Dendrogram for the players in the Life market, showing the
emerging of only two classes. The large group corresponds to the rational
class.

FIGURE 11. The behavioral perseverance of the experts playing in at least
two of the four markets.

definition and even the forecasting objectives make the
precise measurement of prediction errors a subject still
debated [54], and beyond the scope of this paper. Since
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FIGURE 12. Prediction performance in the four markets given by the prices and three aggregates of portfolios: the whole of the players,
the rational players, and the irrational players.

TABLE 4. Prediction mean square errors for the rational and irrational
players in the four SPM. The total aggregation and the prices are shown
for comparison.

our main objective is to evaluate the improvement of
the prediction by selecting a particular group of experts,
we have used typical error measurements: Table 4 shows
the Mean Squared Error (MSE), and Table 5 shows the

Mean Absolute Error (MAE). Both measurements assume an
error vector defined as the difference of the mean values
for each interval used in the definition of the stocks minus
the actual data provided by the ICEA. The extreme inter-
vals in the histograms are represented by their internal
limit values. To calculate the MSE table, the squared
values of the error vector are weighted successively by
the probability estimates provided by the market prices
and by the different aggregation of the groups of experts.
The MAE table is calculated in a similar way but changing
the square values of the error vector by their absolute
values.
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TABLE 5. Prediction mean absolute errors for the the rational and
irrational players in the four SPM. The total aggregation and the prices
are shown for comparison.

These tables together show the prediction advantage
obtained first by considering the portfolios, instead of relying
on the prices, and second by selecting the appropriate group.
However, as the error for the Health market shows, they do
not clearly reveal the gains of the different aggregations as a
PM user can perceive them. Therefore, we prefer to discuss
them directly from the histograms.

Fig. 12 displays the aggregates for markets and different
groups of players: the black color codes for the main group,
the predictors; the magenta for the second one, the partici-
pants in the random class; and in green we aggregate all of
them linearly. The typical estimation directly from the prices
is added in blue for comparison.

As can be seen in Fig. 12, the main group clearly
improves the estimated probability assigned to the different
outcomes compared to the second group. This becomes
the main message of this paper: how the segmentation
generated by their loopy behaviors selects the players with
greater accuracy than the rest. This also motivates the
name of Predictors for the first group, as it has been used
throughout this paper. Although the data provided is quite
limited, the comparison between the probabilities assigned
by these two groups, ‘Predictors’ or ’Rational’ vs. ‘Random’
or ’Irrational’, suggests some behavioral conclusions about
the players in PMs that can be exploited in their design and
in future research [38].

Regarding the overall performance improvement due to
the group of predictors, in all cases the probability estima-
tion assigned to the correct answer is better for this group
than for the entire market, represented by the final prices
or even by the total linear aggregation of the portfolios;
although no decision was changed, including the incorrect
result for the Health market. However, a significant improve-
ment is made in terms of the reliability of the forecast:
in the markets where the answer is correct, the proba-
bility estimation associated with the intervals surrounding
the correct one is quite diminished. Even in the Health
market where the incorrect result is maintained, the difference
in the probability estimation between the selected and the
correct intervals decreases clearly with the Predictor group,
as if to rise suspicions about the correctness of the chosen
interval.

It is also worth comparing the estimate made by the total
linear aggregation with the price estimate, in green and blue,
respectively. In all markets, the decision made from the port-
folio aggregation is better than that made from prices, which
suggests that, for prediction purposes, prices are noisier
signals than portfolios.

V. CONCLUSION AND SOME FURTHER
RESEARCH SUGGESTIONS
In this paper we have identified two Homological invariants,
namely the 0th and 1st persistent Betti numbers, which can
classify experts into two groups based on their behavior in the
decision-making process of a Prediction Market. A simula-
tion of this market by artificial agents clarifies the nature
of this classification: in terms of microeconomic jargon,
they correspond to rational and irrational players. Finally,
we experiment with four real SPMs with experts in the insur-
ance sector. These markets allows us to relate theses classes
of players with their prediction accuracy and to emphasize
in some way how this classification depends on the behavior
of the expert rather than on his personality. An additional
contribution comes from the deconstruction of the market:
here we open the way in which PM is aggregating expert
information and shows how the prices seem to be nosier
signals that the portfolios.

The obtained results suggest some applied research exten-
sions: first, the application of this classification approach to
other group decision-making processes where the individual
history of the experts’ behavior regarding their decisions may
have a numerical representation. Second, the use of these
categories in the simulation of markets in the field of Exper-
imental Economics. Third, its translation to artificial devices
for information fusion where these classes, if they exist, may
be connected to malfunctioning or defective designs.

Finally, a theoretically oriented question raises from the
apparent superior performance of the portfolios aggregation
over the prices. The use of players’ private information and
the new aggregation mechanism fits well with the idea behind
the hidden profile effect. A careful investigation of this rela-
tionship may open up new avenues for the deconstructed
prediction markets.
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