
Received May 7, 2018, accepted June 10, 2018, date of publication June 14, 2018, date of current version July 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2847610

RAN Runtime Slicing System for Flexible and
Dynamic Service Execution Environment
CHIA-YU CHANG AND NAVID NIKAEIN
Communication Systems Department, EURECOM, 06410 Biot, France

Corresponding author: Chia-Yu Chang (chia-yu.chang@eurecom.fr)

This work was supported by the European Union’s Horizon 2020 Framework Programme under Grant 762057 (5G-PICTURE)
and Grant 761913 (SliceNet).

ABSTRACT Network slicing is one key enabler to provide the required flexibility and to realize the service-
oriented 5G vision. Unlike the core network slicing, radio access network (RAN) slicing is still at its infancy
and several works just start to investigate the challenges and potentials to enable the multi-service RAN,
toward a serviced-oriented RAN architecture. One of the major concerns in the RAN slicing is to provide
different levels of isolation and sharing as per slice requirement. Moreover, both control and user plane
processing may be customized allowing a slice owner to flexibly control its service. Enabling dynamic
RAN composition with flexible functional split for disaggregated RAN deployments is another challenge.
In this paper, we propose a RAN runtime slicing system through which the operation and behavior of the
underlying RAN could be customized and controlled to meet slice requirements. We present a proof-of-
concept prototype of the proposed RAN runtime slicing system for LTE, assess its feasibility and potentials,
and demonstrate the isolation, sharing, and customization capabilities with three representative use cases.

INDEX TERMS Network slicing, RAN slicing, 5G, service-oriented architecture, multi-service function
chaining, RAN virtualization.

I. INTRODUCTION
Fifth generation (5G) mobile network is a paradigm shift
beyond the new radio and wider spectrum with the objective
of improving the overall efficiency and flexibility of mobile
networks. It is about the evolution of computing for wire-
less networks (e.g., central offices become data centers) and
enabling the service-oriented architecture to deliver networks
on an as-a-service basis. Support of vertical markets is one
of the main driving factors behind this evolution to empower
the business and value creation for 5G. The underlying idea
being to support multiple services and/or virtual networks on
a single physical network with different service requirements
is in terms of the definition and agreement, the control and
management, and also the performance.

Through this service-oriented 5G vision, naturally the net-
work infrastructure providers (e.g., operators and data center
owners), service providers (e.g., over-the-top and verticals),
and network function/application providers (e.g., vendors)
are decoupled to allow a cost-effective network composi-
tion and sharing model to reduce both capital expenditure
(CAPEX) and operating expense (OPEX). Fig. 1 illustrates
the relationship between different providers and the trans-
formation of the value-chain in telecommunication industry

being aligned with the high-level role models presented by
the third generation partnership project (3GPP) in [1]. For
example, network infrastructuremay be provided by the oper-
ator as an intermediary between the vendors and data center
owners or by a combination of network equipments from
vendors, data centers from information technologies (ITs),
and transport network from operators. A service is built
through the composition of multi-vendor network functions,
physical or virtual (PNF/VNF), that not only shall meet the
requirements of service providers such as performance and
cost but also thats of network infrastructure providers in
terms of PNF/VNF interoperability and compatibility when
the service is running on different underlying infrastructures.
Network slicing is one of the key enablers to provide the

required flexibility for the envisioned service-oriented 5G.
It enables the composition and deployment of multiple logi-
cal networks over a shared physical infrastructure, and their
delivery as a service or slice. A slice can either be completely
isolated from other slices down to the different sets of spec-
trum and cell site (as in most of current 3G and 4G deploy-
ment), or be shared across all types of resources including
radio spectrum and network functions (e.g., all network lay-
ers of protocol stack), or be customized for a subset of

34018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-7020-8451
https://orcid.org/0000-0001-6301-7393

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 1. Service-orientation impact on the evolution of
telecommunication industry.

user-plane (UP) and control-plane (CP) processing with an
access to a portion of radio resources in a virtualized form.
To enable these options, a flexible execution environment
is needed to host slice service instance over the resources
provided by the underlying infrastructures. Hence, different
levels of isolation and sharing across the domain-specific
resources spanned by a slice shall be naturally supported.
Note that the concept of different isolation levels not only pro-
vides the dedication over resources but also brings the inde-
pendency among network functions and applications. Further,
domain boundaries could be administrative (e.g., between
operators), network segment (e.g., radio access network,
core network, transport network), radio access technology
(e.g., 4G, 5G) among the others, and resources could be of
different types including computing, storage, network, hard-
ware, radio, spectrum, network functions and applications.
For instance, a slice can be composed with dedicated core
network and isolated control functions, while also leverages
the virtualized radio resource in a shared radio spectrum.
However, another slice can be composed of fully isolated
resources (except computing resources) and network func-
tions like the FLARE solution provided in [2].

Hence, softwarization, virtualization, and disaggregation
are the key slicing enablers to flexibly customize a slice,
automate its life-cycle management, and ease the develop-
ment of network functions and applications with the objective
to accommodate the requirements of an end-to-end (E2E)
service. They constitute the foundation for a multi-service
and multi-tenant architecture, and are realized by applying
the principles of software-define networking (SDN), network
function virtualization (NFV), and cloud computing to the
mobile networks [3].

Several standardization bodies and industry forums outline
the crucial role of an E2E network slicing to fulfill the service-
oriented visions of 5G, e.g., International Telecommunica-
tion Union (ITU) [4], 3GPP [5] and next generation mobile
networks (NGMN) alliance [6]. Also, prominent network
architectures are proposed by 5G initiatives and projects,
e.g., 5G infrastructure public private partnership (5GPPP)
European program [7]. Many architectures and prototypes
have been proposed for core network (CN) slicing [8]–[10]
and radio access network (RAN) slicing [11], [12]. The chal-
lenge of CN slicing has been also addressed by 3GPP, and
realized through a dedicated core network (DECOR) [13] and
evolved DECOR (eDECOR) [14]. Nevertheless, RAN slicing
remains a challenge in providing different levels of isolation
and sharing to allow a slice owner to customize its service
across UP, CP, and control logic (CL) while increasing the
resource utilization of RAN infrastructure. The CL refers to
the logic that makes the decisions for a particular CP/UP
function, e.g., CL decides on user handover and CP performs
the corresponding handover action following the standard-
ized protocol stack. Note that the RAN slicing is different
from legacy RAN sharing notion in which the focus is only on
the efficient sharing on cell sites, passive (e.g., antenna mast)
and active (e.g., transport network infrastructure) network
elements, radio spectrum, network function and application,
and baseband processing. Section II will delve in more details
on the evolution from RAN sharing toward RAN slicing.

To this end, the novel RAN runtime slicing system is
proposed and we summarize our contributions as follows:
• We review the state-of-the-art on network slicing archi-
tecture with the particular focus on the RAN slicing
(Section II);

• We present a RAN slicing architecture design in form
of the RAN runtime slicing system to enable different
levels of isolation and sharing for each slice in terms
of the underlying RAN modules and resources, while
allowing flexible service composition and customization
across UP, CP, and CL (Section III and IV);

• We introduce a practical set of radio resource abstrac-
tions and evaluate the multiplexing gain provided by our
designed algorithms for inter-slice resource partitioning
and accommodation (Section V);

• We implement a concrete RAN runtime slicing system
prototype on top of OpenAirInterface (OAI) [15] and
FlexRAN [16] platforms and then characterize its per-
formance through three case studies (Section VI).

II. RELATED WORK
The network slicing architecture has been surveyed widely
and such concept can be traced back to the idea of network
sharing like the gateway core network (GWCN) defined
by 3GPP via sharing RAN and parts of CN in [17]. Addi-
tional network sharing models are surveyed and summarized
in [18] and [19]. In [20], a slice-based network architec-
ture is proposed with the ‘‘Network store’’ concept as a
platform to facilitate the dynamic network slicing based on

VOLUME 6, 2018 34019

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

TABLE 1. Acronym table.

the VNFs on top of commodity infrastructures. The same idea
is extended in [21] featuring the ‘‘Network and application
store’’ that simplifies the procedure to define each slice.
In [22], the proposed modularized architecture is composed
of several building blocks, each with various sub-functions
to customize the functionalities on per service of slice. The
5G network slice broker notion is investigated in [23] that
resides inside the infrastructure provider and enables the on-
demand multi-tenant slice resource allocation. The generic
slice as a service model is presented in [24] and [25] and
it aims to orchestrate customized network slice as a service

with the mapped network functions based on the service level
agreement (SLA). A cloud-native network slicing approach
presented in [26] allows to devise network architectures and
deployments tailored to the needs of service. Zhang et al. [27]
present the E2E network slicing architecture and elaborate
on the mobility management and resource allocation mecha-
nisms for three major 5G service types, i.e., enhanced mobile
broadband (eMBB), ultra-reliable and low-latency commu-
nication (uRLLC) and massive machine type communication
(mMTC). Also, a joint RAN and transport network slicing
approach facilitating the programmable control and orches-
tration plane is provided in [28].

In terms of the RAN slicing, it is stemmed from the RAN
sharing concept such as Multi-Operator RAN (MORAN)
and Multi-Operator CN (MOCN). The MORAN approach
shares the same RAN infrastructure but with dedicated fre-
quency bands for different operators, while MOCN allows
to also share the spectrum among operators as standardized
by 3GPP in [17]. These approaches can efficiently utilize
available radio resources which are surveyed widely as net-
work virtualization substrate (NVS) in [29] and [30] that
can virtualize radio resources for different resource provi-
sioning approaches in order to coexist several mobile vir-
tual network operators (MVNOs) in a single physical RAN.
The NetShare approach in [31] extends the NVS approach
and applies a central gateway-level component to ensure
resource isolation and to optimize resource distribution for
each entity. In [32], the authors propose the CellSlice archi-
tecture as a gateway-level solution that can indirectly impact
individual BS scheduling decision for slice-specific resource
virtualization. He and Song [33] provide the AppRAN as
the application-oriented framework that defines a serial of
abstract applications with distinct quality of service (QoS)
guarantees. The Hap-SliceR radio resource slicing frame-
work proposed in [34] is based on the reinforcement learning
approach considering resource utilization and slice utility
requirements; however, its main focus is on the resource
customization for haptic communication. On a more general
basis, RAN virtualization [35], [36] provides functional iso-
lation in terms of customized and dedicated control plane
functionalities for eachMVNO. These aforementioned works
consider either radio resource sharing or functional isolation,
while few attentions are given to simultaneously satisfy both
concerns.

To enable the RAN slicing concept, several 5G RAN
design requirements and paradigms shall be fulfilled
as elaborated in [40]. Future RAN design patterns are
explained in [41] along the aspects of cloud computing,
SDN/NFV and software engineering. Moreover, 3GPP men-
tions the RAN slicing realization principles in [42] and [43]
including RAN awareness slicing, QoS support, resource
isolation, SLA enforcement among the others. These prin-
ciples can be enabled through the software-defined RAN
(SD-RAN) concept that decouples CP processing from the
UP processing. Several works argue the level of centralization
of CP functionalities. The fully centralized architecture is

34020 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

TABLE 2. RAN slicing state-of-the-arts comparison.

proposed such as OpenRAN in [44] and as SoftAir in [45]
that may face the challenge of real-time control given the
inherent delay between the controller and underlying RAN.
The SoftRAN [46] architecture statically refactors the control
functions into the centralized and distributed ones based on
the time criticality and the central view requirement. The
SoftMobile approach [47] further abstracts the CP processing
in several layers based on the functionalities in order to
perform the control functionalities through the application
programming interfaces (APIs). As for theUP programmabil-
ity and modularity, the OpenRadio [48] and PRAN [49] are
pioneered to decompose the overall processing into several
functionalities that can be chained. FlexRAN [16] realizes
a SD-RAN platform and implements a custom RAN south-
bound API through which programmable CL can be enforced
with different levels of centralization, either by the con-
troller or RAN agent.

With aforementioned enablers, several RAN slicing works
are initiated. The blueprint proposed as RadioVisor in [37]
can isolate the control channel messages, elementary
resources such as CPU and radio resource to provide the
customized service for each slice. A fully isolation solution as
FLARE is provided in [2] with different virtual base stations
(BSs) representing different slices; however, there is no mul-
tiplexing benefits in the radio resource allocation since the
spectrum is disjointly partitioned. In addition, network func-
tion sharing and multiplexing are not considered in this work.
In [38], the radio resource scheduling of a BS is separated into
the intra-slice scheduler and inter-slice scheduler; however,
the resource abstraction/virtualization is not included and
only a portion of functions are isolated. In [11], a RAN
slicing architecture is proposed that allows radio resource
management (RRM) policies to be enforced at the level of
physical resource blocks (PRBs) through providing the vir-
tualized resource blocks (vRBs) by a novel resource visor
toward each slice. Nevertheless, this work neither consid-
ers function isolation nor resource customization/abstraction
per slice request. In [50], different approaches to split radio
resources are compared in terms of the resource granularity

and the degrees of isolation and customization; however,
the resource multiplexing capability among slices is not
considered. Foukas et al. [12] introduce the BS hypervisor
concept to simultaneously isolate slice-specific control logics
and share the radio resources. Moreover, it can group the
underlying PRBs into vRBs through a set of abstractions and
provides only relevant user information to the correspond-
ing slice. Such work exploits the prerequisites of function
isolation and resource virtualization, while it does not con-
sider customization and multiplexing of CP/UP functions
in both monolithic and disaggregated RAN deployments.
In [39], the proposed RAN slicing framework can base on
the service descriptions to flexibly share RAN functions over
different network layers; however, it only considers physical
resource partitioning without any resource virtualization and
multiplexing.

TABLE 2 summaries the solution level and compares sev-
eral related works in three dimensions: radio resource alloca-
tion model, control plane function, and user plane function.
To serve various flavors of slice, the flexibility and effec-
tiveness of these three dimensions shall be achieved simul-
taneously through a unified RAN slicing solution. To this
end, our proposed RAN runtime slicing system can flexibly
support various slice requirements (e.g., isolation) and elasti-
cally improve multiplexing benefits (e.g., sharing) in terms of
(1) the new set of radio resource abstractions, (2) network ser-
vice composition and customization for modularized RAN,
and (3) flexibility and adaptability to different RAN deploy-
ment scenarios ranging from monolithic to disaggregated.

III. RAN RUNTIME SLICING SYSTEM
We propose a RAN runtime slicing system that provides a
flexible execution environment to run multiple virtualized
RAN instances with the requested levels of isolation and
sharing of the underlying RAN modules and resources.
It allows the slice owners to (a) create and manage
their slices, (b) perform their customized CLs (e.g., han-
dover decision) and/or customized UP/CP processing
(e.g., packet data convergence protocol [PDCP] and radio

VOLUME 6, 2018 34021

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

resource control [RRC] functions), and (c) operate on
a set of virtual resources (e.g., resource block or fre-
quency spectrum) or capacity (e.g., rate) and access to their
CP/UP state (e.g., user identity) that are revealed by the
RAN runtime. The isolation and customization properties
provided by the RAN runtime is in favor of the slice owners
allowing them to control the slice compositions and the
behavior of the underlying RAN module as per service
requirements, while the sharing is in favor of the infrastruc-
ture provider that enables the efficient and dynamic multi-
plexing among multiple tenants over resources, processing,
and states in terms of common RAN modules to reduce the
expenditures. The RAN module refers to a unit that com-
prises a subset of RAN functions and performs a portion of
RAN processing. 3GPP decomposes themonolithic BS archi-
tecture into a three-level disaggregated manner, namely the
radio unit (RU), the distributed unit (DU) and the centralized
unit (CU) as introduced in [42].

The proposed RAN runtime slicing system is shown
in Fig. 2, with the RAN runtime being the core compo-
nent by which each running slice interacts with the RAN
modules to access resources and state, and control the
underlying RAN behavior. From the slice owner perspec-
tive, the RAN runtime provides an execution environment
through which a slice can perform the customized processing,
request the resources, and access the states. At the same time,
it enables infrastructure provider to manage the underlying
RANmodule, enforce the slice-specific policies, and perform
the access and admission control. The RAN runtime by
itself is in charge of managing the life-cycle of instantiated
slices, abstracting the radio resources and states, and applying
changes into the underlying RAN module to customize each
slice. It also implements a set of RAN runtime APIs to
enable the bidirectional interactions between each slice and
underlay RAN module in order to monitor or control the
CP/UP processing, resources, and states while retaining the
isolation among slices.

FIGURE 2. High-level architecture of RAN runtime slicing system.

A slice is formally represented to the RAN runtime by a
slice descriptor that defines the slice service requirements in

terms of the resources, custom processing, and performance.
It is generally provided by the service orchestrator during the
creation or update of a slice, and indicates for each slice how
radio resources are allocated, reserved, preempted, or shared,
how the CP/UP processing is pipelined, and what are the
average expected throughput and latency. The customization
feature provided by the RAN runtime allows a slice owner
to only contain a portion of resources and processing within
the slice boundary and to multiplex the remaining ones into
the underlying RAN module. To realize a flexible tradeoff
between the isolation and the sharing, the states of CP and UP
processing are maintained in a database1 allowing to update
the processing pipeline (e.g., from the customized one to the
multiplexed one or vice versa) on-the-fly, while retaining
the service continuity and isolation on the input/output data
streams. Note that by maintaining the state, the network
functions are virtually turned into the stateless processing
which allows to update the service and to recover the state
through the RAN runtime.
In addition, the overall CP processing of a BS is log-

ically separated into the slice-specific functions and the
BS-common ones to exploit the function multiplexing ben-
efits. Note that the CP processing is separated in terms
of the functionalities. For instance, the master information
block (MIB) and system information blocks (SIBs) are broad-
casted commonly to all users with in a cell and are categorized
into the BS-common one, while the random access process
may be customized by each slice to reduce the latency gener-
ated by the BS-common random access procedure.Moreover,
the control logics of each slice can be developed/deployed
independently tailored to the service requirement. For exam-
ple, the handover control decisions can be programmed to
improve slice-specific quality of experience (QoE) and the
RAN runtime will provide a feasible policy toward underly-
ing RAN module.

In summary, in the proposed RAN runtime slicing model,
RAN functions are pipelined to compose the desired RAN
module, i.e., monolithic or disaggregated RAN instances,
either via multiplexed or customized CP/UP functions and
CLs as per slice requirement. The RAN runtime acts as the
intermediate between the customized slices and the under-
lying shared RAN module and infrastructure providing a
unified execution environment with substantial flexibility to
achieve the required level of isolation and sharing. Finally,
we provide an example with three slices as shown in Fig. 3.
For slice 1, both CP and UP processing are separated into cus-
tomized (RRC, service data adaptation protocol [SDAP] radio
link control [RLC], medium access control [MAC] layers)
and shared ones (Physical [PHY] layers), while slice 2 only
customizes its SDAP function for UP processing. In contrast,
slice 3 relies on the shared CP/UP processing without any
customization. Moreover, the control logics of each slice
can be programmed in a customized manner, e.g., handover

1This is regardless of whether the network function is stateful or
stateless [51], [52].

34022 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

TABLE 3. Slice context maintained by the RAN runtime.

FIGURE 3. Examples for three instantiated slices.

(slice 1), RRM (slice 1 and slice 2) and monitoring (all three
slices). These customized control logics will be accommo-
dated by the shared control logics of the RAN runtime that
will be elaborated in Section IV.

IV. DESIGN ELEMENTS OF RUNTIME
This section provides more details on the main components
of the RAN runtime slicing system, namely the slice data,
RAN runtime services, and RAN runtime APIs.

A. DESIGN CHALLENGE
Based on the proposed RAN runtime architecture, we iden-
tify a number of challenges that the RAN runtime should
resolve:
• Allow each slice to interact with the underlying
RAN and change the CP and UP behaviors that

are dynamically determined during its execution
(section IV-B and IV-C).

• Provide different levels of isolation and sharing to allow
a slice owner to flexibly compose the slice-specific
RAN resources and processing from the multi-
plexed or customized resources and CP/UP functions,
respectively. Note that the multiplexing gain is also
considered for the underlying radio resources and RAN
modules (section IV-C).

• Provide the APIs to enable the slice-specific CP, UP and
control decisions to be realized for both soft and hard
real-time requirements (section IV-D).

Fig. 4 illustrates the three main building blocks of the
RAN runtime: (a) slice data, (b) CP and UP functions to
provide the RAN runtime services, and (c) RAN runtime
API, that are described in following paragraphs.

B. SLICE DATA
Slice data is the entity that stores both slice context and
module context under the control of the context manager
within the RAN runtime. They are used to customize and
manage a slice in terms of the required RAN runtime ser-
vices, resources, processing, state, and users.

The slice context describes the basic information and pre-
requisites to instantiate a slice service and manage corre-
sponding users. It is provided by the service orchestrator
and can be updated by the corresponding slice (cf. Fig. 2)
following the agreement between the slice owner and the
infrastructure provider. TABLE 3 describes the slice context
informationmaintained by theRAN runtime in the slice data.
The module context includes the CP and UP state infor-

mation (belongs to the slice owners), module life-cycle man-
agement primitives such as start, configure, and stop service
(belongs to the network function/application provider), and
resources (belongs to the infrastructure provider). Unlike
input or output data streams of the RAN module that can be
pipelined, the control and data state are maintained separately
by the RAN runtime and revealed to each slice in a real-
time manner to allow the efficient and isolated slice-specific
processing. In addition, such state may be shared among mul-
tiple slices subject to the access control, for instance, when

2The 1:n:m relation of user-to-slice-to-BS mapping will make use of RAN
runtime CP APIs for network slice selection operation.

VOLUME 6, 2018 34023

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 4. Architecture of the RAN runtime slicing system.

TABLE 4. BS-common and user-specific functions.

coordinated processing and/or decision making are required
in the case of the handover decision of a user belonging to
two or more slices. Note that in general case, states only
include the user-specific functions in RRC CONNECTED
(and new RRC INACTICE-CONNECTED [53]) state, and
not necessarily the BS-common functions that are executed
independently from the number of instantiated slice, i.e., even
with no instantiated slices or when operating in RRC IDLE
mode (cf. TABLE 4).

C. RAN RUNTIME SERVICES
In the following, we elaborate on five RAN runtime ser-
vice that can be provisioned for each slice shown in Fig. 4,
i.e., context manager, slice manager, virtualization manager,
common control applications and forwarding engine. To uti-
lize these RAN runtime services, each slice is registered and
identified with its identity over the RAN runtime among
disaggregated RAN entities

1) CONTEXT MANAGER
This service manages both slice context and module con-
text by performing the CRUD3 operation on the slice data.

3CRUD includes four basic operations: create, read, update, and delete.

To create a slice context, the context manager firstly performs
the slice admission control based on the provided network
slice descriptor (NSD) that defines the required processing,
resources, and states (as agreed between the slice owner and
the infrastructure provider). Upon the slice admission control,
module context is used by the context manager to register
slice-specific life-cycle primitives to the slice manager and
the requested resources and/or performance to the virtualiza-
tion manager. The former allows custom CP/UP processing
to be applied on the input/output data streams, while the
latter enables the resource partitioning and abstraction to
be performed among multiple slices. At this stage, a slice
can start to consume the RAN runtime services not only to
manage its service but also to interact with the underlying
RAN module through the RAN runtime CP/UP APIs. Then,
the context manager can handle the real-time CP/UP state
informationwithin the slices and the underlying RANmodule
so as to keep the slice data in-sync with the instantaneous
state.

Note that many slices can be deployed at a single RAN
runtime following the multi-tenancy approach to enable
scalable service deployment. However, themaximum number
of slices that can be deployed depends on (1) the overhead

34024 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

of the RAN runtime, (2) the available resource in terms
of compute, memory and link, (3) the requested SLA and
resource by each slice, (4) the assurance percentage to
over-provision resources, and (5) the workload of each
slice.

2) SLICE MANAGER
The slice manager entity is responsible for managing the life-
cycle of a slice when instructed by the slice owner or the
service orchestrator. Through the slice manager, slice life-
cycle operations can be triggered, which in turn enables both
slice owner and infrastructure provider to control and update
slice service definition as per need and agreement. Based
on the service definition and slice context, the slice man-
ager determines the CP/UP processing chain for each slice
and each traffic flow, and programs the forwarding engine
through a set of rules allowing to direct the input and output
streams across the multiplexed processing operated by under-
lying RANmodule and the customized processing performed
by the slice. Unlike the context manager that handles the
local slice context, the slice manager operates on an E2E
RAN service in support of service continuity when the slice
service definition is updated. For example, a slice owner that
performs the customized UP processing can opt in for the
multiplexed pipelined processing to reduce its OPEX, which
causes changes in its slice service definition. In addition,
when the slice requirements are violated (e.g., performance
degradation), the slice manager may change the number of
requested resources, resource allocation type, resource parti-
tioning period, or even update the service definition to comply
with the service requirements.

Slice manager is also in charge of taking a set of actions
when detecting any conflicts among multiple slices based on
a set of policy rules. Such conflict can happen at the level
of slice when service definition is changed or at the level
of user when it belongs to multiple slices (e.g., 1:n or m:n
user-slice relationships). For instance, reserving the resources
and/or changing the resource allocation type of a slice may
violate the performance of another slice that requires a high
bandwidth. Another example is when different user mea-
surement events are requested by different slices which will
require a coordination to reconfigure the measurement with
the largest common parameters and the least denominator.
To this end, such manager relies on a set of policy rules
defined by the infrastructure provider to decide whether
to preempt one slice, reject another slice, or multiplex the
requests.

3) VIRTUALIZATION MANAGER
This RAN runtime service is in charge of providing the
required level of isolation and sharing to each slice. It par-
titions on resources and states based on the slice and module
contexts, abstracts the physical resources and states to/from
the virtualized ones, and reveals the virtual views to a slice
that is customized and decoupled from the exact physical
resources and states. In the following paragraphs, we focus on

the resource aspect and omit state partitioning and abstraction
as they can be realized through some well-known approaches
such as database partitioning and control access.

a: INTER-SLICE RESOURCE PARTITIONING
Resource partitioning is a periodic process that happens in
every allocation window of T [12], [29]. It allows to dis-
tribute resources among multiple slices based on the resource
requirements expressed in the slice context that is stored in
the slice data. Radio resource descriptor has three elements:
(1) resources type defines whether the requested resources are
of type physical/virtual radio resources in time and frequency
domain,4 or capacity in terms of the data rate, (2) abstrac-
tion type that maps physical radio resource allocation types,
namely fixed position, contiguous, non-contiguous, or min-
imum resource block groups (RBG), to the virtual RBGs
(vRBG) or virtual transport block size (vTBS), and
(3) resource structure that contains the applicable frame
structure numerologies in time and frequency domains.
Specifically, different numerologies in terms of the transmis-
sion time interval (TTI) and the sub-carrier spacing (SCS) can
be applied depending on the deployed frequency band and/or
maximum user mobility in order to mitigate the impacts of
wireless channel non-idealities (e.g., Doppler shift due to the
user mobility) for each slice service [54]. For instance, only
one type of SCS, i.e., 15 kHZ, is applied in LTE system,
while there are five applicable SCSs, i.e., 15, 30, 60, 120, and
240 kHz, defined by 3GPP in [55] with their corresponding
frame structures.

Besides aforementioned radio resource requirements pro-
vided by the slice owner, the resource allocation shall also
respect the policy defined by the infrastructure provider, for
instance, the allowable resource allocation types of under-
lying radio access technologies (RATs). Take the down-
link (DL) resource allocation of LTE system for instance,
there are three types of resource allocation: (i) Type 0 allo-
cation is based on the minimum granularity as resource
block group (RBG) that comprises multiple RBs, (ii) Type 1
categorizes RBGs into different subsets and only allocates
RBs within the same subsets, and (iii) Type 2 allocates con-
tiguous virtual RBs (vRBs) that can be physically contigu-
ous (localized vRB) or non-contiguous (distributed vRB).
For uplink (UL), there are two resource allocation types:
(a) UL type 0 allocates PRBG in a contiguous manner, and
(b) UL type 1 allocates non-contiguous RBGs within two
distinct clusters. Then, four abstraction types are introduced
with RBG as the minimum resource granularity, and their
respective mapping to the DL/UL resource allocation types
are shown in TABLE 5. Note that these DL/UL resource
allocation types of the LTE system are the basis of the ones
in 5G; hence, TABLE 5 will be further expanded to new allo-
cation types. Moreover, like the virtual capacity in TABLE 5,
other types of resource can also be abstracted, e.g., virtual
latency, to match further service requirements in terms of

4It can be extended to the dimensions of component carrier and antenna.

VOLUME 6, 2018 34025

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

TABLE 5. Mapping between resource abstraction type and allocation type.

maximum allowed latency. Note that such virtual latency
abstraction can be mapped to any resource allocation types
(i.e., DL type 0/1/2 and UL type 0/1 of LTE system) but
with a higher priority and a shorter allocation window than
vTBS Type 0. In summary, the proposed vRBG and vTBS
form a superset of legacy resource allocation types and they
provide the required flexibility for both inter-slice resource
partitioning and accommodation as detailed in Section V.

Fig. 5 illustrates an example of resource partitioning
among four slices over an allocation window T with differ-
ent types of abstraction. The proposed resource abstraction
scheme allows the RAN runtime to dynamically change
the mapping between different resource allocation types,
for instance, changing allocation type 0/1/2 to allocation
type 0/2 for slice 3 and 4 in Fig. 5. Such change can increase
the flexibility for the infrastructure provider in resource allo-
cation and do not impact the requested abstraction type by the
slice owner.

FIGURE 5. Resource partition with different abstraction types.

b: RADIO RESOURCE ABSTRACTION
Based on aforementioned inter-slice resource partitioning,
all available radio resources can be fragmented following
different abstraction types. Such resource abstraction serves
for two purposes: (1) isolate resources by presenting a virtual
view of the resources that is decoupled from the exact physi-
cal locations, and (2) increase multiplexing gain by adjusting
allocation types to share the unused resources. The former
simplifies the inter-slice resource partitioning operation and
prevents other slices to access or even infer the resources
allocated to others (in favor of slice owner), and the latter
allows to increase the resource utilization efficiency (in favor

of infrastructure provider). More specifically, we can observe
in Fig. 6a that no other slices can utilize the unallocated
resources even the traffic load variates from time to time
when slice resources are notmultiplexed. However, in Fig. 6b,
the unallocated resources due to the time-varying load can
be multiplexed to deploy more services at a single RAN
infrastructure. Such multiplexing gain across tenants is antic-
ipated by the infrastructure provider when deploying scalable
numbers of slices.

FIGURE 6. Multiplexing of slice resources. (a) Without resource
multiplexing. (b) With resource multiplexing.

Take the 3MHz case of LTE system as an example
in Fig. 7a, where the total PRB is 15 and the physical RBG
(PRBG) granularity is 2 PRBs, giving a total of 8 PRBGs
and the last PRBG only contains 1 PRB. These PRBGs
are firstly partitioned for each slice based on the number
of required resources and then they are abstracted accord-
ing to the abstraction types, i.e., fixed, contiguous, non-
contiguous, minimum granularity. Afterwards, the resulted
PRBGs, vRBGs and vTBSs are provided to each slice for the
intra-slice resource scheduling. For instance, fixed position
resources is requested by slice 1 and hence no virtualization
is performed (i.e., PRBG). While slice 4 requests a number of
capacity, and thus its PRBGs are abstracted into vTBS with
the capacity value computed from the measured channel state
information. The PRBGs of slice 2 and 3 are virtualized into
vRBGs via abstracting the exact frequency/time locations as
well as other dimensions (e.g., carrier frequency) and are
pooled together to maintain the relative frequency depen-
dencies among the virtualized resources without revealing
any absolute physical relations. Take the slice 3 that uses
resource allocation type 0 as an example, only PRBGs within
the same subset can be scheduled at the same time. In that
sense, vRBGs are pooled in order to indicate such exclusive
condition between vRBG pool 1 (i.e., PRBG0, PRBG6) and

34026 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 7. Different stages for virtualized resources slicing. (a) Stages
partition PRB to vRBG pool. (b) Stages accommodate vRBG to PRBG.

vRBG pool 2 (i.e., PRBG 5), and thus the intra-slice resource
scheduler of slice 3 will allocate resources to each user from
either vRBG pool 1 or vRBG pool 2.

c: RADIO RESOURCE ACCOMMODATION AND
MULTIPLEXING
After the radio resource partitioning and abstraction, each
slice can perform the intra-slice resource scheduling to its
associated users and the scheduling decisions will be accom-
modated into PRBs as shown in Fig. 7b. Such accommo-
dation does not necessary follow the partitioned resources
of the inter-slice resource partitioning (cf. Fig. 7a) to better

utilize available resources. For instance, the vRBG1 for both
slice 2 and slice 3 are accommodated to their vRBG0 in the
partitioning stage respectively so as to have a larger contigu-
ous unallocated region (i.e., PRBG4 to PRBG6) that can be
mapped to a larger SCS (e.g., 30Hz) and be shared to other
slices. For instance, the unallocated resource can be shared
to other slices (e.g., vTBS2 of slice 4) that request more
resources5 or to some new services. Moreover, the preemp-
tion mechanism can also be applied by removing the inter-
slice scheduling decisions of other low-priority slices to boost
the perceived performance of high-priority slices.6 Finally,
the RAN runtime will allocate the corresponding control
channel elements (CCEs) to transport the DL/UL control
information (CI) based on aforementioned DL/UL resource
allocation types. These CIs are used to indicate the user
about the positions of allocated PRB as well as the neces-
sary physical layer information (e.g., modulation and coding
scheme [MCS], new data indication) for successful user data
reception or transmission. With a limited control region to
accommodate CCEs, the RAN runtime can also leverage the
unallocated resources to carry these CIs.

4) COMMON CONTROL APPLICATION
The common control applications provide a shared control
logics for multiple slices. It can accommodate the customized
control logics from different slice-specific control applica-
tions, resolve their conflicts, and enforce a feasible policy to
underlying RAN module. For instance, the control logics of
two customized RRM applications of slice 1 and slice 2 in
Fig. 3 will leverage the inter-slice conflict resolution and
control logics accommodation to provide their slice-specie
control logics through the cell-common controller. Note that
the policy for inter-slice conflict resolution is provided by
the slice manager. Finally, the customized control logics of
each slice will be applied in a unified manner toward the
underlying RAN.

5) FORWARDING ENGINE
The forwarding engine manages the input and output streams
of CP and UP, or simply data streams, between RAN
and users across multiplexed and/or customized processing.
Fig. 8 shows an example of how the forwarding engine
manages the UP processing chain in the DL direction
(i.e., fromRAN to user) across several network layers: service
data adaptation protocol (SDAP), PDCP, radio link control
(RLC), medium access control (MAC), and physical (PHY).7

Input flows of the RAN module for each slice are forwarded
either to the customized (i.e., slice 1 and 2) or the multiplexed
(i.e., slice 3) processing chain based on the rules applied
by the slice manager. After the first stage of processing,
the output flows are further forwarded to the corresponding

5Such multiplexing may not be allowed by slices with fixed position.
6The preemption characteristic shall be described in the slice context

beforehand.
7Further function decompositions within the layer are possible like split-

ting the PHY into high-PHY and low-PHY.

VOLUME 6, 2018 34027

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 8. Forwarding engine and UP processing chain.

FIGURE 9. UP forwarding path in three-tier disaggregated RAN (CU, DU, RU).

entry points in the multiplexed chain (i.e., slice 2) or the
output endpoint (i.e., slice 1). Note that more complex for-
warding rules can be applied if the per-function customization
is required, for instance, the customized MAC function to
manage the intra-slice scheduling while multiplexing other
functions. Further, the per-flow customization within a slice
can be applied in order to differentiate the customized pro-
cessing for flows with different QoS requirements. Such
forwarding engine can leverage the match-action abstraction
following SDN principles to establish the input/output for-
warding path between the RAN runtime and slices in both
directions [56], [57].

Furthermore, the forwarding engine is able to direct data
not only in a monolithic RAN but also in a disaggregated
RAN, where a single RAN module is decomposed into
CU, DU, and RU with several possible functional splits in
between [42]. Note that in the proposed RAN slicing model,

RAN disaggregation and functional splits are controlled
and maintained by the infrastructure provider, whereas the
RAN service customization is managed by the slice owner.
Fig. 9 shows the input/output forwarding path between CU,
DU, and RU to compose a distributed UP processing chain
using 3GPP function split [42] option 2 between CU and
DU and option 6 between DU and RU. The input and output
endpoints of RAN module will perform the infrastructure-
dependent packet processing like encapsulation and switch-
ing/routing for fronthaul/midhaul transportation which is
transparent for the slice owner.8 Moreover, when adopting the
flexible function split and placement [58], [59], the CP/UP
state information has to be efficiently shared among dis-
aggregated RANs to flexibly deploy and chain functions

8It can be customized for each service but needs the agreement between
the slice owner and the infrastructure provider.

34028 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

TABLE 6. UP network functions and the decoupled states.

in between. TABLE 6 summarizes the main UP state infor-
mation that shall be maintained and shared in the slice data.
Also note that these aforementioned chains are applied for
the downlink direction, while the same forwarding engine can
be utilized for uplink direction with different chain composi-
tions.

D. RAN RUNTIME APIs
The RAN runtime APIs are exposed both in the north-bound
toward each slice and in the south-bound toward the under-
lying RAN module, allowing to manage a slice and control
the underlying RAN module (cf. Fig. 4). In the north-bound,
the RAN runtime slice APIs provides interfaces and com-
munication channels to connect a slice to the RAN runtime
as a separate process, whether it is local or remote. Hence,
each slice can be executed in isolation from each other either
at the host or guest level leveraging the well-know operating
system (OS) and virtualization technologies, such as con-
tainer or virtual machine. Such north-bound APIs allow the
slice owner to register and consume the aforementioned RAN
runtime services, manage its service in coordination with
the RAN runtime and service orchestrator, and customize
the CP/UP processing. In the south-bound, the RAN runtime
CP/UP APIs enable a slice to take the control of its service by
requesting virtualized/physical resources, applying its control
decisions, and accessing the virtualized state information.
When a slice is deployed locally, the RAN runtimeAPIs may
exploit the inter-process communication mechanism to allow
a slice to perform the real-time operation (e.g., MAC schedul-
ing function) with hard guarantees (cf. slice 1 in Fig. 2).
Remote slices, on the other hands, communicate with the
RAN runtime through the asynchronous communication
interface and can perform the non-time-critical operation
(e.g., PDCP function) like slice 2 and 3 in Fig. 2.

E. SUMMARY
In summary, the five proposed RAN runtime services can
provide different levels of isolation and sharing and the cor-
related message flows between them are depicted in Fig. 10
Note that the message flows between these services and the
slice data are omitted for simplicity. These message flows
can be combined with other knownmobile network messages
(e.g., RAN or CN domain) to provide a complete set of slice-
specific processing, e.g., the customized handover process
between BSs tailored to slice service requirements. Further,
they can be utilized for the service orchestration and man-
agement purpose to orchestrate virtualized infrastructures
and VNFs for newly-instantiated services. More specifically,
they can be utilized by ETSI Management and Orchestra-
tion (MANO) architectural framework to collect functional
blocks, data repositories and related interfaces.

V. RESOURCE PARTITIONING AND ACCOMMODATION
In this section, we focus on the inter-slice radio resource
partitioning and accommodation, as the intra-slice resource
scheduling can utilize several known scheduling algorithms,
such as proportional fair or round robin, configured by the
slice orchestrator [11] to provide slice-specific customiza-
tion. Specifically, in this section, we provide the algorithm
of the inter-slice partitioning and accommodation, evaluate
its performance, and formulate the overall multiplexing gain.

A. INTER-SLICE RESOURCE PARTITIONING
The radio resources partitioned by the RAN runtime is
periodically within an allocation window T (in millisecond
[ms]) in the time domain and F (in Hz) in the frequency
domain. These resources can be specifically quantized into
a resource grid map Map with Tb TTIs in time domain
and Nb PRBs in the frequency domain with respect to the

VOLUME 6, 2018 34029

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 10. Message flows between RAN runtime services.

base SCS (SCSb) used by the infrastructure provider, e.g.,
a 20MHz LTE radio bandwidth in a 10ms allocation window
is separated into 100 PRBs in frequency domain and 10TTIs
in time domain. There are |S| slices that request the radio
resources within the set S =

{
s1, · · · , s|S|

}
. For the k-th slice

(i.e., sk), its radio resource requirements include: (a) SCSk set
comprises the applicable SCSs, (b) Tk and Nk are the num-
ber of requested resource in time (ms) and frequency (Hz)
domain respectively, and (c) gk is the granularity which can
be contiguous, non-contiguous, fixed position (with its fixed
starting position denoted as FFk and FTk in frequency and
time domain) or minimum granularity (with its request data
rate as Rk) as mentioned in TABLE 5. The fixed position
granularity inherently isolates resources as its partitioned
resources are physical ones without any virtualization. The
contiguous one is more suitable for quasi-constant traffic
patterns (e.g., streaming) since it can reduce the latency and
minimize the CI signaling overhead. The non-contiguous one,
on the other hand, accommodates better for variable traffic
patterns as it can allocate fragmented resources. The mini-
mum granularity can be utilized by those slices that request
only capacity (i.e., vTBS), which allowing for all feasible
partitioning.

An example of the resource partitioning is depicted
in Fig. 11 with 7 slices (i.e., |S| = 7). Each slice has
different resource granularities: g1 = Fix, g2 = g3 = Con,
g4 = g5 = NonCon, and g6 = g7 = Min. The largest rectan-
gular of the unallocated resource is highlighted, which is an
important criterion for further resource multiplexing. Since
such largest unallocated rectangular region may potentially
fit in any data transportation numerology in time (i.e., TTI)

and frequency domain (i.e., SCS), and can be either shared by
different slices or utilized for CI transportation and BS broad-
cast information. Additionally, such radio resource defrag-
mentation can provide a better slice performance in terms
of delay and throughput. It is observed from Fig. 11a and
Fig. 11b that although both resource partitions can satisfy the
requested resources among all seven slices, while only the
latter one can achieve a larger unallocated rectangular region.
Such compact resource packing in Fig. 11b utilizes different
resource granularities, i.e., s4 and s5 can be discontinuous in
frequency and time separately, and s6 and s7 can leverage the
minimum granularity.

Through such observation, the inter-slice resource parti-
tioning has two complementary goals: (a) satisfy as many
slice resource requests as possible, and (b) maximize the size
of largest unallocated rectangular region. Practically, we can
form such combinatorial objective function as

max

∑
sk∈S

Sat [k]+ w ·MaxUn (Map)

, (1)

where Sat [k] ∈ {0, 1} is the satisfactory binary indicator for
the k-th slice (e.g., Sat [k] = 1,∀sk ∈ S in Fig. 11a and 11b
as all slices are satisfied), MaxUn (·) function outputs the
largest unallocated rectangular in the resource grid allocation
map Map (e.g., MaxUn (Map) of Fig. 11b is twice as the
value of Fig. 11a), and a weight w can balance these two
objectives. Such problem can be mapped to the NP-hard two-
dimensional knapsack problem, which makes the complexity
to find the optimal solution be non-polynomial [60], [61].
Hence, finding the optimal inter-slice resource partition is

34030 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 11. Examples of radio resource partitioning. (a) Contiguous
granularity. (b) Slice-specific granularity.

cost and time prohibitive when the number of slice increases.
Prior works provide the heuristic algorithms [62], [63],
but they only focus on one special case that considers a
single SCS with contiguous granularity. We hereby propose
the granularity-based heuristic algorithm that can sequen-
tially partition resources as explained in the following
paragraphs.

1) PROPOSED ALGORITHM
The overall proposed algorithm is presented in Alg. 1 that
sequentially prioritizes the k-th slices, i.e., sk , based on
the prioritization policy (i.e., priority) and then partitions
resources according to its granularity, i.e., gk . As each slice
can support more than one SCSs, the remapping operation
from the base SCS (SCSb) to another SCS (scs) is necessary
for the number of requested resources (Fscs, Tscs) and fixed
position (FFscs,FTscs) through the scsMap (·) function shown
in Alg. 1. Note that the requested data rate Rk can be mapped
to the number of requested radio resources using the per-slice
channel state information (CSI), i.e., CSIk9 as well as the
corresponding MCS index. Moreover, the granularity-based
partitioning algorithms include the ones for the fixed position
(Alg. 2), contiguous (Alg. 3), non-contiguous (Alg. 4) and
minimum granularity (Alg. 5). Afterwards, a resource grid
remapping through the RGMap (·) function in Alg. 1 aims to

9It can base on the average CSI among its served users.

map the resource grid from the selected SCS for the k-th slice
(i.e., SCS [k]) to other SCSs. Finally, all satisfied slices after
partitioning are included in the set Sp.
When applying the fixed position algorithm (cf. Alg. 2),

the FindFRe (·) function checks the feasibility of the fixed
position allocation (i.e., starts from FFscs [k] and FTscs [k] in
frequency and time domain respectively) and outputs 1 when
feasible (0 otherwise). While the FindRe (·) function is used
in the contiguous algorithm (cf. Alg. 3) and it outputs a
set of 2-tuples comprising all possible contiguous positions
in frequency and time domain, respectively. Specifically,
PF set comprises first entry of the 2-tuple set, while PT set
includes the second entry. Then, we pick the position with
the largest unallocated rectangular using the aforementioned
MaxUn (·) function over the resource grid allocation map.
In non-contiguous algorithm (cf. Alg. 4), the FindUnRe (·)

function outputs all available positions in a set of 2-tuples
(i.e., PF set includes the first entries and PT set contains
the second entries) without requiring a contiguous portion.
Then, we allocate sequentially in time domain following
the decreasing order of available resources over the fre-
quency domain using the sorting function sort (·) shown in
Alg. 4. Specifically, all possible time indexes (i.e., from 1 to
Tb · scs

SCSb
) are ranked based on the number of available fre-

quency domain resource (i.e., aF). The minimum granular-
ity algorithm of Alg. 5 also applies the same FindUnRe (·)

function to find all available positions and uses InMaxRec (·)

to check that these available positions are within the largest
rectangular region (output 1 in In) or not (0 otherwise).
Finally, all possible positions (i.e., indexed from 1 to Size)
are sorted in the ascending order based on whether they are
in the maximum rectangular or not (i.e., In) for later resource
partitioning.

2) COMPLEXITY ANALYSIS
The overall inter-slice resource partition algorithm of Alg. 1
is composed of four granular-specific ones as shown from
Alg. 2 to Alg. 5. In following paragraphs, we firstly analyze
the complexity of each granular-specific algorithm and then
summarize the overall complexity.

In Alg. 2, the most complex operation is to find the
largest rectangular in the resource grid, i.e., MaxUn (·),
for all available SCSs, and thus its complexity equals to
O (|SCS| · (Nb × Tb)). In Alg. 3, the complexity is propor-
tional to the number of available SCSs, the size of possible
locations (i.e., |PF |), and the operation to find the largest
rectangular. In the worst case, |PF | equals to the size of
resource grid; therefore, the complexity of Alg. 3 is writ-
ten as O

(
|SCS| · (Nb × Tb)2

)
. The complexity of Alg. 4

depends on the operation of finding the largest rectangular
as well as the sorting operation. The former complexity is
proportional to (Nb × Tb) as mentioned beforehand, while
the latter is proportional to T 2

b in the worst case as there
are Tb elements to be sorted. Thus, its complexity will be
max

(
O (|SCS| · (Nb × Tb)) ,O

(
|SCS| · T 2

b

))
. Furthermore,

the most complex operation of Alg. 5 is to sort all available

VOLUME 6, 2018 34031

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 12. Examples of inter-slice resource accommodation.
(a) Intra-slice scheduling results. (b) Compact inter-slice accommodation.

positions, i.e., |PF | elements, and thus the complexity of such
algorithm can be written as O

(
|SCS| · (Nb × Tb)2

)
.

In summary, the complexity of the overall algorithm
in Alg. 1 is proportional to (1) the number of slices,
i.e., |S|, (2) the slice prioritization policy, and (3) the high-
est complexity among the aforementioned four algorithms.
Note that only constant time will be spent when a pre-
defined priortization policy is applied (e.g., according to
the SLAs).10 Thus, the overall complexity is written as
O
(
|S| × |SCS| × (Nb × Tb)2

)
. Further, as the number of eli-

gible SCS numerologies is limited, e.g., up to 5 allowed SCSs
defined by 3GPP in [55], we can further write the overall
complexity as O

(
|S| × (Nb × Tb)2

)
.

3) PERFORMANCE EVALUATION
As mentioned before, the sequential resource partitioning is
based on the prioritization policy (i.e., priority in Alg. 1);
hence, high priority slices will impact the available positions
for low priority ones. In the following, the performance of
five different priortization policies are evaluated:

1) Optimal: Search all possible permutations to get
the best ordering in terms of the objective function
in Eq. (1).

2) Random: Randomize the slice ordering in each alloca-
tion window T .

10Extra complexity is required when adopting dynamic search in the
policy.

Algorithm 1 Inter-Slice Resource Partition Algorithm
Input : Tb and Nb are resource grid size in time and

frequency
S is the set of slices

Output: Map is the resource grid allocation map
SCS is the set of applied SCS of each slice
Sp is the satisfied slice set

begin
Sp = ∅; /* Initialize the satisfied slice set */
foreach sk ∈ S do
Sat [i] = 0; /* Initialize satisfaction index of each
slice */
SCS [i] = 0; /* Initialize select SCS of each slice
*/
foreach scs ∈ SCSk do

/* Map request resource and fixed position to all
SCSs.*/
[Fscs [i] ,Tscs [i]]=
scsMap (Nk ,Tk ,Rk ,CSIk , scs, SCSb);
[FFscs [i] ,FTscs [i]]=
scsMap (FFi,FTi, 0, 0, scs, SCSb);

foreach scs ∈ SCS do
for i = 1 to Nb · scs/SCSb do

for j = 1 to Tb · SCSb/scs do
Mapscs [i] [j]=0; /* Reset resource grid
allocation */

while isempty (S) == false do
sk = prioritize (S, priority); /* Get most
prioritized slice */
switch gk do

case Fix
[Sat [k] , SCS [k] ,Map]= FPos (sk ,Map);
(cf. Alg. 2)

case Con
[Sat [k] , SCS [k] ,Map] = Con (sk ,Map);
(cf. Alg. 3)

case NonCon
[Sat [k] , SCS [k] ,Map]=NCon (sk ,Map);
(cf. Alg. 4)

caseMin
[Sat [k] , SCS [k] ,Map] = Min (sk ,Map);
(cf. Alg. 5)

if Sat [k] == 1 then
Map=RGMap(Map, SCS [k]); /* Remap grid to
all SCSs */
Sp = SetUnion

(
Sp, sk

)
; /* Add slice into

satisfied set */
S = SetDiff (S, sk); /* Remove prioritized slice */

3) Greedy: Use the greedy method to prioritize the slice
that can generate the largest unallocated rectangular.

4) Granularity: Sort slices based on the their granularities
in the following order: fixed position, contiguous, non-
contiguous, and minimum granularity.

34032 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

Algorithm 2 Fixed Position Resource Partition (FPos)
Input : sk is target slice

IMap is the input resource grid allocation map
Output: Sat is the slice satisfaction index

SCS is the selected SCS for the target slice
OMap is the output resource allocation map

begin
MaxRec = 0; /* Initialize the maximum unused
rectangular */
Sat = OptSCS = 0; /* Initialize satisfaction index
and select SCS */
foreach scs ∈ SCSk do

if
FindFRe(Fscs[k],Tscs[k],scs,IMapscs,FFscs[k],FTscs[k])
then
Sat = 1; /* Current slice is satisfied*/
tMap = IMapscs;
for i = 0 to Fscs [k]− 1 do

for j = 0 to Tscs [k]− 1 do
tMap [i+ FFscs [k]] [j+ FTscs [k]] = k;

tRec = MaxUn (tMap); /* Find max unused
rectangular */
if tRec > MaxRec then
SCS = scs;
MaxRec = tRec;
OMapscs = tMap;

5) Granular & Greedy: Use the two-sequential sorting,
in which the first sort is based on granularity and
the second is based on the greedy method.

The evaluation results are shown in Fig. 13 with 7 slices.
Each slice can serve a number of users and it requests a time-
varying uniformly-distributed aggregated resources with
Nk ∼ Uniform (1.6, 9)MHz and Tk ∼ Uniform (1, 10)ms,
∀sk ∈ S. Note that the granularities of all seven slices are the
same as the ones shown in Fig. 11, and the applicable SCS
set for the k-th slice is SCSk = {15, 30, 60} kHz, ∀sk ∈ S .
As for the RAN infrastructure, the radio bandwidth is 20MHz
with Fbase = 15 kHz and allocation window is 10ms with
Tbase = 1ms. Fig. 13a then shows the slice satisfaction ratio
for all seven slices or for each granularity type (i.e., fixed,
contiguous, non-contiguous and minimum). The optimal pol-
icy reaches the highest satisfaction ratio (82% on average for
all 7 slices) but with much higher time complexity (e.g., 1 day
for the considered scenario). From the figure, one can observe
that theGranular&Greedy one (81%) outperforms the others
and is very close to the optimal policy as it not only follows
the elasticity of resource granularity (i.e., granularity) but also
seeks for the largest unallocated region (i.e., greedy) at the
meantime.

Moreover, the resource grid utilization ratio over the
resource grid allocation map Map is shown in Fig. 13b
with three components: (1) the partitioned resources,

Algorithm 3 Contiguous Resource Partition (Con)
Input : sk is target slice

[-2pt] IMap is the input resource grid
allocation map

[-2pt]
Output: Sat is the slice satisfaction index

[-2pt] SCS is the selected SCS for the target
slice

[-2pt] OMap is the output resource allocation
map

[-2pt]
begin
MaxRec = 0; /* Initialize the maximum unused
rectangular */
Sat = SCS = 0; /* Initialize satisfaction index and
select SCS */
foreach scs ∈ SCSk do

/* Find possible positions PF /PT in time/freq
domain */ [PF,PT] =
FindRe (Fscs [k] ,Tscs [k] , scs, IMapscs);
for p = 1 to |PF | do
Sat = 1; /* Current slice is satisfied*/
tMap = IMapscs;
for i = 0 to Fscs [k]− 1 do

for j = 0 to Tscs [k]− 1 do
tMap [i+ PF [p]] [j+ PT [p]] = k;

tRec = MaxUn (tMap); /* Find max unused
rectangular */
if tRec > MaxRec then
SCS = scs;
MaxRec = tRec;
OMapscs = tMap;

(2) the largest unallocated rectangular, and (3) other unallo-
cated resource in box plot. Both random and greedy policies
have a larger unallocated rectangular ratio (20% and 23% on
average) at the cost of a significantly lower slice satisfaction
ratio (73% and 71% on average) shown in Fig. 13a, i.e., more
unallocated resources are due to the lower slice satisfaction
ratio. Conversely, the percentage of the largest unallocated
rectangular is close between the case that uses the optimal
policy (12%) and the case that applies theGranular &Greedy
policy (10%), which confirms the performance of the pro-
posed algorithm. Finally, theGranular &Greedy policy takes
much less execution time, i.e., polynomial time, to provide
such close performance, which justifies its efficiency and
applicability.

B. RADIO RESOURCE ACCOMMODATION
After the inter-slice partitioning and intra-slice scheduling,
the RAN runtime can accommodate these scheduling deci-
sions to physical resources and generate the corresponding
CI (cf. step f in Fig. 7b). In Fig. 12a, an example is shown
based on the outcomes of inter-slice partitioning (cf. Fig. 11a)

VOLUME 6, 2018 34033

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 13. Performance of different slice priortization policies in resource partitioning. (a) Average slice satisfaction ratio.
(b) Resource grid occupation ratio.

as well as intra-slice scheduling. The intra-slice scheduling
decisions are marked with the gray portions as the sched-
uled parts, while the transparent portions are the unsched-
uled resources (i.e., unused by the intra-slice scheduler).
However, a larger unallocated rectangular is formed
in Fig. 12b via accommodating the per-slice scheduling
results in a more compact way. Such compactness relies
on the resource abstraction mechanism as mentioned in
Section IV-C.3. Through such scheme, the inter-slice accom-
modation is not necessary mapped to the same physical
partitioned resource except for the slices that request the fixed
position granularity, i.e., gk = Fix.
Like the inter-slice resource partitioning, our objective here

contains the two complementary goals in (1). Hence, we can
apply almost the same algorithm as in Alg. 1 with following
modifications: (1) adopt the SCS selected in the inter-slice
resource partitioning, i.e., SCS [k], ∀sk ∈ S outputted from
Alg. 1, (2) prohibit other slices to utilize the resources parti-
tioned for the fixed-position granularity slice, and (3) replace
the number of requested resource (i.e., Tk and Nk) with
the number of scheduled resource (i.e., T ak and N a

k are the
number of scheduled resources in time and frequency domain
for sk). The aggregated traffic arrival rate of each slice
is assumed to be proportional to the number of requested
radio resource (i.e., Nk × Tk) that is further multiplied

with a time-varying uniformly-distributed traffic arrival
ratio p.

We hereby evaluate the performance of two slice pri-
ortization policies, i.e., Optimal, Granular & Greedy,
in Fig. 14 considering two cases: (a) no resource abstraction
(denoted with NA in Fig. 14), and (b) resource abstraction
is applied except for fixed-position slices (denoted with A
in Fig. 14). In the former case, all intra-slice scheduling
decisions are accommodated within the partitioned resource
(e.g., Fig. 12a), while the latter allows more freedom when
accommodating (e.g., Fig. 12b). In Fig. 14a, we can see
that no abstraction case only shows ∼ 2% increasing in
terms of the largest unallocated rectangular when compar-
ing with the Granular & Greedy inter-slice partitioning
result (cf. Fig. 13b). In contrast, with resource abstraction
scheme, the optimal and Granular & Greedy priortization
policies provides ∼ 9.8% and ∼ 8.2% enhancement, respec-
tively. Such benefit is further boosted when the average traf-
fic arrival ratio p is decreased as shown in Fig. 14b, i.e.,
p is changed from Uniform (0.65, 1.0) to Uniform (0.0, 1.0).
These results show the resource abstraction advantages in
terms of defragmenting the overall resource grid. Finally,
more slices can be further satisfied and we denote the final
set of satisfied slices after accommodation and multiplexing
as Sa.

34034 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 14. Performance of different slice priortization policies and resource abstraction in resource accommodation. (a) Traffic
arrival ratio p ∼ Uniform

(
0.65, 1.0

)
. (b) Traffic arrival ratio p ∼ Uniform

(
0.0, 1.0

)
.

FIGURE 15. Slice and radio resource multiplexing gain among different cases. (a) Average multiplexing gain with p ∼ Uniform
(
0.65, 1.0

)
. (b) Average

multiplexing gain with p ∼ Uniform
(
0.0, 1.0

)
. (c) Worst case multiplexing gain with p ∼ Uniform

(
0.65, 1.0

)
. (d) Worst case multiplexing gain with

p ∼ Uniform
(
0.0, 1.0

)
.

C. MULTIPLEXING GAIN
To explicitly represent the level of multiplexing benefits,
we formulate the statistical multiplexing gain in two aspects:
(1) slice and (2) radio resource block. First of all, based on
the results shown in the previous two paragraphs, we can
see that the number of satisfied slices after the inter-slice
partitioning (i.e.,

∣∣Sp∣∣) is smaller than the number of sat-
isfied slices after the inter-slice accommodation and mul-
tiplexing (i.e., |Sa|) via utilizing the unallocated resource.
Hence, the statistical multiplexing gain in the slice aspect

can be written as, (2), as shown at the bottom of the next
page, where Sp and Sa are introduced in the previous two
paragraphs respectively. Another aspect is to view the multi-
plexing gain in terms of the radio resource block via dividing
the number of utilized resource blocks after accommodation
and multiplexing by the number of scheduled resource blocks
after the intra-slice resource scheduling, (3), as shown at the
bottom of the next page, where T ak and N a

k are the number of
allocated resource blocks. Note that these two multiplexing
gain formulations in Eq. (2) and Eq. (3) depend not only on

VOLUME 6, 2018 34035

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

Algorithm 4Non-Contiguous Resource Partition (NCon)
Input : sk is target slice

IMap is the input resource grid allocation map
Output: Sat is the slice satisfaction index

SCS is the selected SCS for the target slice
OMap is the output resource allocation map

begin
MaxRec = 0; /* Initialize the maximum unused
rectangular */
tIdxCount = 0; /* Initialize time index counter */
Sat = SCS = 0; /* Initialize satisfaction index and
select SCS */
foreach scs ∈ SCSk do

/* Find unused resources position (PF /PT) in
IMapscs */
[PF,PT] = FindUnRe (IMapscs);
for j = 1 to Tb · scs/SCSb do
aF [j]=find (PT==j); /* Count avail resources
at time j */
if |aF [j]| ≥ Fscs [k] then
tCount = tCount + 1; /* Increase time index
counter */

if tCount ≥ Tscs [k] then
Sat = 1; /* Current slice is satisfied*/
tMap = IMapscs;
/* Sort time indexes base on descending order of
aF */
Torder = sort

(
1 : Tb · scs

SCSb
, aF, ‘descend’

)
;

for j = 1 to Tscs [k] do
FIdx = PF [aF [Torder [j]]];
for i = 1 to Fscs [k] do
tMap [i+ FIdx [i]] [Torder [j]] = k;

tRec = MaxUn (tMap); /* Find max unused
rectangular */
if tRec > MaxRec then
SCS = scs;
MaxRec = tRec;
OMapscs = tMap;

the results of inter-slice resource partitioning and accommo-
dation but also on the characteristics of extra slices to be
satisfied, i.e., their traffic patterns and resource granularities.

Algorithm 5Min Granularity Resource Partition (Min)
Input : sk is target slice

IMap is the input resource grid allocation map
Output: Sat is the slice satisfaction index

SCS is the selected SCS for the target slice
OMap is the output resource allocation map

begin
MaxRec = 0; /* Initialize the maximum unused
rectangular */
Sat = SCS = 0; /* Initialize satisfaction index and
select SCS */
foreach scs ∈ SCSk do

[PF,PT] = FindUnRe (IMapscs);
Size = |PF |; /* The size of all available positions
*/
[In] = InMaxRec (PF,PT);
/* Sort resource base on whether it is in the largest
rectangular*/ Order = sort (1 : Size, In, ‘ascend’);
if |PF | ≥ Fscs [k]× Tscs [k] then
Sat = 1; /* Current slice is satisfied*/
tMap = IMapscs;
for pos = 1 to Fscs [k]× Tscs [k] do
tMap[PF[Order[pos]]][PT [Order[pos]]]=k;

tRec = MaxUn (tMap); /* Find max unused
rectangular */
if tRec > MaxRec then
SCS = scs;
MaxRec = tRec;
OMapscs = tMap;

In Fig. 15, we show the multiplexing gain based on the
inter-slice partitioning and accommodation results (i.e., opti-
mal and Granular & Greedy in Fig. 14), and utilize the
aforementioned traffic pattern, i.e., traffic arrival ratio p,
as introduced in the previous paragraph for each extra slice.
Two resource granularity cases are considered for each extra
slice: (1) contiguous granularity, and (2) random granular-
ity between contiguous, non-contiguous and minimum. The
former shows that the multiplexing gain in its worst case as
all extra slices require the contiguous resources, while the
latter one shows the average multiplexing gain. The average
multiplexing gain in Fig. 15a is approximately 1.18 (Gs) and

Gs =
Number of satisfied slices after accommodation and multiplexing

Number of satisfied slices after partitioning

= E

[
|Sa|∣∣Sp∣∣

]
, (2)

Gr =
Number of utilized resource after accommodation and multiplexing

Number of intra-slice scheduled resources

= E

[∑
sk∈Sa T

a
k · N

a
k∑

sk∈Sp T
a
k · N

a
k

]
, (3)

34036 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

1.26 (Gr) for both optimal and Granular & Greedy policies.
When the average traffic arrival ratio is decreased (i.e., p),
more unused resources can be multiplexed, and hence the
multiplexing gain shown in Fig. 15b are increased to 1.75 (Gs)
and 2.87 (Gr). Note that the resource multiplexing gain is
more significantly increased than the slice multiplexing gain
as there are more unused resources can be multiplexed.

Further, even the multiplexing gains of both traffic arrival
ratios are reducedwhen considering the worst case in Fig. 15d
(1.05/1.18 for Gs/Gr) and Fig. 15c (1.27/2.45 for Gs/Gr);
however, both priortization policies still show close values.
Note that such worst case results provide the lower bounds
of multiplexing gain. When comparing the average and the
worst cases, the slice multiplexing gain is reduced more obvi-
ously than the resource multiplexing gain as extra slices are
rejected mostly due to their requested contiguous granularity
rather than the lack of radio resources. In summary, the mul-
tiplexing gain is represented in both slice and resource block
aspects. The former is more related to the resource granularity
(e.g., contiguous, non-contiguous, minimum), while the latter
one concerns more on the traffic pattern (i.e., Nk , Tk , p).

VI. PROOF OF CONCEPTS
To validate the concept of RAN runtime slicing system and
explore different use cases, we implemented an LTE-based
prototype of RAN runtime following aforementioned design
in Section IV. The RAN runtime is developed based on
the FlexRAN agent11 over the OAI platform [15], and each
instantiated slice is built on top of the FlexRAN controller12

with the customized CP, UP, and CL. The main function-
alities of the proposed RAN runtime services and CP/UP
APIs are implemented and integrated within the agent. Slice
selection for each user is done based on the the public land
mobile network (PLMN) information, as a part of the unique
international mobile subscriber identity (IMSI), in order to
allow each user to associate to a slice. Note that as specified
by 3GPP in [64], a single-network slice selection assistance
information (S-NSSAI) can identify a slice and it comprises
the (1) slice/service type (SST) and (2) slice differentiator
(SD) to differentiate the slice service. Then, the user can send
the NSSAI information that includes up to 8 S-NSSAIs to
identify it preference(s) for slice selection.

The current implementation of a slice service descriptor
is shown in Listing 1. It can describe a slice by its BS
name (i.e., name), cell identifier (i.e., cell_id), and ser-
vice types (i.e., service_types), where each service is
defined by a set of service policies (i.e.,service_policy)
in both downlink and uplink directions that will be applied
when a slice is created or updated. Specifically, the ser-
vice policies are expressed in terms of (1) the number of
requested resources (i.e., vRBGs) and performance (i.e., rate
and latency), (2) slice isolation requirement, and (3) slice
priority as shown in listing 1. In terms of the requested

11https://gitlab.eurecom.fr/oai/openairinterface5g
12https://gitlab.eurecom.fr/flexran/flexran-rtc

Listing 1. Slice Service Descriptor.

resource abstraction types, currently the vRBG type 0/1 and
vTBS type 0 are available and they can utilize the down-
link and uplink resource allocation type 0 (see TABLE 5).
Hence, each slice will be associated with a vRBG pool in
each TTI, and the overall resource partitioning is updated in
every allocation window T . Note that the slice isolation prop-
erty (cf. requested_isolation) can allow a slice to
reserve its resources (i.e., without any multiplexing), whereas
the slice priority (cf. requested_priority) is used to
accommodate the resources and to preempt resources from
other slices.

Using the aforementioned slice service descriptor, three
slices are created on the top of the a single BS. They commu-
nicate with the RAN runtime using the asynchronous com-
munication channels. Each slice embeds the control logics
and operates on the virtualized resources and states based
on the modified version of FlexRAN controller and its soft-
ware development kit (SDK). In following, we describe the
experiment setup for each use case and present the respective
results demonstrating the slice performance tradeoff between
isolation/sharing aswell as the flexibility in terms of changing
the RAN service definition dynamically.

A. RADIO RESOURCE AND CONTROL LOGIC ISOLATION
To demonstrate the impact of inter-slice resource partition-
ing, we deploy three slices with different traffic patterns as
follows: slice 1 with a variable bit rate emulating 720p video
streaming, slice 2 with compressed variable bit rate emulating
a surveillance IP camera with 30 frame per second (FPS),
and slice 3 with constant low bit rate emulating periodical
sensing data. Each slice serves 5 different users (i.e., user 1
to user 5 belong to slice 1, user 6 to user 10 belong to
slice 2, and user 11 to user 15 belong to slice 3), and each
user transmits uplink and downlink data on the default radio

VOLUME 6, 2018 34037

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 16. Slice performance of dynamic inter-slice partitioning.
(a) Aggregated good-put. (b) Average latency.

bearer. Then, three different resource partitioning manners
are applied at different time intervals: (a) fair partitioning
that allocates 33% of total vRBGs to each slice before time
instance t1 = 25s, (b) greedy partitioning between t1 and
t2 = 40s that allocates 60% of vRBGs to slice 1, and
20% per slice 2 and slice 3, and (c) proportional partition-
ing after t2 that allocates 50% of vRBGs to slice1, 40% to
slice 2, and 10% for slice 3. Note that our focus in this
experiment is on the number of requested resources (i.e.,
requested_vrbg), and thus the impacts of priority and
isolation are not taken into account. As for the intra-slice
scheduling, we apply a simple fair scheduling among users.

From the results presented in Fig. 16, it can be observed
that the slice aggregated good-put and average latency
can significantly fluctuate when applying different inter-
slice resource partitioning policies. However, any change of
the inter-slice partitioning has no impact on the intra-slice
scheduling policy as shown in Fig. 17, in which all users are
scheduled and the fairness is preserved. The above results
confirm the capability of RAN runtime in providing isolation
among slices and performance guarantee, matching the chal-
lenge listed in Section IV-A. Further, it implies that the inter-
slice partitioning and intra-slice scheduling can be decoupled
and developed individually for different purposes to meet the
requirements of both infrastructure provider and slice owner.

B. RADIO RESOURCE PREEMPTION AND MULTIPLEXING
In this experiment, we demonstrate the impacts of resource
multiplexing and preemption, i.e.,requested_priority

FIGURE 17. User performance of dynamic inter-slice partitioning.
(a) Per-user average Good-put. (b) Per-user average latency.

and requested_isolation in Listing 1, on the per-
ceived performance in a scenario with three slices, each
hosting one user. Specifically, besides the applied resource
abstraction/virtualization scheme, different slice service poli-
cies are explored: (a) slice 1 can preempt resources of all other
slices when the actual (aggregated) rate exceeds the requested
rate, (b) slice 2 can only increase its multiplexing gain by
utilizing the unallocated resources, and (c) slice 3may sustain
its requested data rate as it can neither preempt nor multiplex
resources but is subject to the preemption from high priority
slice (i.e., slice 1).

We firstly show the box plot of measured round trip time
(RTT) distribution in Fig. 18 with different packet size (PS)
ranging from 64 to 8192 bytes and inter-departure time (IDT)
from 0.2 to 1 second. We can observe that the smallest RTT
with the lowest variability is achieved for slice 1, as such
slice has the ability to preempt resources from others, and
hence it can utilize available radio resources to meet its
instantaneous traffic dynamics. Slice 2 is able to maintain
the average RTT compared with slice 1 with opportunistic
improvement when there are some unallocated resources to
be multiplexed (cf. Fig. 7b). However, it suffers from delay
variability caused by the scheduling delay. Slice 3 expe-
riences the largest average RTT (almost twice as slice 1)
with the highest variability, and it represents a typical best
effort service. Besides, the relations between the measured

34038 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 18. Impact of preemption and multiplexing on RTT. (a) Slice 1.
(b) Slice 2. (c) Slice 3.

RTT and the characteristics of traffic (i.e., PS and IDT) are
observed as the following. We can see that there is a positive
correlation between RTT and PS for slice 1, as such slice
does not experience any scheduling delay due to the resource
preemption scheme, and thus the RTT is only proportional to
the size of packet. As for slice 3, an extra positive correlation
is observed between the IDT and the measured RTT, i.e., the
higher IDT has a higher RTT. The reason being that the longer
IDT traffic of slice 3 suffers from the scheduling delay as it
can neither preempt others’ resource nor multiplex unused

resources to reduce its RTT. By contrast, for slice 2, there is
no straightforward relation between IDT and RTT since it can
utilize some unused resource opportunistically.

When examining the slice aggregated good-put and delay-
jitter in Fig. 19, it can be seen that slice 1 can flexibly adapt
its data rate as a function of its workload by preempting
the resources from other slices, i.e., from 3Mbps to 6Mbps,
while slice 2 experiences a data rate drop from its desired
10Mbps to 8Mbps. The same trend is observed in the delay
jitter measurement, in which slice 1 experiences theminimum
jitter as it has the highest priority and slice 3 suffers the largest
delay jitter due to its lowest priority.

The above results reveal that the impact of slice
policy in terms of the multiplexing and priority when
creating a slice. They enable resource reservation and pre-
emption to potentially meet the slice-specific QoS require-
ments as well as the resource multiplexing to increase the
efficiency of resource utilization by sharing the unused
resources.

C. NETWORK FUNCTION AND STATE FLEXIBILITY
We then show the capability of the RAN runtime to change
the service definition of the underlying RANmodule between
monolithic and disaggregated deployments from the infras-
tructure provider perspective. In particular, we consider three
possible RAN deployments at different time instances with-
out instantiating any slice: (a) monolithic RAN deployment
at t1, (b) disaggregated RAN deployment using 3GPP split
option 8 [42] at t2, and (c) using 3GPP split option 7-1
at t3. Such BS only has a single antenna and it is operated
in Frequency-Division Duplexing (FDD) mode with 5MHz
radio bandwidth. Our considered disaggregated RAN deploy-
ment uses UDP/IP based Ethernet transportation over the
fronthaul interface with one switch between RU and DU
to route the traffic. The UP measurement results are shown
in Fig. 20 in terms of the good-put, delay jitter and RTT
when a 15Mbps traffic flow is transferred in the DL direction.
We can see that these is no good-put drop when changing
the functional split. This is because the considered splits
(i.e., performing cell processing at the RU) only require RAN
module reconfiguration without any state synchronization,
which explains why the good-put remains unchanged among
different deployments. As for the delay jitter and RTT, they
are increased at t2 and t3 due to the Ethernet packet loss when
changing the split as well as the extra time spent for the Ether-
net packet transport (i.e., packetization [65] and radio sample
compression/decompression) along the fronthaul links and
the switch.

We have to mention that although the changes of func-
tional split are mainly reserved for the infrastructure provider
to ensure the network service performance in the devised
approach, while the update of split can be made possible for
a slice owner by appropriately customizing the CP/UP func-
tions at each RAN module. In such a case, the RAN runtime
shall make sure that the SLA is maintained when there is
any change in the service service descriptor, and transfer the

VOLUME 6, 2018 34039

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

FIGURE 19. Impact of preemption and multiplexing on good-put and delay jitter.

FIGURE 20. Flexible RAN deployment impacts on good-put, delay jitter and RTT.

CP/UP states between disaggregated RANmodules (i.e., RU,
DU, CU), as listed in TABLE 6.

VII. CONCLUSIONS AND FUTURE WORKS
In this work, we propose the RAN runtime slicing system
that serves as a flexible execution environment to run mul-
tiple customized slice instances with the required levels of
isolation while sharing the underlying RAN modules and
infrastructure. We elaborate on the design of such system
and identify the its functionalities in both control and user
planes. A new set of radio resource abstractions are defined to
efficiently provide resource isolation among different slices.
On the user-plane, the forwarding engine of RAN runtime
is introduced to compose the input and output data stream
for a flexible processing pipeline composition. We also pro-
pose the inter-slice resource partitioning and accommodation
approach that can satisfy the requests of different granu-
larities and maintain a significant multiplexing gain with
acceptable complexity. Finally, we implement the proposed
RAN runtime slicing system over the OAI platform in three
use cases that exactly match aforementioned RAN slicing
challenges.

In the future, we plan to extend the current work in several
directions: (1) extend the resource abstraction approach to
support additional performance metrics (e.g., latency, reli-
ability), (2) formulate the QoS satisfaction objective when
partitioning/accommodating radio resources, (3) examine the
performance impact on the function dedication/sharing on
different network layers, and (4) establish a collaboration
scheme between multiple RAN runtime instances to enable
the large-scale control logics.

REFERENCES
[1] Study on Management and Orchestration of Network Slicing for

Next Generation Network (Release 15), document TR 28.801, 3GPP,
Sep. 2017.

[2] A. Nakao et al., ‘‘End-to-end network slicing for 5G mobile networks,’’
J. Inf. Process., vol. 25, pp. 153–163, Feb. 2017.

[3] P. Rost et al., ‘‘Mobile network architecture evolution toward 5G,’’ IEEE
Commun. Mag., vol. 54, no. 5, pp. 84–91, May 2016.

[4] ITU-T Focus Group IMT-2020 Deliverables, ITU, Geneva, Switzerland,
2017.

[5] Study on Architecture for Next Generation System (Release 14),
document TR 23.799, 3GPP, Dec. 2016.

[6] Description of Network Slicing Concept, NGMN 5G P1 Requirements &
Architecture, Work Stream End-to-End Architecture, Version 1.0, NGMN
Alliance, Jan. 2016.

34040 VOLUME 6, 2018

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

[7] 5GPPP Architecture Working Group, ‘‘View on 5G architecture, version
2.0,’’ Architecture White Paper, Jul. 2016.

[8] V. G. Nguyen and Y. H. Kim, ‘‘Slicing the next mobile packet core
network,’’ in Proc. 11th Int. Symp. Wireless Commun. Syst. (ISWCS),
Aug. 2014, pp. 901–904.

[9] T. Taleb et al., ‘‘EASE: EPC as a service to ease mobile core network
deployment over cloud,’’ IEEE Netw. Mag., vol. 29, no. 2, pp. 78–88,
Mar. 2015.

[10] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker,
‘‘A high performance packet core for next generation cellular networks,’’
in Proc. Conf. ACM Special Interest Group Data Commun., 2017,
pp. 348–361.

[11] A. Ksentini and N. Nikaein, ‘‘Toward enforcing network slicing on RAN:
Flexibility and resources abstraction,’’ IEEECommun. Mag., vol. 55, no. 6,
pp. 102–108, Jun. 2017.

[12] X. Foukas, M. K. Marina, and K. Kontovasilis, ‘‘Orion: RAN slicing
for a flexible and cost-effective multi-service mobile network archi-
tecture,’’ in Proc. 23rd Annu. Int. Conf. Mobile Comput. Netw., 2017,
pp. 127–140.

[13] Architecture Enhancements for Dedicated Core Networks; Stage 2
(Release 13), document TR 23.707, 3GPP, Dec. 2014.

[14] Enhancements of Dedicated Core Networks SelectionMechanism (Release
14), document TR 23.711, 3GPP, Sep. 2016.

[15] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, ‘‘OpenAirInterface: A flexible platform for 5G research,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 33–38,
2014.

[16] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and
K. P. Kontovasilis, ‘‘FlexRAN: A flexible and programmable platform for
software-defined radio access networks,’’ in Proc. 12th Int. Conf. Emerg.
Netw. EXperiments Technol., 2016, pp. 427–441.

[17] Network Sharing—Architecture and Functional Description, document TS
23.251, 3GPP, Jan. 2009.

[18] A. Khan, W. Kellerer, K. Kozu, and M. Yabusaki, ‘‘Network sharing
in the next mobile network: TCO reduction, management flexibility,
and operational independence,’’ IEEE Commun. Mag., vol. 49, no. 10,
pp. 134–142, Oct. 2011.

[19] L. Doyle, J. Kibilda, T. K. Forde, and L. DaSilva, ‘‘Spectrum with-
out bounds, networks without borders,’’ Proc. IEEE, vol. 102, no. 3,
pp. 351–365, Mar. 2014.

[20] N. Nikaein et al., ‘‘Network store: Exploring slicing in future 5G net-
works,’’ in Proc. 10th Int. Workshop Mobility Evolving Internet Archit.,
2015, pp. 8–13.

[21] K. Katsalis, N. Nikaein, E. J. Schiller, A. Ksentini, and T. Braun, ‘‘Net-
work slices toward 5G communications: Slicing the LTE network,’’ IEEE
Commun. Mag., vol. 55, no. 8, pp. 146–154, Aug. 2017.

[22] X. An et al. (2016). ‘‘End-to-end architecture modularisation and
slicing for next generation networks.’’ [Online]. Available: https://
arxiv.org/abs/1611.00566

[23] K. Samdanis, X. C. Perez, and V. Sciancalepore, ‘‘From network sharing
to multi-tenancy: The 5G network slice broker,’’ IEEE Commun. Mag.,
vol. 54, no. 7, pp. 32–39, Jul. 2016.

[24] C. L. I, S. Han, Z. Xu, S. Wang, Q. Sun, and Y. Chen, ‘‘New paradigm
of 5G wireless Internet,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 3,
pp. 474–482, Mar. 2016.

[25] X. Zhou, R. Li, T. Chen, and H. Zhang, ‘‘Network slicing as a ser-
vice: Enabling enterprises’ own software-defined cellular networks,’’ IEEE
Commun. Mag., vol. 54, no. 7, pp. 146–153, Jul. 2016.

[26] S. Sharma, R. Miller, and A. Francini, ‘‘A cloud-native approach to 5G
network slicing,’’ IEEE Commun. Mag., vol. 55, no. 8, pp. 120–127,
Aug. 2017.

[27] H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung,
‘‘Network slicing based 5G and future mobile networks:Mobility, resource
management, and challenges,’’ IEEE Commun. Mag., vol. 55, no. 8,
pp. 138–145, Aug. 2017.

[28] A. Rostami et al., ‘‘Orchestration of RAN and transport networks for 5G:
An SDN approach,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 64–70,
Apr. 2017.

[29] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, ‘‘NVS: A substrate
for virtualizing wireless resources in cellular networks,’’ IEEE/ACMTrans.
Netw., vol. 20, no. 5, pp. 1333–1346, Oct. 2012.

[30] X. Costa-Pérez, J. Swetina, T. Guo, R. Mahindra, and S. Rangarajan,
‘‘Radio access network virtualization for future mobile carrier
networks,’’ IEEE Commun. Mag., vol. 51, no. 7, pp. 27–35,
Jul. 2013.

[31] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangarajan, ‘‘Radio
Access Network sharing in cellular networks,’’ in Proc. 21st IEEE Int.
Conf. Netw. Protocols (ICNP), Oct. 2013, pp. 1–10.

[32] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, ‘‘CellSlice:
Cellular wireless resource slicing for active RAN sharing,’’ in
Proc. 5th Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2013,
pp. 1–10.

[33] J. He and W. Song, ‘‘AppRAN: Application-oriented radio access network
sharing in mobile networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2015, pp. 3788–3794.

[34] A. Aijaz, ‘‘Hap—SliceR: A radio resource slicing framework for 5G
networks with haptic communications,’’ IEEE Syst. J., to be published.

[35] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, ‘‘LTE mobile net-
work virtualization,’’ Mobile Netw. Appl., vol. 16, no. 4, pp. 424–432,
2011.

[36] C. Liang and F. R. Yu, ‘‘Wireless virtualization for next generation mobile
cellular networks,’’ IEEE Wireless Commun., vol. 22, no. 1, pp. 61–69,
Feb. 2015.

[37] A. Gudipati, L. E. Li, and S. Katti, ‘‘RadioVisor: A slicing plane for radio
access networks,’’ in Proc. 3rd Workshop Hot Topics Softw. Defined Netw.,
2014, pp. 237–238.

[38] R. Peter et al., ‘‘Network slicing to enable scalability and flexibility in
5G mobile networks,’’ IEEE Commun. Mag., vol. 55, no. 5, pp. 72–79,
May 2017.

[39] R. Ferrus, O. Sallent, J. Perez-Romero, and R. Agusti, ‘‘On 5G radio
access network slicing: Radio interface protocol features and con-
figuration,’’ IEEE Commun. Mag., vol. 56, no. 5, pp. 184–192,
May 2018.

[40] P. Marsch et al., ‘‘5G radio access network architecture: Design guidelines
and key considerations,’’ IEEE Commun. Mag., vol. 54, no. 11, pp. 24–32,
Nov. 2016.

[41] K. Katsalis, N. Nikaein, E. Schiller, R. Favraud, and T. I. Braun, ‘‘5G
architectural design patterns,’’ in Proc. IEEE Int. Conf. Commun. Work-
shops (ICC), May 2016, pp. 32–37.

[42] Study on New Radio Access Technology: Radio Access Architecture
and Interfaces (Release 14), document TR 38.801, 3GPP,
Mar. 2017.

[43] Study on New Radio Access Technology Radio Interface Protocol Aspects
(Release 14), document TR 38.804, 3GPP, Mar. 2017.

[44] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng, ‘‘OpenRAN: A software-
defined ran architecture via virtualization,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 43, no. 4, pp. 549–550, 2013.

[45] I. F. Akyildiz, P. Wang, and S.-C. Lin, ‘‘Softair: A software defined
networking architecture for 5G wireless systems,’’ Comput. Netw., vol. 85,
pp. 1–18, Jul. 2015.

[46] A. Gudipati, D. Perry, L. E. Li, and S. Katti, ‘‘SoftRAN: Software defined
radio access network,’’ inProc. 2nd ACMSIGCOMMWorkshopHot Topics
Softw. Defined Netw., 2013, pp. 25–30.

[47] T. Chen, H. Zhang, X. Chen, and O. Tirkkonen, ‘‘SoftMobile: Control
evolution for future heterogeneous mobile networks,’’ IEEEWireless Com-
mun., vol. 21, no. 6, pp. 70–78, Dec. 2014.

[48] M. Bansal, J. Mehlman, S. Katti, and P. Levis, ‘‘OpenRadio: A pro-
grammable wireless dataplane,’’ in Proc. 1st Workshop Hot Topics Softw.
Defined Netw., 2012, pp. 109–114.

[49] W. Wu, L. E. Li, A. Panda, and S. Shenker, ‘‘PRAN: Programmable radio
access networks,’’ in Proc. 13th ACM Workshop Hot Topics Netw., 2014,
p. 6.

[50] O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti, ‘‘On radio access
network slicing from a radio resource management perspective,’’ IEEE
Wireless Commun., vol. 24, no. 5, pp. 166–174, Oct. 2017.

[51] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, ‘‘Toward an
SDN-enabled NFV architecture,’’ IEEE Commun. Mag., vol. 53, no. 4,
pp. 187–193, Apr. 2015.

[52] M. Kablan, A. Alsudais, E. Keller, and F. Le, ‘‘Stateless network functions:
Breaking the tight coupling of state and processing,’’ inProc. 14th USENIX
Symp. Networked Syst. Design Implement. (NSDI). Berkeley, CA, USA:
USENIX Association, 2017, pp. 97–112.

VOLUME 6, 2018 34041

C.-Y. Chang, N. Nikaein: RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

[53] J. Kim, D. Kim, and S. Choi, ‘‘3GPP SA2 architecture and functions for
5G mobile communication system,’’ ICT Express, vol. 3, no. 1, pp. 1–8,
Mar. 2017.

[54] A. A. Zaidi et al., ‘‘Waveform and numerology to support 5G services
and requirements,’’ IEEE Commun. Mag., vol. 54, no. 11, pp. 90–98,
Nov. 2016.

[55] NR; Physical Channels and Modulation (Release 15), document TS
38.211, 3GPP, Dec. 2017.

[56] Open vSwitch. Accessed: Jun. 18, 2018. [Online]. Available:
http://openvswitch.org/

[57] P. Bosshart et al., ‘‘Forwardingmetamorphosis: Fast programmablematch-
action processing in hardware for SDN,’’ ACM SIGCOMM Comput. Com-
mun. Rev., vol. 43, no. 4, pp. 99–110, Oct. 2013.

[58] C.-Y. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Kumar,
‘‘FlexCRAN: A flexible functional split framework over ethernet fronthaul
in Cloud-RAN,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017,
pp. 1–7.

[59] O. Arouk, N. Nikaein, and T. Turletti, ‘‘Multi-objective placement of
virtual network function chains in 5G,’’ in Proc. IEEE 6th Int. Conf. Cloud
Netw. (CloudNet), Sep. 2017, pp. 1–6.

[60] A. Caprara andM.Monaci, ‘‘On the two-dimensional Knapsack Problem,’’
Oper. Res. Lett., vol. 32, no. 1, pp. 5–14, 2004.

[61] C.-Y. Chang, N. Nikaein, and T. Spyropoulos, ‘‘Radio access network
resource slicing for flexible service execution,’’ in Proc. IEEE Conf. Com-
put. Commun. Workshops (INFOCOM WKSHPS), Apr. 2018, pp. 1–6.

[62] J. V. D. Belt, H. Ahmadi, and L. E. Doyle, ‘‘A dynamic embedding
algorithm for wireless network virtualization,’’ in Proc. IEEE 80th Veh.
Technol. Conf. (VTC Fall), Sep. 2014, pp. 1–6.

[63] M. Yang, Y. Li, L. Zeng, D. Jin, and L. Su, ‘‘Karnaugh-map like
online embedding algorithm of wireless virtualization,’’ in Proc. 15th
Int. Symp. Wireless Personal Multimedia Commun. (WPMC), Sep. 2012,
pp. 594–598.

[64] System Architecture for the 5G System (Release 15), document TS 23.501,
3GPP, Jul. 2017.

[65] C.-Y. Chang, R. Schiavi, N. Nikaein, T. Spyropoulos, and
C. Bonnet, ‘‘Impact of packetization and functional split on C-RAN
fronthaul performance,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2016, pp. 1–7.

CHIA-YU CHANG received the B.S. and M.S.
degrees from National Taiwan University, Taiwan,
in 2008 and 2010, respectively. He is currently
pursuing the Ph.D. degree with the Communi-
cation Systems Department, EURECOM, France.
From 2010 to 2015, he was with MediaTek Inc.,
Taiwan, as a Senior Engineer for the design of
3G/4G cellular communication system architec-
ture and algorithm design. He participates in sev-
eral collaborative research projects related to the

5G communication system architecture and protocol design in EU Horizon
2020 framework programs. His research interests include communication
system architecture design, wireless network softwarization and virtualiza-
tion, and cross-layer algorithm design.

NAVID NIKAEIN received the Ph.D. degree (doc-
teur ès sciences) in communication systems from
the Swiss Federal Institute of Technology in 2003.
He is currently a Tenured Associate Professor
with the Communication Systems Department,
EURECOM, France. He is also leading a group
focusing on 4G-5G experimental system research
related to radio access and core networks with a
blend of communication, cloud computing, and
data analysis. He has a proven track record in

collaborative research projects related to 4G-5G and beyond in the context of
European FP6, FP7, and H2020 framework programs, and served as a Project
Manager, a Technical Coordinator, and a Work Package Leader. He is also
leading the development of the radio access layer of OpenAirInterface and its
evolution toward 5G as well as coordinating the Mosaic-5G initiative whose
goal is to provide software-based 4G/5G service delivery platforms. Broadly,
his research contributions are in the areas of wireless access-layer techniques,
networking protocols and architectures, service-oriented RAN/CN following
SDN, NFV, and MEC design principles, and wireless network prototyping
and emulation/simulation platforms.

34042 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	RAN RUNTIME SLICING SYSTEM
	DESIGN ELEMENTS OF RUNTIME
	DESIGN CHALLENGE
	SLICE DATA
	RAN RUNTIME SERVICES
	CONTEXT MANAGER
	SLICE MANAGER
	VIRTUALIZATION MANAGER
	COMMON CONTROL APPLICATION
	FORWARDING ENGINE

	RAN RUNTIME APIs
	SUMMARY

	RESOURCE PARTITIONING AND ACCOMMODATION
	INTER-SLICE RESOURCE PARTITIONING
	PROPOSED ALGORITHM
	COMPLEXITY ANALYSIS
	PERFORMANCE EVALUATION

	RADIO RESOURCE ACCOMMODATION
	MULTIPLEXING GAIN

	PROOF OF CONCEPTS
	RADIO RESOURCE AND CONTROL LOGIC ISOLATION
	RADIO RESOURCE PREEMPTION AND MULTIPLEXING
	NETWORK FUNCTION AND STATE FLEXIBILITY

	CONCLUSIONS AND FUTURE WORKS
	REFERENCES
	Biographies
	CHIA-YU CHANG
	NAVID NIKAEIN

