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ABSTRACT Top-k queries can retrieve the most relevant tuples from massive datasets and have wide
implementations, such as PageRank, healthcare analytics, and decision making. The increasing demands of
outsourcing large datasets to public clouds with privacy concern expect new techniques to securely perform
top-k queries on encrypted data on the cloud servers. Order-preserving encryption (OPE) can be used for
answering top-k queries correctly and naturally. However, it is over qualified since it unnecessarily leaks too
much information (i.e., orders of non-top-k values). In this paper, we propose a mutable top OPE (TOPE)
to first enable top-1 (min or max) queries on encrypted data with minimized information leakage. Then,
we extend this TOPE to support top-k queries in general. With TOPE, the ciphertexts of top-k values are
still the top-k in the ciphertext domain, while the ciphertexts of non-top-k values are in meaningless order.
In addition, we rigorously define and prove the security of TOPE with indistinguishability under top-ordered
chosen-plaintext attacks. We implement our scheme on synthetic and real datasets to show its effectiveness
and efficiency. The search performance of top-k queries on massive TOPE ciphertexts with our scheme is
almost as fast as on the plaintexts.

INDEX TERMS Cloud computing, data privacy, order-preserving encryption, top-k query.

I. INTRODUCTION
Top-k queries [1] can retrieve the most k relevant tuples
to users from massive datasets based on ranking. It has
extensive applications, such as PageRank, healthcare ana-
lytics, and decision making, which make it a fundamen-
tal function for mining massive datasets in both SQL and
NoSQL databases. For instance, a doctor can retrieve patients
with the lowest blood sugar level in a medical dataset
with MIN(), which is a top-1 query; a bank manager can
retrieve the information of the most top-10 richest customers
from thousands or millions of tuples in a financial dataset
by querying SELECT customer FROM table ORDER
BY amount Limit 10. Top-k queries also have been
recently identified as one of the most critical techniques for
studying and analyzing massive uncertain data [2], [3].

With the dramatic increase on the scale of datasets,
a growing trend is for data owners to outsource their large-
scale datasets to public cloud services in order to reduce

local storage and query processing overhead. For instance,
in healthcare field, with the growth in the use of Internet
of Things (IoT) applications (e.g., wearable devices) and
electronic heath record (EHRs), the volume of healthcare
data grows exponentially each year [4]. Healthcare providers
are starting to use clouds to manage and analyze the big
data. For example, Philips, a Dutch company focuses on
healthcare, is building its Philips HealthSuite digital platform
on Amazon Web Services (AWS), which stores and analyzes
15 PB of patient data collected from studies, medical records
and patient inputs [5]. On the other hand, due to legal and
commercial issues, privacy of outsourced datasets on the
cloud side is still a major concern. For example, an inside
attacker who can see all cloud side data can easily reveal the
sensitive data if an outsourced dataset is stored in plaintext
(or encrypted by the cloud, which is referred to as encryption
at rest) [6], [7]. While simply encrypting a dataset on the data
owner side before outsourcing with traditional encryption

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

31525

https://orcid.org/0000-0003-0479-5384
https://orcid.org/0000-0001-8306-7195


H. Quan et al.: Efficient and Secure Top-k Queries With TOPE

(e.g., AES) can protect data privacy against an untrusted
cloud server, but it inevitably losses rich search functionalities
on the cloud side [8]. Specifically, top-k queries over out-
sourced data on the cloud side cannot be correctly performed
if the dataset is encrypted by the data owner using traditional
encryption.

The recent studies of Order-Preserving Encryption
(OPE) [9]–[13] and Order-Revealing Encryption
(ORE) [14]–[16], where the orders of ciphertexts are still
consistently maintained as the orders of their plaintexts,
can be obviously applied to ranking and answering top-k
queries on encrypted data [17], [18]. However, OPE is over-
qualified for top-k queries, which leaks too much information
than secure top-k queries should be revealed. Specifically,
to answer a top-k query over a number of n tuples on
encrypted data, where normally k � n, revealing only the
orders of the top-k values is sufficient for answering the query
while OPE unnecessarily leaks the orders of all the n tuples in
the dataset. This unnecessary leakage on the order of all the
n tuples in the dataset exposes too much information about
datasets, especially considering the total number of tuples n is
normally large (e.g., millions) while k is small (e.g., k = 20).
On the other hand, ranking-based searchable encryp-

tion [18], [19], also enables top-k queries in the ciphertext
domain. However, compared to OPE, ciphertexts in search-
able encryption cannot be ordered by themselves, which
makes it incompatible with current SQL languages and soft-
wares.

In this paper, we propose a new primitive, referred to as
Top Order-Preserving Encryption (TOPE), which can natu-
rally answer top-1 queries on encrypted data stored on an
untrusted server. Then, we extend TOPE to support secure
top-k queries in general withminimized leakage. Specifically,
with our scheme, the ciphertexts of the top-k values from the
plaintext domain are still the top-k in the ciphertext domain.
In consequence, the encrypted data of plaintexts matching
to top-k query can be easily and compatibly retrieved by
existing SQL language (e.g., SELECT * FROM table
ORDER BY attribute LIMIT k). More importantly,
our scheme alleviates information leakage compared to OPE,
where informally speaking, the orders of non-top-k values are
not revealed in our scheme. A high-level comparison among
TOPE, OPE and Deterministic Encryption (DE) in terms
of privacy protection and search functionality is illustrated
in Fig. 1, which implies TOPE is a better solution over
OPE on top-k queries. Further details will be compared and
discussed in Sec. VII and Sec. VIII. The main contributions
of our work are summarized as follows:
• We first formally define and present a mutable Top
Order-Preserving Encryption (TOPE), which can main-
tain top-1 order (i.e., min or max) on encrypted data
while minimizing the leakage on orders of non-top-
1 values. Specifically, we leverage heaps [20] as states
in the encryption to maintain top-1 order, and this muta-
bility indicates some of ciphertexts generated by TOPE
may change over time in order to correctly answer

FIGURE 1. The comparison among OPE, TOPE, and DE in terms of security
(i.e., indistinguishability) and search functionality on encrypted data.

top-1 queries. The main reason we leverage heaps is
that heaps are partially ordered tree structures, which
can naturally protect privacy of non-top-1 values. The
security of TOPE is rigorously defined and proved with
indistinguishability under top-ordered chosen plaintext
attacks (IND-TOCPA).

• We then use this mutable TOPE as a stepping stone, and
extend it to enable top-k queries on encrypted data with
minimized privacy leakage. Our design is flexible in
supporting dynamic dataset, and supports batch encryp-
tion in the setup phase, which can significantly reduce
the running time of generating a massive ciphertexts.
In addition, we discuss how to further preserve privacy
by outputting probabilistic TOPE ciphertexts instead of
deterministic ones.

• We implement our scheme with Java, and test its per-
formance with both synthetic datasets and a real-world
dataset. Encrypted data are stored in MySQL database
and are searched with SQL queries. Experimental results
show that, with a necessary tradeoff in terms of encryp-
tion time, our scheme is compatible with existing SQL
language and extremely efficient, which is almost as
fast as the search performance of top-k queries in plain-
texts. More importantly, we leverage Random Variables,
Probability Mass Function (PMF), and Cumulative Dis-
tribution Function (CDF) [21] to statistically analyze
the advantages of TOPE over OPE in terms of privacy
protection on the real-world dataset.

II. RELATED WORK
A. ORDER-PRESERVING ENCRYPTION (OPE)
OPE was first formally defined and investigated by
Boldyreva et al. [9], [10]. They rigorously proposed the
ideal security of OPE, which is named as indistinguishability
under ordered chosen-plaintext attacks (IND-OCPA). How-
ever, their designs failed to achieve the ideal security and at
least half of the plaintext bits were leaked [10]. Moving a
step forward, two mutable OPEs [11], [12] were proposed
by leveraging binary search trees [20] to maintain proper
states of ciphertexts on a server. These two mutable OPEs
are both able to achieve the ideal security. As necessary
trade-offs, the encryption algorithms in those two mutable
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OPEs are interactive (between a client and a server) and
some of the ciphertexts may need to be changed over time
due to the change of the state of the encryption. Due to its
high efficiency, OPE has been implemented in real secure
applications such as CryptoDB [22].

The most important property of OPE is that, it maintains
the orders of ciphertexts as the same as the orders of plain-
texts. This information leakage is perfect (i.e., revealing what
we need but nothing more) for sorting on encrypted data, but
it is over-qualified for top-k queries. For instance, the server
only needs to knowwhich one is the ciphertext of the minimal
value in a dataset to fulfill a min query but OPE unnecessarily
tells the server the order of every pair of ciphertexts in the
dataset.

Recently, an advanced variation of OPE, named
Order-Revealing Encryption (ORE) was designed by
Boneh et al. [14], and was optimized in [15] and [16].
Compared to OPE, which reveals order relations of two
ciphertexts directly in the ciphertext domain, ORE leverages
an additional evaluation algorithm (with a key) to reveal the
order of two ciphertexts. ORE is more secure than OPE since
it does not reveal the order relations directly. However, when
applied to Top-k queries, it is still inevitably over-qualified as
OPE. Besides, the calls of the additional evaluation algorithm
make the efficiency of ORE less practical than the two
mutable OPEs mentioned above.

B. SEARCHABLE ENCRYPTION (SE)
Song et al. [8] first proposed SE to enable keyword search on
encrypted data. Subsequent works of SE [6], [23]–[25] focus
on improving search efficiency, allowing dynamic updates
and supporting different types of queries. Some of these pre-
vious works can particularly perform comparisons and range
queries, which achieve the same functionality on encrypted
data as OPE. Specifically, Boneh and Waters [26] designed a
public-key scheme to support comparisons and range queries.
Shi et al. [27] also proposed a public-key approach, which
focuses onmulti-dimensional comparisons and range queries.
Others utilized different tree structures to improve search
efficiency [7], [28]. Recent works [24], [25], which sup-
port arbitrary Boolean queries, can also handle comparisons
efficiently. Searchable schemes as [18], which can retrieve
keywords or similar keywords based on ranking, can also be
used for top-k queries on encrypted data.

Compared to OPE, SE provide a stronger security and
privacy guarantee [11]. However, due to the different design
methodologies between OPE and SE, the ciphertexts in
searchable encryption cannot be ordered or ranked by them-
selves alone, which make SE much less compatible with
current SQL languages and softwares [11].

III. PROBLEM STATEMENT
A. SYSTEM MODEL
In our system model (as described in Fig. 2), we have two
entities, including a client (e.g., a company) and a server (e.g.,

FIGURE 2. The system model includes a client and a server.

a cloud service provider). The client outsources its massive
dataset to the server in order to reduce local storage and
query processing overhead. Moreover, the client also wants
to query its outsourced data, and expects the server to return
correct results. Particularly, in this paper, the client submits
top-k queries on its data stored in the server. Normally, top-k
queries are applied to numeric values (or messages that can
be represented with numeric formats).

Due to privacy concern of the client, the server in this
model is assumed to be honest-but-curious (also referred
to as semi-honest), which indicates the server can provide
reliable storage and query services but it is curious about the
content of data stored in the cloud. As a result, the dataset
of the client should be encrypted before being outsourced to
this honest-but-curious server. Our major design objective is
to enabling top-k queries on encrypted data but minimizing
privacy leakage to the server. Without loss of generality,
we will first focus on enabling top-1 queries (e.g., find-
ing the minimal value or the maximal value) on encrypted
data.

B. DEFINITIONS OF MUTABLE TOPE
As stated above, we will first focus on defining our Top
Order-Preserving Encryption (TOPE), which can search top-
1 queries. Similar to some recent OPEs [11], [12], our encryp-
tion is alsomutable, which means the ciphertexts (sometimes
also referred to as encodings [11]) of some previous mes-
sages may be mutated while new ciphertexts are computed.
In addition, the encryption algorithm is an interactive process
between a client and a server, where the client has the secret
key and the server maintains a state containing all the updated
ciphertexts. For the ease of description, we use a function
top1(·) to represent the general form of a top-1 query (i.e.,
MIN(·) or MAX(·)) in the rest of this paper. The formal
definition of our mutable TOPE is described as below.
Definition 1 (Mutable TOPE): A symmetric-key mutable

Top Order-Preserving Encryption (TOPE) on plaintext
domain M is a tuple of five polynomial-time algorithms
5 = (GenKey, InitState,Enc,Dec,Query) run by a client
and a stateful server, where Enc is interactive:

• sk ← GenKey(1λ): is a probabilistic key generation
algorithm that is run by the client to setup the scheme.
It takes a security parameter λ as input, and outputs a
secret key sk.
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• st0 ← InitState(1λ): is a deterministic algorithm that
is run by the server to initialize a state. It takes a security
parameter λ as input, and outputs an initial state st0.

• (c,st′)← Enc(sk,m,st): is a deterministic (possibly
probabilistic) algorithm that is interactively run between
the client and the server. It takes a secret key sk, a mes-
sage m, a state st as input, and outputs a ciphertext c
and a new (updated) state st′.

• m ← Dec(sk, c): is a deterministic algorithm that is
run by the client. It takes a secret key sk, a ciphertext c
as inputs, and outputs a message m.

• e ← Query(st): is a deterministic algorithm is run
by the server to output the ciphertext of the top-1 (e.g.,
min or max) value. It takes a state st as inputs, and
outputs a ciphertext e.

The encryption and decryption algorithms can also be
expressed as Encsk (m,st) and Decsk (c), respectively. The
preceding scheme 5 is deterministic by default. And it is
(possibly) probabilistic if Enc is probabilistic. We will show
an approach to make it probabilistic in Sec. VI.

With the above scheme definition, we now explain its
correctness. Assume the initial state of the scheme is st0,
where st0 ← InitState(1λ). Given a sequence of distinct
messages seq = {m1, . . . ,mn}, the scheme outputs n suc-
cessive states {st1, . . . ,stn} by computing (ci,sti) ←
Encsk (mi,sti−1), where 1 ≤ i ≤ n. The correctness of the
above mutable TOPE can be rigorously defined as below.
Definition 2 (Correctness of Mutable TOPE): A mutable

TOPE 5 on plaintext domain M is correct if, for every
security parameter λ, for every sk ← GenKey(1λ),

1) for every m ∈ M and for every state st, for every c
output by Encsk (m,st), we haveDecsk (c) = m;AND

2) for each sequence seqi = {m1, . . . ,mi} ∈Mi, where
i ∈ [1, n], there exists an m∗ ∈ seqi such that

c∗ = Query(sti)⇐⇒

{
m∗ = top1(m1, . . . .,mi),
m∗ = Dec(sk, c∗).

Informally speaking, the preceding correctness of a muta-
ble TOPE indicates 1) the decryption of a ciphertext should
always be its original message being encrypted; 2) if a mes-
sage is a top-1 (e.g., min or max) value among a set of
plaintexts, then according to the state, its ciphertext should
be the output of Query among the set of ciphertexts of these
plaintexts.

C. IND-TOCPA SECURITY
It is well-understood that a deterministic encryption is dis-
tinguishable (or insecure) under standard chosen-plaintext
attacks (IND-CPA) [29]. Clearly, it is impossible for our
deterministic design to achieve IND-CPA secure. However,
our objective is to properly weaken standard IND-CPA as
previous works did [9], [30], so that we are still able to define
the (best possible) security for a TOPE scheme in a rigorous
and reasonable manner. For instance, by restricting messages
to be distinct in the security game, the security of a (classic)

Deterministic Encryption can be relaxed to indistinguishabil-
ity under distinct chosen-plaintext attacks (IND-DCPA) [30].

Correspondingly, the security of a mutable TOPE can be
defined under a weak version of standard IND-CPA, which
we denote as indistinguishability under top-ordered chosen-
plaintext attacks (IND-TOCPA). We can think of it as a vari-
ation of indistinguishability under ordered chosen-plaintext
attacks (IND-OCPA) being used for the ideal security of
OPEs [9]–[12]. Informally, IND-TOCPA means given two
messages m0 and m1, if they are respectively the top-1 value
of two same-length sequences seq0 and seq1, then the
ciphertexts of these two messages are computationally indis-
tinguishable. In addition, this indistinguishability on cipher-
texts should hold if they are respectively non-top-1 value
of these two sequences. More precisely, given two same-
length sequences of plaintexts seq0 = {m0,1, . . . ,m0,n} and
seq1 = {m1,1, . . . ,m1,n}, an adversary cannot distinguish
the two ciphertext sequences c0,1, . . . , c0,n and c1,1, . . . , c1,n
if for every integer i ∈ [1, n], the two sub-sequences
m0,1, . . . ,m0,i and m1,1, . . . ,m1,i have the same top-1 order,
which is expressed as(
m0,j = top1(m0,1, . . . ,m0,i) ∧ m1,j

= top1(m1,1, . . . ,m1,i)
)(

m0,j 6= top1(m0,1, . . . ,m0,i) ∧ m1,j

∨ 6= top1(m1,1, . . . ,m1,i)
)

where 1 ≤ j ≤ i, ∧ denotes AND, and ∨ denotes OR.
The rigorous description of IND-TOCPA is similar to the

one for IND-OCPA used in OPE. Specifically, an adversary is
assumed to have (conditional) access to the encryption oracle
and it can obtain all the views of states on the server. How-
ever, compared to IND-OCPA, which requires the distinct
messages satisfying the same orders (e.g., (m0,i > m0,j) ∧
(m1,i > m1,j), for all i, j ∈ [1, n]) [9], IND-TOCPA only asks
the distinctmessagesmaintaining the same top-1 order, which
makes it less restricted than IND-OCPA. In other words,
sequences that satisfy same orders must also satisfy same
top-1 order (or same top-k order in general), but sequences
that satisfy same top-1 order do not necessarily satisfy same
orders (for example, {1, 2, 3} and {11, 13, 12} only have the
same top-1 (min) order), while less restrictions in the security
game indicate higher security.
Definition 3 (IND-TOCPA Security): Let5 = (GenKey,

InitState,Enc,Dec,Query) be a symmetric-key mutable
TOPE over security parameter λ, the security game of it
between a challenger CH and an adversary A is described
as follows:

1) The challenger CH generates sk ← GenKey(1λ), and
chooses a random bit b ∈ {0, 1}.

2) The adversary A generates an initial state st0, where
st0← InitState(1λ), and has access to an encryption
oracle Encsk (·) by querying a number of q message
pairs, where the i-th message pair is (m0,i,m1,i), for
1 ≤ i ≤ q.
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FIGURE 3. A min heap in the plaintext domain, and its corresponding state in the ciphertext domain.

3) The challenger CH outputs a ciphertext cb,i and a state
stb,i, where (cb,i,stb,i) ← Encsk (mb,i,stb,i−1), for
message mb,i if
a) m0,1, . . . ,m0,i and m1,1, . . . ,m1,i are all distinct;

AND
b) m0,1, . . . ,m0,i and m1,1, . . . ,m1,i have the same

top-1 order
and returns (cb,i,stb,i) to the adversaryA; otherwise,
the challenger CH outputs ⊥ and returns it to the
adversary A.

4) The adversary A outputs a ciphertext eb,i of the top-
1 value by evaluatingQuery(stb,i), where stb,i is one
of the states obtained from Step 3.

5) The adversary A outputs b′, which is its guess of b.
The adversaryAwins this security game if b′ = b.We say that
scheme5 is (ideal) IND-TOCPA secure if for any polynomial
time adversaries in the above security game, it has at most
negligible advantage to win the game:

AdvIND−TOCPA
5,A (1λ) =

∣∣∣∣Pr[b′ = b]−
1
2

∣∣∣∣ ≤ negl(λ) (1)

where negl(λ) is a negligible function [29] in λ.
Note that the above definition is the ideal security (i.e.,

best possible security) for a mutable TOPE. Namely, except
the same top-1 order, no additional information is leaked.
We will see later that by utilizing different types of heaps
as states, a mutable TOPE sometimes may not be able to
achieve the ideal security (i.e., may need to further slightly
weaken the ideal security by adding additional restrictions to
the encryption oracle Encsk (·) in Step 3), but it is much more
efficient for real applications (see discussions in Sec. V). Note
that the security of these relaxed versions will still be stronger
than the security of OPE. The definition and security of a
mutable TOPE on top-k queries can be similarly presented
by extending (i.e., relaxing) the corresponding restrictions
above.

IV. PRELIMINARIES
A. HEAP
A heap is a partially ordered tree structure, where the root
of the tree stores the top-1 (i.e., min or max) value [20].
An example of a heap is illustrated in Fig. 3. It has been
extensively used for finding top-1 values among data. Based
on the value stored at the root, a heap can be categorized as a

min heap or amax heap. Nodes on the same path in a heap still
maintain certain orders. However, siblings (i.e., nodes on the
different paths) in a heap do not have particular orders. The
most common type of heaps is binary heaps, which is a nearly
complete binary tree. That is, the tree is completely filled on
all levels except possibly the lowest, which is filled from left
to right (the heap in Fig. 3 is a binary heap). A more general
form is d-ary heap, in which the nodes have d children instead
of 2. We intend to utilize this partially-ordered property of
heaps to minimize the information leakage on data com-
pared to the use of binary search trees (i.e., fully-ordered)
in OPE [11], [12], but still correctly and efficiently answer
top-1 queries (and top-k queries in general) on encrypted data.

B. DETERMINISTIC ENCRYPTION
Deterministic Encryption (DE) always generates a same
ciphertext for a given message (assuming using the same
key), which achieves weaker security than probabilistic
encryption with IND-CPA security. However, by using this
inherit property of DE, it is efficient to evaluate equal-
ity checking on encrypted data. A DE normally contains
three algorithms {DE.GenKey,DE.Enc,DE.Dec}, where
DE.GenKey is probabilistic while the other two algorithms
are deterministic. Specifically, we have
• sk ← DE.GenKey(1λ): Given a security parameter λ,
output a secret key sk .

• c← DE.Enc(sk,m): Given sk and a message m ∈M,
output a ciphertext c.

• m ← DE.Dec(sk, c): Given sk and a ciphertext c ∈ C,
output a message m.

Its correctness maintains as DE.Decsk (DE.Encsk (m)) = m,
for all sk , and allm ∈M. As wementioned in the last section,
the security of a DE can be defined under IND-DCPA [30].
AES-ECB is a concrete example of DE.

V. MUTABLE TOP ORDER-PRESERVING ENCRYPTION
A. MAIN IDEA
In this section, we introduce the design of our mutable Top
Order-Preserving Encryption. The main idea is to leverage
a heap stored on the server to maintain the top-1 order of
a dataset, and this heap represents a state st described in
the definition of mutable TOPE. Specifically, each node in
the heap stored on the server contains only encrypted data
(see Fig. 3). Similar as recent mutable OPEs [11], [12],
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FIGURE 4. Details of mutable TOPE.

a ciphertext c at each node in our mutable TOPE includes two
parts, a transient ciphertext ct and a permanent ciphertext cp.

• A transient ciphertext (or transient encoding) ct is the
binary encoding of the tree level of this corresponding
node in the state (i.e., the heap), and it may change when
newmessages are encrypted due to the updates on its tree
level and the structure change of the state;

• A permanent ciphertext cp is a ciphertext of a message
stored at the corresponding node, where this ciphertext is
computed by DE.Enc from a DE, and it does not change
while encrypting new messages.

A transient ciphertext indicates the top-1 order (e.g.,
the root node of a state is the ciphertext of the top-1 value),
while a permanent ciphertext protects the original message.
Therefore, a combination of these two types of ciphertexts,
representing as a mutable TOPE ciphertext, can indicate
the top-1 order among encrypted data as the same as the
top-1 order in the plaintext domain without revealing these
original messages. For example, 25 is the root node of the
min heap in Fig. 3, its permanent ciphertext is 0x67dc0fe1
(assume 128-bit security) and its transient ciphertext is 01
(the root node is at tree level 1, and its binary encoding is
01), so the mutable TOPE ciphertext of 25 in Fig. 3 is

01||0x67dc0fe1

where || is a concatenation operation. It is easy to see the
top-1 order still correctly holds in the ciphertext domain with
the help of a state. We reserve tree level 0 (e.g., transient
ciphertext 00) for the later implementation on top-k queries.

B. SCHEME DETAILS
The detailed description of our mutable TOPE is explained
as below and algorithms are also presented in Fig. 4.

Note that, since a heap (i.e., a state) can be normally imple-
mented as an array in practice [20], we use n = length(st)
to denote the total number of elements in state st, and we
describe these elements as {st[1],st[2] . . . ,st[n]}, where
st[1] is the first element of the array and it stores the root
node of a heap (st[0] is left to be null). Since each ele-
ment is a node storing a mutable TOPE ciphertext, we have
st[i] = {st[i].ct ,st[i].cp}, where st[i].ct and st[i].cp is
the transient ciphertext and the permanent ciphertext of st[i],
respectively.

Without loss of generality, we assume a binary heap (i.e.,
d = 2) is used in the scheme description in Fig. 4. Since a
binary heap is a nearly completed binary tree, given an index
i of st[i], its parent can be easily computed as st[bi/2c],
while its left child and right child can be calculated as st[i·2]
and st[i · 2 + 1], respectively. The tree level of an element
st[i] can be obtained as l = blog2(i)c + 1.
To initialize the scheme, the client outputs a secret key in

GenKey by running DE.GenKey, and the server creates an
empty heap as its initial state by InitState. The client can
decrypt a ciphertext by running Dec, and the server is able to
query a state to return the ciphertext of the top-1 value (i.e.,
the root of the state) inQuery. The encryption algorithmEnc
is a relatively complicated process compared to other ones in
the mutable TOPE, and several sub-algorithms leveraged in
it are described in Fig. 5.

Essentially, generating a new ciphertext in Enc is similar
to the process of inserting a new value into a heap in the
plaintext domain [20]. Themajor difference inmutable TOPE
is that we need to process it on encrypted data via interac-
tions between the client and the server. Specifically, given a
message m in Enc, the client first tells the server to increase
the length of the state by 1 (i.e., adding a new element at the
end of the array), set the new element as null, and use the

31530 VOLUME 6, 2018



H. Quan et al.: Efficient and Secure Top-k Queries With TOPE

FIGURE 5. Details of some sub-algorithms used in mutable TOPE.

FIGURE 6. An example of Enc in mutable TOPE, where top1(·) =MIN(·) and m = 27. Values in the gray
parts (i.e., 25, 30, 52, 32, 27) are for the ease of illustration. They are not parts of a state stored on the
server.

index of this new element as a temporary position for storing
the ciphertext of message m (even though this ciphertext,
especially the transient cipher of it, has not been computed
yet at this moment).

Then, the client runs Traverse (see Fig. 5), in which it
starts from the last element st[i] in the heap, retrieves the
parent of node st[i], decrypts the parent, and compares the
message mparent of this parent with the new message m,
if m = top1(m,mparent ) (i.e., st[i] and its parent currently
do not maintain a proper order relation based on the property
of a heap), the server swaps st[i] with its parent, updates the
transient cipher of st[i] and index i accordingly. The client
recursively runs Traverse with the parent of the updated i
until there is no parent (i.e., reaching the root node) or if
mparent = top1(m,mparent ) (i.e., st[i] and its parent maintain
a correct relation based on the property of a heap). Finally,
after the client and server interactively locate the proper index
i for the new message m, the client computes the permanent
cipher cp with DE, the server computes the transient cipher ct

based on the level of index i and outputs an updated state st′.
An example of Enc, where top1(·) = MIN(·) and m = 27 is
presented in Fig. 6.

C. DISCUSSIONS
As we presented, the encryption algorithm is interactive,
because the client has the secret key while the server main-
tains an encrypted heap as the state. We will show in Sec. VI
that leveraging a heap in our design is not only useful for
running top-1 queries, but also necessary and flexible in
supporting top-k queries in general.

Besides keeping the state on the server, an alternative
design option would be letting the client maintain both the
secret key and the state, which can avoid the implementation
of an interactive encryption process. However, this alternative
is less efficient, since the client has to spend huge storage cost
on the state (e.g., the client maintains the entire heap locally
in order to mutate ciphertexts properly, which costs at least
as the same as the storage overhead on original messages).
Moreover, if the client uses multiple devices to generate data,
it needs to maintain multiple copies of the state (i.e., each
device needs a copy of the state). On the other hand, allowing
the server to keep both the secret key and the state will be
obviously not secure, since the adversary can obtain all the
views on the server (i.e., directly revealing the secret key to
the adversary in this case).
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FIGURE 7. An example of the impact of d on leakage. The binary heap reveals 30 < 32 while the
(n− 1)-ary heap does not.

In the scheme description and security definitions of muta-
ble TOPE, we assume no distinct messages are introduced as
in OPE. In practice, in order to handle identical messages,
the server can additionally build a hash table [20] to check
whether the permanent ciphertext of a newmessage is already
in the state, where this hash table is generated based on all the
existing permanent ciphertexts in the state. An example of an
item in the hash table is expressed as below

HashValue PermCipher TranCipher
− − − − − − − − − − − − − − − − − − −−

0x8db3a 0x90aa483e 10

where each hash value is calculated from its permanent
ciphertext. Since permanent ciphertexts are deterministic
(i.e., equality relations of messages still maintain over per-
manent ciphertexts), this hash table will work well as the
same as the ones built from the plaintexts, where finding
an entry in the hash table only requires O(1) search time.
If the permanent ciphertext of a new message is indeed in
the hash table, the transient ciphertext of it can be directly
obtained from the hash table without mutating the state. If the
permanent ciphertext of a new message is not in the hash
table, we need to insert it to the heap and mutate the state,
where some of the transient ciphertexts in the state as well as
the ones in the hash table should be updated correspondingly.

D. IMPACTS OF PARAMETER d
In our mutable TOPE, the efficiency of the encryption algo-
rithm is O(logd (n)) (in the worst case), which is the height
of a state and is asymptotically as the same as the efficiency
of an insertion in a heap [20]. Particularly, when generating
a new mutable TOPE ciphertext, if d = 2, we have a state
with (blog2(n)c+ 1) tree levels, where a number of blog2(n)c
retrieve-decrypt-compare operations (in Traverse) between
the client and the server are needed in the worse case; and
if d = n − 1, we only have a state with 2 levels, and only
1 retrieve-decrypt-compare operation is required.

Another impact of d is that, the scheme is ideal secure
iff d = n − 1 (see an example in Fig. 7). Specifically, for
d < n − 1, some of the ciphertexts of non-top-1 values still
maintain their meaningful order because they are on the same
path in the state, which reveals additional information than
what we have rigorously defined for the ideal IND-TOCPA
security in Sec. III. Fortunately, we can further slightly limit
the restrictions on the encryption oracle to maintain a weak
IND-TOCPA security, where the restrictions in this case can
be rigorously described as

1) m0,1, . . . ,m0,i, andm1,1, . . . ,m1,i are all distinct;AND
2) The state of m0,1, . . . ,m0,i and the state of

m1,1, . . . ,m1,i are isomorphic, i.e., st0,i ' st1,i.

The second restriction st0,i ' st1,i indicates for every
1 ≤ j ≤ i, the ciphertexts of m0,j and m1,j are located
in the same position of st0,i and st1,i, respectively. As a
result, the transient ciphertexts of m0,j and m1,j will be the
same throughout, which cannot be distinguished. Note that
st0,i ' st1,i impliesm0,1, . . . ,m0,i andm1,1, . . . ,m1,i have
the same top-1 order, and this restriction is still looser than the
same orders in OPE.
Although when d < n− 1, especially for d = 2, it is only

weak IND-TOCPA secure, we will see in the next section that
it is much more efficient for answering top-k queries.

VI. EXTENSIONS OF MUTABLE TOPE
A. TOP-k QUERIES
In the previous section, we use mutable TOPE to generate
ciphertexts that can still maintain top-1 order. Leveraging it as
a stepping stone, we now extend this mutable TOPE to answer
top-k queries, which is the general form of top-1 queries.

At a high-level, instead of maintaining a single state,
we can create multiple sub-states (e.g., k heaps) while gen-
erating a ciphertext. Specifically, assuming using min heaps,
the root node of the first sub-state is the ciphertext of the
min value among n values, and the root node of the second
sub-state is the ciphertext of the min value among (n − 1)
values without considering the root node of the first sub-
state. For instance, if {25, 27, 52, 32, 30} are involved in the
first sub-state, then only {27, 52, 32, 30}will be considered in
the second sub-state. Essentially, it is an approach to maintain
a set of k heaps to answer top-k queries, where the sizes of
each heap are n, n − 1, . . . , n − (k − 1), respectively. The
roots of these k heaps are simply the answers of top-k queries.
An example with two sub-states is described in Fig. 8, where
the top-2 order is still maintained in the ciphertext domain
while the orders of non-top-2 values are not revealed.

In practice, we can obtain the second sub-state by making
a copy of the first sub-state and removing the root. More con-
cretely, after making a copy of the first sub-state, the server
swaps the position of the root and the last node in this copy,
and reduces the size of this copy by 1. Then, the server moves
this new root down if necessary by checking its order relation
with its children. Essentially, it is the same as DELETE-MIN
(or DELETE-MAX) operation in a min (or max) heap [20],
except that each checking of the order relation between a
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FIGURE 8. An example of TOPE with multiple sub-states, where a ciphertext is in the form of (ct2 ||ct1 , cp). ct2 is a transient ciphertext in the
2nd sub-state, ct1 is a transient ciphertext in the 1st sub-state, and cp is still a permanent ciphertext. If a plaintext (e.g., 25) is in the first
sub-state but not in the second sub-state, its transient ciphertext in the 2nd sub-state is 00.

parent and its children is done through interactions between
the server and the client. Obviously, the third sub-state can be
obtained after the second sub-state is built, and eventually the
server can build k sub-states for top-k queries by interacting
with the client.

Due to the use of multiple sub-states, a ciphertext for
answering top-k queries has multiple sub-transient cipher-
texts (one for each sub-state), the length of a ciphertext will
linearly increase with an increase of k . Moreover, it is well
studied that the running time of DELETE-MIN (or DELETE-
MAX) in a d-ary min (or max) heap is O(d logd n) [20].
Thus, the generation time of a ciphertext in top-k queries is
O(kd logd n), which increases compared to O(logdn) in top-
1 queries. Therefore, as we discussed before, although when
d = n − 1, the mutable TOPE could achieve ideal IND-
TOCPA security, it is much more efficient for top-k queries if
d is small (e.g., d = 2 in a binary heap). Another additional
cost is that the server needs to spend more costs on keeping
multiple heaps (i.e., O(kn)) compared to a single state (i.e.,
O(n)) in the original TOPE.

B. DYNAMIC DATA
Our scheme also supports dynamic data, including insert,
modify, or delete a plaintext from a state, which essentially
allow a client to update its outsourced encrypted datasets in
the cloud. Inserting a new value to the state with our scheme
is obvious (i.e., generating a new ciphertext with our scheme).
Formodify and delete operations, they are not straightforward
because a heap alone does not efficiently support Find (i.e.,
to modify or delete, we first need to find an existing element
in a heap, which takes O(n) time).
Fortunately, we can use the hash table we mentioned ahead

to find an existing permanent ciphertext, and locate its corre-
sponding index in the state with O(1) time. Specifically, for
each tuple in the hash table, we have an additional attribute
to record each ciphertext’s index (i.e., the position of it in the
array of the heap), for instance,

HashValue PermCipherTranCipher Index
−−−−−− −−−−−− −−−−−− −−−−−−

0x8db3a 0x90aa483e 10 2

After locating the index, the server can replace the previous
permanent ciphertext at this index with the new permanent
ciphertext if it is a modify operation, and then move this
new permanent ciphertext up/down if it does not maintain

a proper order relation with its parent/children (again inter-
actions between the client and the server are required to
check this order relation). If it is a delete operation, then the
server can swap the position of the located index with the last
element in the array of the heap, reduce the state size by 1 and
move the corresponding node down if it does not maintain a
proper order relation with its children.

C. BATCH ENCRYPTION
In some applications, where a huge number of plaintexts are
introduced in a short period, it is necessary to efficiently
encrypt thesemassive data in a relatively short time. Although
our TOPE is based on lightweight DE, a large amount of
interactions between the client and the server may still slow
efficiency down while encrypting.

A common situation, where the idea of batch encryption
can optimize the performance, is to use it in the setup phase.
For instance, the client would like to encrypt and outsource
its local large-scale dataset at once (instead of interactively
encrypting each data one by one) in the setup phase. In this
case, the batch encryption can be done by asking the client to
build a heap in plaintext based on its local dataset, generate
all the transient ciphertexts and all the permanent ciphertexts
locally, and then outsource the encrypted heap at once. Then,
the client can delete the copy of this initial encrypted heap
from local storage, and it can generatemore TOPE ciphertexts
one-by-one subsequently via interactions between the client
and the server (i.e., using the Enc in TOPE). It implies that
the client only spends additional storage overhead of main-
taining a heap in the setup phase. Once the encrypted heap
is sent to the server, the client does not have to maintain any
additional state (i.e. heap), where a new TOPE ciphertext will
be generated instantly by following our scheme.

Note that in a binary heap, the running time of building an
n-node bina ry heap is O(n) [20]. Thus, the overall running
time of batch encryption of nmessages isO(n), and this batch
encryption is a non-interactive operation.

D. PROBABILISTIC TOPE
Up to the present, our scheme is described in a deterministic
manner as previous OPE schemes [11], [12], where the same
message always outputs the same TOPE permanent cipher-
text. Efficient and scalable as it is in terms of encryption
and updates, all types of deterministic ciphertexts leak certain
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FIGURE 9. An example of Enc with probabilistic TOPE, where top1(·) =MIN(·) and m = 25. Values in the
gray parts (i.e., 25, 30, 52, 32) are for the ease of illustration. They are not parts of a state stored on the
server.

statistical information about datasets. Inspired by a recent
work [13], we describe how to make those ciphertexts prob-
abilistic while still using a heap as a state.

Specifically, given a newmessagem, the client will insert a
probabilistic ciphertext of this message to the state no matter
whether there is an identical message in the heap. Similar as
in the deterministic version illustrated ahead, the server will
still increase the state by 1, put this ciphertext of this new
message in the last position of the state, and move it up level
by level if necessary by interactively comparing this value
with its parent.

However, when a child has an identical value as its parent,
the client will randomly decide to swap these two positions.
In other words, the order relation between a parent and a child
in a state with deterministic ciphertexts is strictly followed as
parent < child (assume using a min-heap). While in a
state with probabilistic ciphertexts, the order relation between
a parent and a child is loosely followed as parent ≤
child. By loose, we mean the swapping of the positions
of a parent and child is optional and randomly decided
when parent == child. An example of generating a
probabilistic TOPE ciphertext is presented in Fig. 9, where
encrypting 25 twice will output two probabilistic ciphertexts
01||0x67dc0fe1 and 10||0xb0387a26 respectively.

By making ciphertexts probabilistic, the client can eas-
ily preserve statistical information of an outsourced datasets
against a curious server. However, on the other hand, the size
of the state grows dramatically (since a state with probabilis-
tic ciphertexts needs a number of N nodes, where N is the
total number of data records, while a state with determin-
istic ciphertexts requires only a number of n nodes, where
n is the total number of distinct values and n ≤ N ). This
issue (i.e., the gap between n and N ) normally would be a
huge cost in real datasets. For example, if the client encrypts
people’s age in a medical dataset, where the number of dis-
tinct values is n = 120 (i.e., age ∈ [0, 120]) in general,
while the number of tuples in the medical dataset could be
N = 1 million. Obviously, maintaining a state with a size of
n = 120 is much more efficient than the one with a size

of N = 1 × 106. Another significant downside of having
probabilistic ciphertexts is that modification and deletions on
encrypted data are not provided, since equality checking over
encrypted data is disabled with probabilistic ciphertexts.

VII. SECURITY ANALYSIS
A. SECURITY ANALYSIS OF MUTABLE TOPE
We now analyze the security of our mutable TOPE. The
following proof is with the ideal IND-TOCPA security, while
the weak IND-TOCPA security (i.e., d < n − 1) can be
proved in the same way except using the tougher restriction
we mentioned in Sec. V-D.
Theorem 1: Our mutable TOPE scheme is IND-TOCPA

secure as long as DE is IND-DCPA secure.
Proof: At the high level, the security of our mutable

TOPE can be interpreted as follows: first, we argue that
transient ciphertexts only reveal the top-1 order; second,
we can prove that, for two mutable TOPE ciphertexts gen-
erated from two distinct messages, when they have the same
transient ciphertexts, if these two mutable TOPE ciphertexts
are distinguishable, it is equivalent to say two DE cipher-
texts (i.e., the two permanent ciphers of these two mutable
TOPE ciphertexts) are distinguishable, which contradicts to
the assumption that DE is IND-DCPA secure.

More specifically, if the DE is simply constructed based
on a Pseudo Random Function (PRF), e.g., DE.Encsk (m) =
PRFsk (m) [29], distinguishing those two mutable TOPE
ciphertexts is equivalent to distinguishing a PRF and a ran-
dom function, which is computationally infeasible [29]. Note
that for twomutable TOPE ciphertexts with different transient
ciphertexts, especially the ones on the same path, it is trivial
to distinguish them. However, this does not contradict to the
security of mutable TOPE. Because it is the natural infor-
mation leakage of a mutable TOPE, which can be used for
answering top-1 (e.g., min or max) queries. Details analyses
are described below.

Assume we have an adversary A′ from the IND-DCPA
security game of the DE, where adversaryA′ has a negligible
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advantage in that game (i.e., AdvIND-DCPA
DE,A′ (1λ) ≤ negl(λ)),

we simulate the IND-OTCPA security game of our mutable
TOPE with adversary A′ (instead of adversary A). Specifi-
cally, we have

1) The challenger CH generates sk ← DE.GenKey(1λ)
and chooses a random bit b ∈ {0, 1};

2) The adversaryA′ generates an initial state st0 by creat-
ing an empty heap, and it is able to query a number
of q message pairs, where the i-th message pair is
(m0,i,m1,i), for 1 ≤ i ≤ q;

3) The challenger CH outputs a ciphertext cb,i =
(ctb,i, c

p
b,i) and a state stb,i for message mb,i by com-

puting (cb,i,stb,i) ← Encsk (mb,i,stb,i−1), where
cpb,i ← DE.Encsk (mb,i), and return (cb,i,stb,i) to the
adversary A′ if
a) m0,1, . . . ,m0,i and m1,1, . . . ,m1,i are all distinct;

AND
b) m0,1, . . . ,m0,i and m1,1, . . . ,m1,i have the same

top-1 order.

It is equivalent to say that the challenger CH returns
(ctb,i, c

p
b,i,stb,i) to the adversary A′, where

a) m0,1, . . . ,m0,i and m1,1, . . . ,m1,i are all distinct;
AND

b) st0,i ' st1,i and ct0,i = ct1,i.

Otherwise, the challenger CH outputs and returns⊥ to
adversary A′;

4) The adversary A′ outputs a ciphertext eb,i of the top-
1 value by choosing the root of state stb,i, where stb,i
is one of those states obtained from Step 3;

5) The adversary A′ outputs b′ as its guess of b.
In the above, we successfully simulate the IND-TOCPA

security game of a mutable TOPE with adversary A′ from
the IND-DCPA security game of a DE. Specifically, when
given ct0,i = ct1,i and st0,i ' st1,i, it does not provide any
additional advantages for adversary A′ to guess b′ based on
cpb,i ← DE.Encsk (mb,i), for each i ∈ [1, q]. Said differently,
the IND-TOCPA security game is simulated by a number of q
sub-games, where each sub-game is an IND-DCPA security
game. Therefore, adversary A′ could win the above game
with advantages as long as it couldwin any of the q sub-games
with advantages, then we have

AdvIND−TOCPA
TOPE,A (1λ) ≤ q · AdvIND−DCPA

DE,A′ (1λ) (Prop. 1)

≤ q · negl(λ)

≤ negl′(λ) (Prop. 2)

which proves the security of our mutable TOPE. The two
propositions (i.e., Prop. 1 and Prop. 2) used in the above are
shown after this proof.

For the security of TOPE on top-k queries in general,
we can use a function topk(·) instead of top1(·) to capture the
corresponding leakage in the security game, and follow the
same approach above to prove its security, which also relies
on the IND-DCPA security of DE. �

Proposition 1 (Union Bound [29]):

Pr[E1 ∨ E2] ≤ Pr[E1]+ Pr[E2]
Proposition 2 (Properties of Negligible Functions [29]):

Let negl1 be negligible functions, for any positive poly-
nomial p, the function negl2(n) defined by negl2(n) =
p(n) · negl1(n) is negligible.
Readers are referred to [29] for further details of these two

above propositions.

VIII. EXPERIMENTAL ANALYSIS
In this section, we first demonstrate the efficiency of our
scheme, including encryption time and search time. Specif-
ically, we implement our scheme based on a binary heap
with Java 8, and utilize JDBC (Java Database Connectivity)
to connect to MySQL (v5.5) to store and query datasets.
Besides using different scales of random data, we also eval-
uate the performance of our scheme by leveraging a real-
world diabetes dataset [31] from UCI Machine Learning
Repository. More importantly, we also leverage statistic tech-
niques, including Random Variables, Probability Mass Func-
tion and Cumulative Distribution Function, to analyze the
actual advantages of TOPE over OPE in terms of privacy
protection on this real-world diabetes dataset.

A. PERFORMANCE EVALUATION ON SYNTHETIC DATA
We run our Java code on a Linux machine (Ubuntu 16.04,
3.2 GHz Intel Core i5, 4G memory). The permanent cipher-
texts are implemented with AES-ECB model with 128-bit
security. The size of transient ciphertexts is 64 bits. In order to
flexibly evaluate the impact of networks with different delays
(i.e., round-trip time, RTT), we use Thread.sleep(RTT)
to simulate the interaction time between a client and a server
for each round. The functions on the client side and the
functions on the server side are all run on this single Linux
machine in our experiments.

We first use some synthetic data to test the performance
of our scheme with different scales of datasets. More specifi-
cally, we generate random distinct data values, read these raw
data from files, encrypt them with our TOPE. These TOPE
ciphertexts are then stored in MySQL via JDBC and ready
for answering SQL queries. Besides encrypted heaps, another
hash table as we mentioned before is also maintained in order
to check non-distinct data values (i.e., avoid to generate two
different transient ciphertexts for a same data value).

1) IMPACT OF THE NUMBER OF DISTINCT MESSAGES
We first investigate the impact of the number of distinct
messages on encryption time. As we can see from Fig. 10,
where we assume RTT = 1 millisecond, the encryption time
is almost linearly increasing with an increase of the num-
ber of distinct messages. Specifically, when the client has
1024 distinct messages, our scheme needs 14.59 seconds to
generate all the 1024 TOPE ciphertexts. Since we insert each
new distinct element one by one to the encrypted heap, where
the overall complexity is O(n) (which is as the same as the
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FIGURE 10. The impact of n on the encryption time (seconds) where
RTT = 1ms and k = 1.

FIGURE 11. The impact of k on the encryption time (seconds) where
RTT = 1ms and k = 1.

complexity of building a heap in plaintexts [20]), it is not
surprising to see that the encryption time of an entire random
dataset increases linearly. Besides, other operations, such as
I/O (e.g., reading data from a file) and generating the hash
table, which are linear as well, also together impact the entire
encryption process in the implementation, which eventually
leads to a linear increase overall.

2) IMPACT OF k
According to our design, our scheme should generate k sub-
heaps to answer top-k queries in general. Specifically, our
scheme first builds the 1st sub-heap, and outputs the rest
of k − 1 heaps one after another (i.e., the i-th sub-heap
is generated from the (i − 1)-th sub-heap). As illustrated
in Fig. 11, when a client needs to support top-k queries with
a greater k , the encryption of our scheme slightly increases
with k .

3) IMPACT OF RTT
Since our scheme is amutable encryption, where one round of
client-to-server interaction is needed while traversing from a
parent node to a child node in an encrypted heap. Obviously,
the network delay (i.e., RTT) plays a significant impact on
the encryption performance of our scheme. As we can see
from Fig. 12, when the network situation is almost ideal (i.e.,
RTT = 1 ms), our scheme is extremely efficient. While
with the increase of RTT, the encryption time increases.
For instance, if the network is relatively normal (e.g., with
RTT = 50 ms), it takes around 413 seconds for our mutable
encryption to output 1024 TOPE ciphertexts. On the other
hand, if the delay in the network is high (e.g., with RTT
= 100 ms), our scheme requires 831 seconds on average

FIGURE 12. The impact of n on the encryption time (seconds) with
different RTTs and k = 1.

TABLE 1. The Impact of Batch Encryption on Encryption Time (seconds)
where n = 64.

to generate a same number of TOPE ciphertexts. From the
differences among different RTTs in Fig. 12, it is also easy to
see that the overall encryption time linearly increases with an
increase of RTT.

4) IMPACT OF BATCH ENCRYPTION
As we mentioned before, we can leverage batch encryp-
tion to avoid interactions and save a significant amount of
encryption time in the setup phase, especially when network
delay is high. More specifically, the client still uses binary
heaps to produce TOPE ciphertexts, but instead of generating
them one by one as in previous experiments, the client first
generates heaps in plaintexts, then encrypt them, and pro-
duce transient ciphertexts and permanent ciphertexts before
outsourcing them to the server. The encrypted heaps after per-
forming batch encryption can still be used for dynamic oper-
ations (e.g., removing a data, modifying a data or inserting
a new data) later. By doing this, the overall encryption time
is independent with RTT. As presented in Table 1, the time
saving is significant, especially when the network delay is in
a bad condition. Specifically, it is over 40 times faster if batch
encryption is leveraged while RTT= 100 milliseconds. Even
if RTT is extremely good (e.g., RTT= 1ms), this type of batch
encryption can still save over 20% of the overall encryption
time.

B. PERFORMANCE EVALUATION ON REAL-WORLD DATA
Besides distinct random data, we also test the performance of
our scheme over a real-world dataset. Specifically, we lever-
age a diabetes dataset, and test the encryption time and search
time of it while running our scheme. A brief description about
this dataset is presented in the following.

1) THE INFORMATION OF THE DIABETES DATASET
Each tuple in this original dataset has four attributes, Date,
Time, Code and Value. Date and Time are in the format
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TABLE 2. The Impact of k on Encryption Time (seconds) over the Diabetes
Dataset.

FIGURE 13. The comparison of search time.

of MM − DD − YYYY and XX : YY, respectively. Attribute
Value shows the blood glucose (BG) of a patient at a certain
time, and attribute Code is the categorized code based on
Value. An example of a tuple is presented as below

Date Time Code Value
−−−−−−−−−−−−−−−−−−−−−−−−

04-21-1991 9:09 58 100

We leverage TOPE to encrypt all the BG values in the dataset.
There are a number of 441 distinct BG values and the range
is from [0, 501]. The total number of (valid) tuples in the
dataset is 29, 263. We ignore some invalid tuples with incor-
rect or inconsistent data format.

2) PERFORMANCE ON THE DIABETES DATASET
Since we generate ciphertexts for the entire dataset as a
whole, we leverage batch encryption here to boost the encryp-
tion performance. When k = 1, it takes 6.31 seconds on
average to build an encrypted heap for those 441 distinct BG
values and output ciphertexts for all the 29, 263 tuples. The
overall encryption time slightly increase when k increases as
shown in Table 2. It is easy to observe that our scheme is
extremely efficient over this large-scale diabetes dataset in
terms of encryption time. Obviously, this mainly depends the
number of distinct values in a dataset.

In Fig. 13, we show that the search time of our scheme over
diabetes dataset is almost good as the corresponding search
time in plaintexts. The search efficiency of our scheme is
actually not suprising, because MySQL still runs the same
way to answer top-k queries by evaluating comparison oper-
ations. The only difference here is that the domain of transient
ciphertexts is different from (more specifically, much greater
than) the domain of plaintexts, which seems to be the reason
that makes the search time over TOPE ciphertexts slightly
slower than the one in plaintexts.

C. STATISTICAL ANALYSIS ON REAL-WORLD DATA
Although we use formal definitions and rigorous proofs to
properly capture the privacy leakage of our scheme, which

is normally sufficient for proving the security of a cryp-
tographic primitive, the actual impact of it on real-world
datasets behind those formal security games remains obscure.
Put differently, it is still not straightforward to see how well
we can preserve the privacy of real-world datasets with TOPE
in practice compared to the implementation of OPE. In order
to fulfill this gap, we leverage Random Variables, Prob-
ability Mass Function and Cumulative Distribution Func-
tion [21] to observe the statistical information over real-world
data’s ciphertexts generated by Deterministic Encryption
(i.e., AES-ECB [29]), Order-Preserving Encryption [11] and
our Top Order-Preserving Encryption.

1) RANDOM VARIABLES
Given a set of distinct messages m = (m1, . . . ,mn),
we define a random variable X as

X (mi) = rank(mi)

where X (mi) ∈ [1, n] and rank(mi) indicates the order
of mi in m after m is sorted. For example, given
m = {25, 52, 27, 32, 30}, we can first sort it as m =

{25, 27, 30, 32, 52}, then we have X (25) = 1 and X (27) = 2
since 25 and 27 are the smallest one and the second smallest
one in m respectively.

Similarly, given a set of distinct ciphertexts
c = (c1, . . . , cn), we can also define a random variable Y as

Y (ci) = rank(ci)

where Y (ci) ∈ [1, n] and rank(ci) indicates the order of ci in
c after c is sorted.

Then, given a set of (distinct) message/ciphertexts pairs
z = (z1, . . . , zn), where zi = (mi, ci) and ci = Enc(mi), for
i ∈ [1, n], we can define a random vector Z as

Z (zi) = Z (mi, ci) = (X (mi),Y (ci))

where Z (zi) ∈ Z2
n. Intuitively speaking, this random vector Z

is another way to show whether the orders of ciphertexts are
consistent with the orders of their messages.

More specifically, the distribution of this random vector
Z generated by the real dataset using DE, OPE and TOPE
are presented from Fig. 14 to Fig. 16. Here, for the ease
of showing the major difference within the top-k part in
these figures, we take n = 20 distinct message/ciphertexts
pairs generated by the diabetes dataset (i.e., BG values from
0 to 19 and their corresponding ciphertexts). We can see from
Fig. 14 and Fig. 15 that the distribution of Z with DE is
random (i.e., the orders of ciphertexts are not consistent with
the orders of their messages) while the distribution of Z with
OPE is certain and predictable (i.e., the orders of ciphertexts
are consistent with the orders of their messages). The reason
is that DE does not reveal any meaningful order information
while OPE intentionally reveals the orders of messages over
ciphertexts. We can also observe from Fig. 16 that the dis-
tribution of Z with our TOPE is only certain and predictable
when (0, 0) ≤ Z (zi) ≤ (k, k) (k = 5 in this example), but
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FIGURE 14. The distribution of Z with DE.

FIGURE 15. The distribution of Z with OPE.

FIGURE 16. The distribution of Z with TOPE.

it is randomly distributed when (k, k) ≤ Z (zi) ≤ (n, n). The
comparison between Fig. 15 and Fig. 16 vividly demonstrates
the advantage of our TOPE over OPE when processing top-k
queries on encrypted data.

2) PROBABILITY MASS FUNCTION
With the random variables above, we can further define Prob-
ability Mass Function (PMF) of a random variable to evaluate
the statistical information of plaintexts and ciphertexts. More
specifically, given random variable X , we define its PMF
FX (x) as

FX (x) = P(X (mi) = x) =
count(X (mi))

N
=
count(mi)

N
which intuitively indicates the number of a plaintext mi in
a number of N tuples. Similarly, given random variable Y ,
we can also define its PMF as

FY (y) = P(Y (ci) = y) =
count(Y (ci))

N
=
count(ci)

N
which intuitively describes the number of a ciphertext ci in a
number of N encrypted tuples.

FIGURE 17. PMF of X with plaintexts.

FIGURE 18. PMF of Y with OPE ciphertexts.

FIGURE 19. The PMF of Y with TOPE ciphertexts.

In order to evaluate these PMFs, we select all the mes-
sages/plaintexts in the diabetes dataset, where BG values are
from 0 to 19 (as before, we again take n = 20 for the ease of
showing the difference in the top-k part in figures). It turns out
that the number of tuples satisfying this condition is 14, 204,
which is about 48.5% of the entire dataset. The PMF of X
generated by plaintexts and the PMFs of Y calculated from
DE ciphertexts, OPE ciphertexts and TOPE ciphertexts are
presented in Fig. 17 to Fig. 20.

As we can see from those figures, the PMF of Y outputted
by OPE ciphertexts is exactly the same as the PMF of X
generated from plaintext, which means by observing OPE
ciphertexts only, a curious server can learn the exact PMF of
the original plaintexts. However, with the use of our TOPE,
the PMF of Y shown in Fig. 19 is only consistent with the
PMF of the original plaintexts when y ≤ k (k = 5), while the
actual PMF of the original plaintexts is preserved over TOPE
ciphertexts (when y > 5). It is obvious to see from Fig. 20
that DE ciphertexts prevent a curious server from learning the
entire PMF of the original plaintexts.
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FIGURE 20. The PMF of Y with DE ciphertexts.

FIGURE 21. The CDFs of Y with OPE and DE ciphertexts.

In other words, with the use of TOPE, a curious server only
learns a permutation of the original PMF of the plaintexts by
observing ciphertexts only, but it does not know which exact
permutation it is among all the possible (n − k)! cases. Sim-
ilarly, with the implementation of DE, a curious server only
reveals a permutation of the original PMF of the plaintexts,
however, it cannot decide which particular permutation it is
among all the possible n! cases by analyzing ciphertexts only.

3) CUMULATIVE DISTRIBUTION FUNCTION
With a PMF of a random variable, we can further evalu-
ate Cumulative Distribution Function (CDF) of this random
variable. More concretely, given random variable X , its CDF
fX (x) can be defined as

fX (x) = P(X (mi) ≤ x) =
x∑

X (mi)=1

P(X (mi))

=

x∑
X (mi)=1

count(X (mi))
N

Similarly, given random variable Y , its CDF fY (y) is

fY (y) = P(Y (ci) ≤ y) =
y∑

Y (ci)=1

P(Y (ci))

=

y∑
Y (ci)=1

count(Y (ci))
N

Essentially, CDF is another important approach to analyze the
statistical information of data besides PMF.

Since the PMF of Y obtained by OPE ciphertexts are
exactly the same as the PMF of plaintexts, it is obvious that
their CDFs are exactly the same. As illustrated in Fig. 21

FIGURE 22. The CDFs of Y with OPE and TOPE ciphertexts.

and Fig. 22, we can see that the CDF of Y calculated from
TOPE ciphertexts is only as the same and consistent as the
CDF of plaintexts when y < 6 (k = 5, note that we
use y < 6 instead of y ≤ 5 here since CDF is right-
continuous [21]), while the CDF of Y computed from DE
ciphertexts is totally different to the CDF of plaintexts. The
results in Fig. 21 and Fig. 22 indicate that, by analyzing
ciphertexts only, a curious server can directly recover the
entire CDF of plaintexts over OPE ciphertexts, but only a
small partial CDF of plaintexts over TOPE ciphertexts. The
comparisons amongDE,OPE, and TOPE in RandomVectors,
PMFs, and CDFs all statistical-wise demonstrate the relations
of these three primitives describing in Fig. 1.

IX. CONCLUSION
We propose a Top Order-Preserving Encryption to enable
top-k queries over encrypted data. Our key approach is to
utilize the partially-order property of heaps to balance the
privacy and search functionality while applying a mutable
encryption. As a result, it is able to alleviate privacy leakage
of top-k queries compared to the use of OPE. Search effi-
ciency and compatibility of our scheme with current SQL
queries is obvious by conducting a set of extensive experi-
ments on both random and real-world datasets. In addition,
we properly and formally define its security with in a rigorous
manner and statistically analyze its impact on real-world
datasets.
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