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ABSTRACT The speeded-up robust features (SURFs) algorithm is the best and most efficient local
invariant feature algorithm for application to 2-D images and is widely applied in the fields of 2-D image
processing and computer vision. Compared to 2-D images, a video has motion information in addition
to its appearance information. Here, to make full use of the video appearance and motion information,
we use geometric algebra as the mathematical calculation and analysis framework to obtain the embedded
appearance and motion information on a local area of a video. In our proposed model of appearance and
motion variation (UMAMV), we developed SURF feature detection and description algorithms operating
on the spatio-temporal domain with video appearance and motion information. First of all, a model
of appearance and motion variation, which contains video appearance and motion information in the
framework of geometric algebra, is proposed. Then, based on this model, we propose a novel detection
algorithm, the UMAMV-SURF detector, whichmainly contains Hessian matrix construction, Hessian matrix
determinant approximation calculation, and non-maximal suppression determination feature points as its key
steps. Then, we introduce the UMAMV-SURF description algorithm, which mainly includes determining
the dominant orientation of UMAMV-SURF feature points and generating the UMAMV-SURF feature
descriptors. Finally, by experimenting with the Weizman and UCF101 datasets, the experimental results
show that the proposed UMAMV-SURF algorithm can detect those SURF feature points which can have
unique appearance information in the spatial domain and reflect motion change in the temporal domain.
Moreover, it offers a higher accuracy than other spatio-temporal interest point algorithms in human behavior
recognition of video footage.

INDEX TERMS Spatio-temporal interest point (STIP), SURF, appearance and motion-variation, geometric
algebra.

I. INTRODUCTION
Since its origin in 2003 [1], spatio-temporal interest point
(STIP) has been exploited as an important video feature
in various video processing fields requiring the intelligent
analysis, such as human action recognition, video indexing,
anomalous traffic detection, and video monitoring [2]–[16].
Most of the current STIP detectors are extended from the
detectors for 2D images to three-dimensions (3D) by adding
the temporal component [1], [9], [17]. They detect STIPs
by searching for the position where the pixel values of
video have significant local variations in 3D video cube.
The detected STIPs exhibit the largest appearance change in

the video and thus can reflect local structures in the spatio-
temporal domain. However, these detectors only implicitly
capture motion information, leaving a significant perfor-
mance gap to fill. Since only interest points with sufficient
motion will provide the necessary information for video
action recognition [42], MoSIFT was proposed to detect dis-
tinctive local features by using local appearance and motion.
By detecting distinctive appearances, we obtain the candidate
points, and spatio-temporal local features are selected if the
candidate points contain significant movement. However,
it treats spatial and temporal dimensions separately, which
splits the correlation of video pixels in the spatio-temporal
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domain. Therefore, we aim to synthetically analyze appear-
ance and motion information in the process of STIPs detec-
tion, and explicitly analyze the motion information. As we
know, the highly successful Speeded-Up Robust Features
(SURF) [28] for object recognition detects many interest
points in an image and it has a good local invariant prop-
erty such as rotation invariance, scale invariance and affine
invariance. Moreover, the video can be regarded as a 3D
structure and it is effective to use geometric methods for
video analysis and processing. Inspired by the SURF algo-
rithm which detects abundant interest points for 2D images,
we utilize geometric algebra to develop a novel STIP detector
and descriptor exploiting appearance and motion information
synthetically for videos.

II. RELATED WORK
In 2003, Laptev et al. [1] extended the Harris corner
detector [18] intended for 2D images to the Harris 3D spatio-
temporal corner detector by combining spatial and temporal
information to detect STIPs in videos [1]. Dollár et al. [19]
proposed a cuboid detector wherein a response function was
defined using linearly separable filters, for example, 2D
Gaussian filters in the spatial domain and Gabor filters in
the temporal domain. The final locations of the STIPs were
then obtained by adjusting the spatial and temporal scale
parameters of the response function. Ke et al. [20] proposed
the use of a volumetric STIP detector which could produce an
abundant number of STIPs, each of whichwas scale invariant;
however, the detector requires a large number of calculations
to be undertaken in the course of the detection procedure.
As a remedy, Oikonomopoulos et al. [21] utilized the entropy
information of optical flow to detect STIPs. Laptev et al. [22],
on the other hand, used a method based on the local motion of
events. Experimental results proved that both methods in [21]
and [22] realized scale selection. Shabani et al. [23] proposed
a non-linear scale-space filtering approach to detecting STIPs
in real-world videos. Liu et al. [24] improved the non-linear
anisotropic-diffusion filters proposed by Weickert et al. [25]
and used them to detect STIPs in scenes with cluttered
backgrounds arising from camera movement. The V-FAST
detector, proposed by Yu et al. [26], is a STIP-detection algo-
rithm based on the image-corner detection. They extended the
fast corner detector [27] from the spatial domain to the spatio-
temporal domain by using the local appearance of moving
objects and their structural information. The Hes-STIP detec-
tor proposed by Willems et al. [30] is a spatio-temporal
extension of the blob detector of a 2D image based on the
Hessian matrix [17], [28], [29]. The ST-SIFT detector was
proposed by Guo et al. [31] as a spatio-temporal extension of
the SIFT detector [26], [32] for STIP detection in videos. Fol-
lowing the idea of detecting distinctive local features through
local appearance and motion, Chen and Hauptmann [42]
proposed an algorithm called MoSIFT, which detects inter-
est points and encodes not only their local appearance but
also explicitly models local motion. In 2014, Li et al. [33]
presented a robust method for human action recognition

based on the use of multi-velocity spatio-temporal interest
points (MVSTIPs). From the foregoing, the traditional STIP
detectors directly extend the local invariant feature detectors
for 2D images to the spatio-temporal domain by adding the
temporal component, which only implicitly captures motion
information. Subsequently, Chen andHauptmann [42] devel-
oped a MoSIFT algorithm that detects spatio-temporal local
features which contain distinctive appearance and explicit
movement, but it treats spatial and temporal dimensions
separately, instead of unifying them for video analysis and
processing.

To describe the STIP, Laptev et al. [22] proposed the
HOG/HOF descriptor, it uses spatial HOG descriptors and
HOF descriptors to describe the feature points by calculating
the spatial gradient and the optical flow histogram near the
feature points, but this method requires a large amount of
computational effort because of the need to calculate the opti-
cal flow field, and its performance depends on the selected
regularization method. The HOG3D descriptor was proposed
by Kläser et al. [10] to obtain the HOG3D descriptor vector
by calculating the 3D HOG and gradient histograms of the
video. Dollár et al. proposed a cube descriptor which is
centered on the spatio-temporal interest points detected by
the Dollár detector. They created a cube and the description
vector is generated by calculating the values for pixels within
the cube. Ullah et al. [46] proposed a novel action recogni-
tion method by processing the video data using convolutional
neural network (CNN) and deep bidirectional LSTM (DB-
LSTM) network. Uddin et al. [47] introduced a novel feature
descriptor, namely, adaptive local motion descriptor (ALMD)
by considering motion and appearance. two different kinds of
algorithms that using spatio-temporal feature are proposed by
Hou et al. [48] and Li et al. [49] respectively.

As mentioned above, the existing STIP detection and
description algorithm cannot adequately reflect the spatio-
temporal correlation of video footage, and it is difficult to
detect feature points in the spatial domain and reflect motion-
variation in the temporal domain at the same time. There-
fore, geometric algebra is used to establish an appearance
and motion-variation (AMV) model with which to analyze
video image appearance information and motion informa-
tion. Based on the AMV model, a new SURF algorithm
based on a unified model of appearance and motion-variation
(UMAMV-SURF) for videos is proposed. The main contri-
butions of this paper are summarized as follows:
(a) Based on the AMV model, a new STIP detector for

videos that considers appearance and motion infor-
mation is proposed. This UMAMV-SURF detector is
developed under the traditional SURF framework. The
new detector inherits the advantages of previous SURF
detectors (e.g., strong invariance-resistance and speed of
calculation). Moreover, feature points with significant
variations in motion can be extracted.

(b) At the same time, UMAMV-SURF descriptor is pro-
posed: this mainly includes the determination of the
dominant orientation of UMAMV-SURF feature points
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and generation of UMAMV-SURF feature descriptors,
which makes UMAMV-SURF features more robust and
improves the accuracy of action recognition.

The rest of this paper is organized as follows:
Section 3 introduces the proposed general geometric alge-
bra model and UMAMV for videos, in Sections 4 and 5,
the UMAMV-SURF detection and description algorithms are
introduced individually, the experimental data and results are
discussed in Section 6, and Section 7 summarizes the research
findings.

III. THE UNIFIED MODEL OF APPEARANCE AND
MOTION-VARIATION FOR VIDEO
A. GENERAL GEOMETRIC ALGEBRA MODEL OF
SPATIO-TEMPORAL DOMAIN FOR VIDEOS
In [34], the short video sequence is expressed as a video
cube containing spatial domain information (x, y) and time-
domain information t. Therefore, a n-frame video with
spatical size ofM × N can be formed as:

F = f (x, y, t) (1)

where f (x, y, t) represents a function for the video, (x, y, t)
denotes the 3D coordinate, and t (0 < t ≤ n) is the
coordinate in the temporal domain. Moreover, x and y refer
to coordinates in the spatial domain such that 0 < x ≤ M and
0 < y ≤ N .

In recent years, geometric algebra has proven to be an
effective tool for analyzing geometric problems in the infor-
mation processing field [35]–[41]. In this project, the mod-
ified geometric algebra named Clifford algebra is utilized
to form the mathematical framework for representing and
analyzing videos, which is developed on the basis of Clifford
and Grassmann algebras. Geometric algebra allows geomet-
ric problems to be solved by converting them into algebraic
problems. It also provides a powerful algebra framework for
geometric analysis. The representation of video sequences
under the geometric algebra framework is illustrated below.

Supposing that R3 is the 3D Euclidean space consisting
of the spatial and temporal domains of the video, and that
{e1, e2, e3} is an orthonormal basis of this space. Therefore,
the algebraic space on R3 spanned by the orthonormal basis
through the geometric product is denoted by G3(R3). In this
study, G3(R3), or G3 for the sake of brevity, is considered to
be the 3D geometric algebra space of the videos. A group of
orthonormal bases for it can be constructed as follows:

E3
:= {Ei|i = 0, 1, 2, · · · , 23 − 1}

= {1, e1, e2, e3, e1 ∧ e2, e2 ∧ e3, e1 ∧ e3, e1 ∧ e2 ∧ e3}

(2)

where ∧ represents the exterior product of the geometric
algebra and e1 ∧ e2, e2 ∧ e3, and e1 ∧ e3 are three (indepen-
dent) exterior products which separately represent the planes
expressed by two vectors within G3 geometrically. Similarly,
e1 ∧ e2 ∧ e3 refers to an exterior product which corresponds
geometrically to the directed geometry obtained by moving

the exterior product e1 ∧ e2 along the vector e3. In addition,
the vector {e1, e2, e3} can be considered as the basis vector
{x, y, t} for a 3D vector subspace of G3.

The geometric product e1e2e3 is written as I . As e2i = 1,
we have e1e2 = Ie3, e2e3 = Ie1, and e3e1 = Ie2. These
products also satisfy

(e1e2)2 = (e2e3)2 = (e3e1)2 = −1 (3)

If point p ∈ G3 and p = xe1 + ye2 + te3, then a video can
be expressed as follows:

F = f (p) (4)

where f (p) refers to the pixel values of the pixels in the
video F at p.
If p1, p2 ∈ G3, with p1 = x1e1 + y1e2 + t1e3 and

p2 = x2e1 + y2e2 + t2e3, then their geometric product can
be expressed as:

p1p2 = p1 · p2 + p1 ∧ p2 (5)

That is, the geometric product of the two vectors is com-
posed of the sum of the interior product (p1 · p2) and the
exterior product (p1 ∧ p2).
The distance between p1 and p2 in G3, is denoted by 1p

and is given by,

1p = p1 − p2 = (x1−x2)e1+(y1 − y2)e2+(t1−t2)e3 (6)

This represents a vector pointing from p2 to p1. Clearly,
1p measures the distance between the two pixels which also
reflects the change in motion conditions of the pixels in the
video sequence.

B. THE UNIFIED MODEL OF APPEARANCE AND
MOTION-VARIATION FOR VIDEO
To take full advantage of the motion information of videos
detecting STIPs, a new unified model of appearance and
motion-variation is first established for spatio-temporal anal-
ysis and processing under the framework of geometrical alge-
bra. Firstly, a geometric algebra vector for describing the
appearance and motion information of video is constructed
as follows.
Definition 1 (Motion Vector): It is assumed that p0, p1 ∈

G3, such that p0 = xie1 + yje2 + tke3 and p1 = xie1 + yje2 +
(tk + 1)e3. Let S be a set of points in the neighborhood of
(l × l) with the center of p1 on the plane t = tk + 1. Thus,
the motion information vp0 of the pixel at p0 in G3 can be
defined as follows:

vp0 = pr − p0 (7)

where, pr = arg min
pr∈S

[f (pr )− f (p0)]. Thus, vp0 reflects the

motion information of pixels including motion direction and
speed.
Definition 2 (Motion-Variation Vector): Assuming that

p0, p1, p2 ∈ G3, where p0 = xie1 + yje2 + tke3, p1 =
xie1 + yje2 + (tk + 1)e3, and p2 = xie1 + yje2 + (tk − 1)e3.
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The motion-variation vector dvp0 of the pixel at p0 in G3 is
defined as:

dvp0 = vp1 − vp2 (8)

where, vp1 and vp2 refer to the motion vectors at p1 and p2,
respectively. The vector dvp0 reflects the variation of motion
at p0, including variation of motion direction and speed, and
its modulus reflect the overall variation in amplitude. Gen-
erally, the larger the variation in motion direction of a pixel
at p0, the larger the modulus of dvp0 is. Similarly, the larger
the variation in speed, the larger the modulus dvp0 is, and vice
versa.

In this study, a new geometric algebraic vector f ′(p0) is
defined to represent the appearance and motion-variation
information of the pixel at p0 ∈ G3 as following definition:
Definition 3 (Appearance and Motion-Variation Vector):

Assuming that p0 ∈ G3 while f (p0) and dvp0 refer to the
appearance value and motion-variation vector at p0, respec-
tively. The appearance and motion-variation vector (AMVV
for short) f ′(p0) is defined as:

f ′(p0) = f (p0)+ dvp0 (9)

The vector f ′(p0) contains both scalar and vector information,
and reflects not only appearance information but also varia-
tion in motion direction and speed.

Based on the above definitions, the unified model of
appearance and motion-variation (UMAMV) for video
cube F is constructed as follows:

F
′

= f ′(p) (10)

where, f ′(p) is a function wherein p ∈ G3 and is regarded as
the independent variable. The value of f ′(p) is the AMVV.
Consequentially, AMVV consists of appearance information
of video, and it also reflects the local motion information
including motion direction and speed.

IV. HESSIAN MATRIX IN G3
To make full use of the appearance and motion information
in the video image, a 3D Hessian matrix based on UMAMV
is presented: this use appearance information and motion
information.

If p ∈ G3, then the Hessian matrix with the scale of σ at
point p is defined as follows:

H (p, σ ) =

 Lxx(p, σ ) Lxy(p, σ ) Lxt (p, σ )
Lxy(p, σ ) Lyy(p, σ ) Lyt (p, σ )
Lxt (p, σ ) Lyt (p, σ ) Ltt (p, σ )

 (11)

where, Lxx(p, σ ) is the convolution of Gaussian second
order derivative ∂2

∂x2
g (p, σ ) with f ′(p) at point p and g(p, σ )

is the Gaussian function in G3, σ = e1/σx + e2/σy + e3/τ .
Then, a Gaussian function in G3 can be defined by:

G(p, σ ) =
1

3 (2π)3/2
(σ ∧ σ ∧ σ ) exp

(
− |p · σ |2

)
(12)

where σ represents the scale factor of the Gaussian function
in G3.

Thus, Lxx(p, σ ) can be written as:

Lxx(p, σ ) =
∂2

∂x2
g (σ )⊗ f ′(p)

=
∂2

∂x2
g (σ )⊗ (f (p)+ vp)

=
∂2

∂x2
g (σ )⊗ f (p)+

∂2

∂x2
g (σ )⊗ vp (13)

The first part of the above equation is a Gaussian second
order derivative convolution with the original video, the sec-
ond part is the convolution of the Gaussian second order
derivative with the motion vector at point p, which reflects
the motion information of point p and its neighborhood in
the video. Similarly, other items in the Hessian matrix can be
written as:

Lyy(p, σ ) =
∂2

∂y2
g(σ )⊗ f ′(p)

=
∂2

∂y2
g(σ )⊗ f (p)+

∂2

∂y2
g(σ )⊗ vp (14)

Lxy(p, σ ) =
∂2

∂x∂y
g(σ )⊗ f ′(p)

=
∂2

∂x∂y
g(σ )⊗ f (p)+

∂2

∂x∂y
g(σ )⊗ vp (15)

Ltt (p, σ ) =
∂2

∂t2
g(σ )⊗ f ′(p)

=
∂2

∂t2
g(σ )⊗ f (p)+

∂2

∂t2
g(σ )⊗ vp (16)

Lyt (p, σ ) =
∂2

∂y∂t
g(σ )⊗ f ′(p)

=
∂2

∂y∂t
g(σ )⊗ f (p)+

∂2

∂y∂t
g(σ )⊗ vp (17)

Lxt (p, σ ) =
∂2

∂x∂t
g(σ )⊗ f ′(p)

=
∂2

∂x∂t
g(σ )⊗ f (p)+

∂2

∂x∂t
g(σ )⊗ vp (18)

The determinant of the Hessianmatrix inG3 can be written as:

det(H ) = LxxLyyLtt − LxxL2yt − L
2
xyLtt + LxyLxtLyt

+LxtLxyLyt − L2xtLyy
= Lxx(LyyLtt − LytLyt )+ Lxy(LxtLyt − LxyLtt )

+Lxt (LxyLyt − LxtLyy) (19)

V. SURF DETECTOR AND DESCRIPTOR BASED
ON UMAMV
Based on the hessian matrix in G3, a novel SURF detector and
descriptor based on UMAMV were proposed as follow:

A. DETECTOR
The steps of the UMAMV-SURF detector mainly include:
3D Hessian matrix, 3D Hessian matrix determinant approx-
imation, and non-maximal suppression to select the feature
points.
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Since the calculation of each element in the Hessian matrix
in the above equation is complicated, the algorithm uses
the integral video [35] and the box filter to simplify the
calculation in Eq. (16).

1) INTEGRAL VIDEO ON UMAMV
The concept of integral image is used in the SURF algorithm.
By means of the integral image, the filtering of the image
and Gaussian second order derivative template is transformed
into the addition and subtraction of the integral image. First,
we give the definition of the integral video in UMAMV.
Definition 4 (Integral Video on UMAMV): Setting the

UMAMV of video F as F
′

, V is the integral video of F
′

, Then
the value v(p0) of V at point p is expressed as:

v(p0) =
∑
p∈S0

f
′

(p) (20)

Where, p0 ∈ G3 (p0 = x0e1 + y0e2 + t0e3), S0 is a cuboid
formed from the origin O to the p0, p = xe1 + ye2 + te3 and
p ∈ S0, that is 0 ≤ x ≤ x0, 0 ≤ y ≤ y0, 0 ≤ t ≤ t0, f ′(p) is the
AMVV value at point p. That is, the integral value V (p0) of
point p in UMAMV is obtained by accumulating the AMVV
values of all points in the cube from the origin O of the video
F
′

to the point p0.

2) BOX FILTER
In the traditional SURF algorithm, the box filter is used
to approximate the convolution of the 2D image and the
Gaussian second order derivative, which is able to simplify
the calculation and improve the efficiency. Therefore, the box
filter on UMAMV is designed to simplify the convolution
of the Gaussian two-order derivative template and integral
UMAMV, as shown in Fig. 1.

FIGURE 1. Gaussian second order partial derivative approximation filter
on UMAMV.

The box filter designed in Fig. 1 is a 3D structure, mostly
shown by the figure in the white and black rectangular
area. The rectangular box is filled with the same value
N (N ∈ {−2, 1, 0, 1}), Fig. 1(a) is an approximate box fil-
ter for the Gaussian second-order partial derivative in the
y-direction (Dyy), each cuboid region is sized to 3 × 5 × 9,
Fig. 1(b) shows an approximate box filter for the Gaussian
second-order partial derivative in the xy-direction (Dxy). The
cubes are separated by one pixel and the blank is filled with
a value of zero.

To get different scale features, we divide the scale space
into octaves. Each octave contains a series of response

values for filtering the same input UMAMV with a gradually
enlarged filter template. Specifically, each octave comprises
several layers, the minimum scale change between the two
layers is determined by the positive and negative spot length l
of the Gaussian second order derivative filter, where l is one
third of the box filter template size. Here, the minimum filter
template for the box filter is 9×9×9, then l is 3, the response
length of the next layer should be at least two more pixels on
the basis of l, to ensure that one pixel is added at each side,
and l = 5. Then, the size of the next layer of the box filter is
15× 15× 15, and so on, thus allowing us to draw the layers
of the box filter size as shown in Fig. 2.

FIGURE 2. The size of three octaves of filters.

In Fig. 2, the horizontal axis represents the size of the box
filter size, the vertical axis represents the number of octaves.
To cover all possible scales, there is a scale overlap between
the octaves and the latter set of filter sizes increases twice
compared to that of the previous group (6, 12, . . ., 6 ×2i−1,
where i is the number of the octave).

3) THE DETERMINANT APPROXIMATION OF THE
HESSIAN MATRIX IN G3
In the approximate calculation of the integral video and the
box filter, let Dij(i, j ∈ {x, y, t}) be the result of the convolu-
tion of the integral video with the corresponding box filter,
the response values in each of the rectangular regions are
calculated only by the addition and subtraction of the value
of each vertex of the cuboid. The rectangular cuboid is shown
in Fig. 3.

FIGURE 3. Cuboid unit in a box filter.

As shown in Fig. 3, a, b, c, d, e, f, and g are the
integral values V in the integral video corresponding to
each vertex in the box filter, and the response value of
each cuboid and integral video in the box filter is Sn =
N ∗ (e− a− f− g+ b+ c+ h− d). Therefore, Dij(i, j ∈
{x, y, t}) is the sum of the response values of eachcuboid of
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the box filter, that is:

Dxx =
1
sxx

3∑
n=1

Sn, Dyy =
1
syy

3∑
n=1

Sn, Dtt =
1
stt

3∑
n=1

Sn,

Dxy =
1
sxy

4∑
n=1

Sn, Dxt =
1
sxt

4∑
n=1

Sn, Dyt =
1
syt

4∑
n=1

Sn

Where Sij(i, j ∈ {x, y, t}) and A is the volume of the box filter.
Based on the above analyses, Eq. (19) can be written as:

det(H ) =
LxxLyyLtt
DxxDyyDtt

× Dxx(DyyDtt − DytDyt ×
LytLyt
DytDyt

×
DyyDtt
LyyLtt

)+
LxyLytLxt
DxyDytDxt

× Dxy(DytDxt − DttDxy

×
LttLxy
DttDxy

×
DytDxt
LytLxt

)+
LxtLxyLyt
DxyDytDxt

× Dxt (DytDxy

−DyyDxt ×
LyyLxt
DyyDxt

×
DytDxy
LytLxy

)

= C1(DxxDyyDtt − DxxDytDytY1)+ C2(DxyDytDxt
−DxyDttDxyY2)+ C3(DxyDytDxt − DxtDyyDxtY3)

(21)

Where

C1=
LxxLyyLtt
DxxDyyDtt

, C2=
LxyLytLxt
DxyDytDxt

, Y1=
LytLyt
DytDyt

×
DyyDtt
LyyLtt

,

Y2 =
LttLxy
DttDxy

×
DytDxt
LytLxt

, Y3 =
LyyLxt
DyyDxt

×
DytDxy
LytLxy

◦

Let A1 = DxxDyyDtt , B1 = DxxDytDyt , A2 = DxyDytDxt ,
B2 = DxyDttDxy, A3 = DxyDytDxt , B3 = DxtDyyDxt .
This yields

det(H )=C1(A1−B1Y1)+C2(A2−B2Y2+A3−B3Y3) (22)

When calculating det(H ), the minimum scale of Gaus-
sian second order derivative filtering is σ = 1.2, and the
minimum template size is 9× 9× 9. Thus, in Eq. (21)

C1 =
|Lxx(1.2)|F

∣∣Lyy(1.2)∣∣F |Ltt (1.2)|F
|Dxx(9)|F

∣∣Dyy(9)∣∣F |Dtt (9)|F = 0.0018 ≈ 0.002,

where |•|F is the Frobenius norm. Notice that, for theoreti-
cal correctness, the weighting changes depend on the scale.
In practice, we keep this factor constant, as this did not have a
significant effect on the results in our experiments. Similarly,
C2 = 0.038, Y1 = 7.52, Y2 = Y3 = 0.37.
From Eq. (9) it can be seen that, the result of det(H ) can

be divided into the sum of the convolution values of f (p) and
dvp with the box filter respectively. As a result, one part of the
calculation is scalar, which reflects the change of pixel values
in video images; another part is the vector and it reflects the
movement of the points. Here, the l2-norm of the two parts is
used as the response value of the sampling point p.

det(Hp) = ‖det(H )‖2 (23)

After calculating the response value of each sampling point,
the feature point was selected by non-maximal suppression.

B. DESCRIPTOR
UMAMV-SURF description consists of two steps: deter-
mining the dominant orientation of the feature point, and
generating the feature descriptor. 1) Determining the domi-
nant orientation

Let point M (p0, σx , σt ) be the feature point detected by
UMAMV-SURF detector in the geometric algebra space,
where p is the coordinates of the feature point in the geometric
algebraic space, p0 = x0e1 + y0e2 + t0e3, σx and σt are
the scale of the feature points in the spatial and temporal
domains, respectively. A dominant orientation is assigned to
each feature point to maintain the rotational invariance of
descriptor. We take the Haar wavelet response to the video in
the cylindrical region with the radius of 6σx , the height of σt ,
and take point p as the center, the Haar wavelet templates used
in this paper are shown in Fig. 4.

The dominant orientation is estimated by calculating the
sum of all responses within a sliding orientation window W
using the feature point as the center: the sliding window W
measures π/3, and changes in 0.2 radian increments. The
horizontal and vertical responses Fx, Fy within the window
are summed to get a feature vector (mw, θw):

mw =
∑
w

Fx +
∑
w

Fy (24)

θw = arctan(
∑
w

Fx/
∑
w

Fy) (25)

Where the dominant orientation is the maximum Haar
response to the cumulative value of the corresponding ori-
entation, thus, the longest vector corresponding to the orien-
tation is:

θ = θw|max{mw} (26)

When there is another peak corresponding to 80% of the
main peak energy, this orientation is considered to be the
auxiliary orientation of the feature. One feature point may
be specified with multiple orientations, including a domi-
nant orientation and multiple auxiliary orientations, which
can enhance the robustness of the feature. If the feature
point exists in two orientations, we copy it into two feature
points. One of the dominant orientations is the orientation
corresponding to the maximum response value, and the other
dominant orientations is the orientation corresponding to
the second response value.

1) GENERATING THE FEATURE DESCRIPTOR
After determining the dominant orientation of each fea-
ture point, we then calculate the Haar wavelet response of
each sub-region and generate the descriptor by its statistical
response value.

The SURF descriptor based on UMAMV is a vector rep-
resentation of the neighborhood of the feature point and the
Haar wavelet response statistics: the feature descriptor is
related to the scale of the feature point, so the Haar wavelet
response should be calculated on the integral image corre-
sponding to the scale of the feature point. Here, the selected
neighborhood size G′ is 20σx × 20σx × 3σt .
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FIGURE 4. (a), (b), and (c) are t, x, y Haar wavelet templates, respectively
(the black part of the value is −1, the other part has value 1).

FIGURE 5. The image before, and after, rotation: as Ft is unchanged,
drawing a two-dimensional picture allows us to represent it.

The neighborhood of the feature point is divided into 4 ×
4×3 sub-regions, and each sub-area contains 5σx ×5σx ×σt
pixels. The response values are calculated for each sub-region
by using a Haar template measuring 2σx × 2σx × σt , then
getting the response values in the x-, y-, and t-directions,
respectively. Then, the response values in each sub-region
are calculated to obtain the values of

∑
Fx ,

∑
|Fx|,

∑
Fy,∑∣∣Fy∣∣,∑Ft ,

∑
|Ft |. To be invariant to image rotation, we

rotate the original video to its dominant orientation; Nev-
ertheless, we use the Haar wavelet template directly on the
integral video to get the response value to avoid the complex
calculation caused by the rotation and the full use of the inte-
grated video, which was generated during feature detection..
Then, the response value Fx , Fy, Ft are rotated according
to the dominant orientation, resulting in a rotated F ′x , F

′
yF
′
t ,

that is,

F ′x = −Fx × sin(θ )+ Fy × cos(θ) (27)

F ′y = Fx × cos(θ)+ Fy × sin(θ ) (28)

F ′t = Ft (29)

This transform is shown in Fig. 5.
Thus the response vector V for each sub-block is:

V = [
∑

F ′x ,
∑∣∣F ′x ∣∣,∑F ′y,

∑∣∣∣F ′y∣∣∣ ,∑F ′t ,
∑∣∣F ′t ∣∣]

(30)

Since there are 4 × 4 × 3 sub-blocks, and each sub-
block produces six gradient statistics, the feature descriptors
proposed in this paper have a total of 4 × 4 × 3 × 6 =
288 dimensional feature vectors. Finally, to guarantee the
contrast invariance of the descriptor, we need to normalize
the descriptor of the generated 228 dimension, which is:

V ′ =
V
‖V‖

(31)

Where ‖•‖ is the modulus of the vector and V ′ is the
normalized descriptor. The algorithm is described as follows:

Require: Video V(M × N × L):
Calculate F ′, v(P0)
for i = 1→ M do

for i = 1→ N do
for i = 1→ L do

Calculate A1 ∼ A3, B1 ∼ B3
det(Hp) = ‖det(H )‖2

end for
end for

end for
Searching feature points X(x, y, t) by non-maximal suppre-
sion
for each in X

mw =
∑
w
Fx +

∑
w
Fy

θw = arctan(
∑
w
Fx
/∑
w
Fy)

Calculate F ′x , F
′
yF
′
t

V = [
∑
F ′x ,

∑∣∣F ′x ∣∣,∑F ′y,
∑∣∣∣F ′y∣∣∣ ,∑F ′t ,

∑∣∣F ′t ∣∣]
Normilization

end for
Return V ′

VI. EXPERIMENTAL WORK
In this part, we first introduce the experimental settings
and the process used, and then compared the experimental
results with those obtained by the use of different algorithms.
Finally, we ran a video classification experiment on the
UCF101 dataset.

A. EXPERIMENTAL SETTINGS
Two datasets are used to evaluate our proposed meth-
ods: Weizman and UCF101. The Weizman dataset consists
of 10 different types of action videos, each type of action has
nine or 10 clips, and, because the number of videos is small,
we use it to test the efficiency of different algorithms detect-
ing and describing features. The UCF101 dataset includes
101 actions and 13,320 clips which have been collected on
YouTube. It is an extension of UCF50 dataset generated
by adding another 51 action classes and it is divided into
five types: sports, playing musical instrument, human-object
interaction, body-motion only, and human-human interac-
tion. The clips of one action class are divided into 25 groups
which contain between four and seven clips each. The clips
in one group share some common characteristics, such as the
background or actors. All clips have a fixed frame rate and a
resolution of 320 × 240.

In this experiment, the overall experimental framework
process is as shown in Fig. 6. Firstly, as a basic part of
the whole experiment, we detect and describe the spatio-
temporal points of interest. In the experiment, we use the
UMAMV-SURF algorithm to detect the feature points and
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FIGURE 6. Action recognition framework.

get 228-dimensional descriptors. In the pre-processing of the
obtained descriptors, we first sample the descriptors, and each
video will obtain 2000 feature descriptors, if the number of
feature descriptors in some videos is less than 2000, we will
take all the descriptors of the video as our experimental
sample. Then, the dimensions of the sub-sampled feature
descriptors were reduced to half of their original dimensions
by principal component analysis (PCA). Then, the Gaussian
mixture models were trained by using the half-sized features.
We used the Gaussian mixture model (GMM) pre-processed
results, including weight, mean, covariance, and so on, as the
input for coding. In this experiment, we used the Fisher vector
coding method [36] to encode the selected descriptors, and
then, used part of the video as training data to train the
Support Vector Machine (SVM) model, finally utilized the
trained SVM model to classify the test videos.

Here, the measurement of video classification accuracy is
divided into one-class classification accuracy of video recog-
nition and mean classification accuracy of multi-class video
recognition. The classification accuracy of the i-th class is
recorded as acc(i).

acc(i) =
cornum(i)
testnum(i)

(32)

Where testnum(i) is the number of videos for testing and
cornum(i) is the number of videos correctly classified. Then,
the mean accuracy of the n-class classification process is
given by:

acc =

∑
cornum(i)∑
testnum(i)

(33)

B. EXPERIMENTAL RESULTS
Here, we first use different algorithms to detect feature points
and perform feature point distribution experiments; Secondly,
we classify the ten types of videos randomly selected from the
UCF101 dataset, and test them by using different algorithms
and compare the experimental results; in the third experiment,
we test five major types of actions, i.e., sports, playing musi-
cal instrument, human-object interaction, body-motion only,
and human-human interaction, respectively to test the scene
adaptability of our proposed algorithm; Fourthly, we tested
the entire UCF101 and HDMB51 dataset to ascertain the
mean classification accuracy of the proposed algorithm;
Finally, the time required to run the different algorithms
was compared from the perspective of the efficiency of the
algorithm;

FIGURE 7. Using 3D Harris, 3D SIFT, SURF, and the algorithm proposed in
this paper to detect the feature points of a video named
‘‘v_WallPushups_g03_c05’’ in UCF101 and the position distribution in
video frames 8, 35, 43, and 63. (a) Feature points detected by 3D Harris
algorithm. (b) Feature points detected by 3D SIFT algorithm. (c) Feature
points detected by traditional SURF algorithm. (d) Feature points detected
by UMAMV-SURF algorithm.

1) FEATURE POINT POSITION DISTRIBUTION EXPERIMENT
In this experiment, we focus on the position of the UCF101
dataset. We use different algorithms to detect the feature
points of a video named ‘‘v_WallPushups_g03_c05’’ in
UCF101, and the position distribution in video frames 8, 35,
and 63, which are randomly selected from the dataset.

The detection results are shown in Fig. 7, which shows
the distributions of the STIPs in the 8th, 35th, 43rd, and
63rd frames (randomly selected?) determined using the 3D
Harris, 3D SIFT, the traditional SURF, and UMAMV-SURF
algorithms, respectively. It can be seen from the experimental
results that the 3DHarris detection algorithm is used to detect
abundant feature points which are mostly found on the mov-
ing target, but there remain a few STIPs in the video back-
ground. Fewer feature points are detected by the 3D SIFT
detection algorithm, and some of them are located in the video
background. Compared to the previous three algorithms,most
of the feature points extracted using the proposed UMAMV-
SURF algorithm are on the moving target with low noise, and
most points are concentrated in the upper part of the human
body. This is because the algorithm proposed in this paper not
only takes into account the local appearance information of
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the video but also considers the correlation between the video
frames and the motion information. Therefore, the feature
points that contained the motion information can be detected
from the video, and the background noise is effectively sup-
pressed and it can better represent significant changes in the
video. In summary, the UMAMV-SURF algorithm added the
motion information under the geometric algebraic framework
preserves the original robustness and effectiveness of the
SURF algorithm, and most points can reflect motion changes
in the video.

2) TEN RANDOMLY SELECTED CLASSES OF VIDEO
CLASSIFICATION EXPERIMENTS
First of all, we randomly select 10 classes of videos
from the UCF101 dataset, and use different algorithms
to classify the videos. In this experiment, the videos we
detected are ApplyLipstick, BandMarching, BreastStroke,
CuttingInKitchen, HorseRiding, JumpingJack, PlayingGui-
tar, StillRings, Taichi, and YoYo. Fig. 8 shows a comparison
of the classification accuracies. Themean classification accu-
racies of the 3D Harris, 3D SIFT, and the algorithm proposed
in this paper are 81.16%, 78.67%, and 90.17%, respectively.

FIGURE 8. Using different algorithms to test the classification results of
ten randomly selected types of video.

From the comparison of the classification results, it can
be seen that, although the classification accuracy of the algo-
rithm proposed is not the best in every class in the classifica-
tion experiment, but achieves the highest average accuracy of
outperform the other two algorithms, respectively. The reason
can be seen clearly from the experiment involving feature
point distribution: most of the feature points detected by the
proposed algorithm are focused on the moving target, but
in the other two algorithms, the proportion of feature points
in the background is significantly higher than that of the
proposed algorithm. Furthermore, the other two algorithms
only deal with appearance information, and do not take any
motion information into account. In addition, in this paper,
the UMAMV-SURF feature description algorithm uses geo-
metric algebra and the means of rotation response values
and their statistical accumulation, which makes the descrip-
tor more robust. Based thereon, the algorithm has higher

TABLE 1. Comparison of classification accuracies.

classification accuracy for the ten types of random video
experiments.

3) CLASSIFICATION RESULTS FOR THE FIVE
DIFFERENT ACTION GROUPS
The UCF101 dataset is divided into sports, playing a musical
instrument, human-object interaction, body-motion only, and
human-human interaction. The proposed method is com-
pared with STIP-BoVW. Both two methods achieves best
accuracy on sports group, since the group of sports films
involve a majority of typical, simple behaviors, as well as
simpler backgrounds, compared to other videos. Hence, they
are easier to classify. Different from sports group, the video
background of human object interaction is quite complex
therein. In addition, the movement of other objects in the
video also imposes difficulties during classification which is
why human-object interaction returns such low classification
accuracy. The result of the proposed method in this paper is
shown in Table 1. Compared to experimental results [37], we
can see that our algorithm has advantages in the five groups
of classification experiments.

In this part of the experiment, the results obtained by using
the UMAMV-SURF algorithm are significantly better than
other results [37]. One possible reason is that we use the
spatio-temporal UMAMV-SURF algorithm to detect feature
points with their motion information under the geometric
algebra computational framework. From the experimental
results in Experiment 6.2.1, we can see that the distribution of
feature points detected by our algorithm is more concentrated
in positions of larger motion amplitude and better represent
motion invariance. Therefore, the higher amplitude of the
motion, the higher the classification accuracy. The STIP +
BoW-based approach only takes into account the appearance
information of the video, it does not describe the motion
information in video very well.

4) CLASSIFICATION RESULTS AND ANALYSES
FOR THE UCF101 DATASET
In this section, we will classify all 101 classes in the entire
dataset by using the proposed algorithm. The mean classifi-
cation accuracies of some algorithms proposed in recent years
on the UCF101 dataset are listed in Table 2.

It can be seen that the algorithm proposed in this paper
is 79.17% accurate for the UCF101 dataset. The algorithm
classification accuracy in this paper is 35.27% higher than the
algorithm used elsewhere [37]. Although the feature points
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TABLE 2. Comparison with state-of-the-art action classification models.

are both detected with local features, the other method [37]
uses the 3D Harris feature combined with the Bag of Visual
Words (BOVW) method; but, the method proposed in this
paper is based on the geometric algebraic framework of a
video, and uses a local feature detection and description
algorithm which are more robust. Therefore, our proposed
algorithm has higher classification accuracy on the dataset
classification test, and the effect of this algorithm in clas-
sification is better than that proposed elsewhere [37]–[41].
Moreover, it is well known that the favorable effects arising
from the use of deep-learning methods depend on the avail-
ability of large quantities of data: they do not perform well if
the size of the data sample is small.

5) CLASSIFICATION RESULTS AND ANALYSES FOR
HDMB51 DATASET
In this part, we use the mainstream deep learning algorithm
and the algorithm proposed in this paper to classify the
HDMB 51 dataset. Table 3 is the experimental result in
HDMB 51 dataset. Although deep learning has got good
results in the behavior recognition of large data sets, it is
not fit well during the training process because of too much
parameters in training process when it run in the datasets that
relatively small such as hdmb51, However, the local feature
based on geometric algebra proposed in this paper is still able
to achieve good results in the HDMB51 dataset because the
feature extraction is more accurate and controllable.

TABLE 3. Comparison of results obtained for the HMDB51 dataset with
those using neural network models.

6) COMPUTATIONAL TIME COMPARISON
In this subsection, we compare the computational time of our
proposed UMAMV-SURF with other hand-craft algorithm
of 3D Harris, 3D SIFT on the relatively small dataset of
Weizman for convenience, The evaluation computer has an
CPU of 4 GHz and 16 GB random-access memory.

Table 4 lists the times taken to detect and describe
2000 points for each video in the dataset. As shown in Table 3,
the time spent by using 3DHarris and 3D SIFT are 8994 s and
10,106 s, respectively, and the time taken by our proposed
algorithm is only 3170 s.

TABLE 4. Time demand for different algorithms to detect and describe
the Weizman dataset.

The reason our proposed method achieves the shortest time
is that the calculation process of detection and description is
simplified by using approximate calculation methods such as
integral video and box filter. While, the computational times
of 3D Harris and 3D SIFT are linearly proportional to the
number of detected feature points. Moreover, in the process
of feature description, the integral video generated during
the process of feature detection is used to reduce the time
spent in the process of description. Therefore, the UMAMV-
SURF algorithm proposed in this paper bestows a significant
advantage in the time consumed.

VII. CONCLUSION
In this paper, based on the geometric algebra model
(UMAMV) of a video, the feature detection and description
algorithms, UMAMV-SURF detector and UMAMV-SURF
descriptor, for uniformly analyzing video spatial informa-
tion and motion information are proposed. Experimental
results from behavior classification experiments show that the
algorithm proposed in this paper does achieve a better clas-
sification effect than traditional algorithms. Although deep
learning algorithms have seen many breakthroughs in video
action classification in recent years, there remain several
problems: complex and long-time calculation and requiring
large training data. Therefore, deep learning methods are
obviously not suitable for small sample datasets. The tradi-
tional STIP + SVM method just compensates for recogni-
tion and classification problems on small sample datasets,
therefore, our study also provides meaningful research direc-
tions for future work in the cognate area of intelligent video
analysis.

REFERENCES
[1] I. Laptev and T. Lindeberg, ‘‘Space-time interest points,’’ inProc. Int. Conf.

Comput. Vis., vol. 1, Oct. 2003, pp. 432–439.
[2] A. Kovashka and K. Grauman, ‘‘Learning a hierarchy of discriminative

space-time neighborhood features for human action recognition,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), San Francisco, CA,
USA, Jun. 2010, pp. 2046–2053.

[3] L. Liu, L. Shao, X. Li, and K. Lu, ‘‘Learning spatio-temporal represen-
tations for action recognition: A genetic programming approach,’’ IEEE
Trans. Cybern., vol. 46, no. 1, pp. 158–170, Jan. 2015.

[4] X. Li, Z. Wang, and X. Lu, ‘‘Surveillance video synopsis via scaling
down objects,’’ IEEE Trans. Image Process., vol. 25, no. 2, pp. 740–755,
Feb. 2016.

[5] X. Zhen, L. Shao, and X. Li, ‘‘Action recognition by spatio-temporal
oriented energies,’’ Inf. Sci., vol. 281, pp. 295–309, Oct. 2014.

[6] Y. Li, W. Liu, and Q. Huang, ‘‘Traffic anomaly detection based on
image descriptor in videos,’’ Multimedia Tools Appl., vol. 75, no. 5,
pp. 2487–2505, Mar. 2015.

31074 VOLUME 6, 2018



Y. Li et al.: Novel SURF Based on UMAMV

[7] Q. Ling, S. Deng, F. Li, Q. Huang, and X. Li, ‘‘A feedback-based robust
video stabilization method for traffic videos,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 28, no. 3, pp. 561–572, Mar. 2016.

[8] X. Jiang, F. Zhong, Q. Peng, and X. Qin, ‘‘Online robust action recog-
nition based on a hierarchical model,’’ Vis. Comput., vol. 30, no. 9,
pp. 1021–1033, 2014.

[9] H. Zhang and L. E. Parker, ‘‘4-dimensional local spatio-temporal features
for human activity recognition,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2011, pp. 2044–2049.

[10] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, ‘‘Dense trajectories and
motion boundary descriptors for action recognition,’’ Int. J. Comput. Vis.,
vol. 103, no. 1, pp. 60–79, May 2013.

[11] C. Wang and C. Dong, ‘‘Spatial-temporal words learning for crowd behav-
ior recognition,’’ Int. J. Sci. Eng. Investigations, vol. 1, no. 3, 2012.

[12] Y. Li, W. Liu, Q. Huang, and X. Li, ‘‘Fuzzy bag of words for social image
description,’’Multimedia Tools Appl., vol. 75, no. 3, pp. 1371–1390, 2016.

[13] F. Jiang, J. Yuan, S. A. Tsaftaris, and A. K. Katsaggelos, ‘‘Anomalous
video event detection using spatiotemporal context,’’ Comput. Vis. Image
Understand., vol. 115, no. 3, pp. 323–333, 2011.

[14] Y. Li, Q. Huang, W. Xie, and X. Li, ‘‘A novel visual codebook model based
on fuzzy geometry for large-scale image classification,’’ Pattern Recognit.,
vol. 48, no. 10, pp. 3125–3134, Oct. 2015.

[15] S. Oh et al., ‘‘A large-scale benchmark dataset for event recognition in
surveillance video,’’ inProc. IEEEComput. Vis. Pattern Recognit. (CVPR),
2011.

[16] C. Chattopadhyay and A. K. Maurya, ‘‘Multivariate time series modeling
of geometric features of spatio-temporal volumes for content based video
retrieval,’’ Int. J. Multimedia Inf. Retrieval, vol. 3, no. 1, pp. 15–28, 2014.

[17] M. Al Ghamdi, L. Zhang, and Y. Gotoh, ‘‘Spatio-temporal SIFT and its
application to human action classification,’’ in Proc. Eur. Conf. Comput.
Vis. Berlin, Germany: Springer, 2012, pp. 301–310.

[18] C. Harris and M. Stephens, ‘‘A combined corner and edge detector,’’ in
Proc. 4th Alvey Vis. Conf., 1988, vol. 15, no. 50, pp. 147–151.

[19] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, ‘‘Behavior recognition
via sparse spatio-temporal features,’’ in Proc. IEEE Int. Workshop Vis.
Surveillance Perform. Eval. Tracking Surveillance, Oct. 2005, pp. 65–72.

[20] Y. Ke, R. Sukthankar, and M. Hebert, ‘‘Efficient visual event detection
using volumetric features,’’ in Proc. ICCV, Oct. 2005, pp. 166–173.

[21] A. Oikonomopoulos, I. Patras, and M. Pantic, ‘‘Spatiotemporal salient
points for visual recognition of human actions,’’ IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 3, pp. 710–719, Jun. 2005.

[22] I. Laptev, B. Caputo, C. Schüldt, and T. Lindeberg, ‘‘Local velocity-
adapted motion events for spatio-temporal recognition,’’ Comput. Vis.
Image Understand., vol. 108, no. 3, pp. 207–229, 2007.

[23] H. Shabani, D. A. Clausi, and J. S. Zelek, ‘‘Towards a robust spatio-
temporal interest point detection for human action recognition,’’ in Proc.
Can. Conf. Comput. Robot Vis. (CRV), May 2009, pp. 237–243.

[24] C. Liu, Y. Chen, andM.Wang, ‘‘Spatio-temporal interest point detection in
cluttered backgrounds with camera movements,’’ J. Image Graph., vol. 18,
no. 8, pp. 982–989, 2013.

[25] J. Weickert, ‘‘A review of nonlinear diffusion filtering,’’ in Scale-Space
Theory in Computer Vision. Berlin, Germany: Springer, 1997, pp. 1–28.

[26] T.-H. Yu, T.-K. Kim, and R. Cipolla, ‘‘Real-time action recognition by
spatiotemporal semantic and structural forest,’’ in Proc. BMVC, 2010,
pp. 52.1–52.12.

[27] E. Rosten and T. Drummond, ‘‘Machine learning for high-speed corner
detection,’’ in Computer Vision—ECCV. Berlin, Germany: Springer, 2006,
pp. 430–443.

[28] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, 2008.

[29] K. Mikolajczyk and S. Cordelia, ‘‘A performance evaluation of local
descriptors,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615–1630, Oct. 2005.

[30] G. Willems, T. Tuytelaars, and L. Van Gool, ‘‘An efficient dense and
scale-invariant spatio-temporal interest point detector,’’ in Proc. Eur. Conf.
Comput. Vis. Berlin, Germany: Springer, 2008, pp. 650–663.

[31] Y. Guo, ‘‘Spatio-temporal SIFT interest points detection in videos,’’
Zhejiang Univ., Hangzhou, China, Tech. Rep., 2009.

[32] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[33] C. Li, B. Su, J. Wang, H. Wang, and Q. Zhang, ‘‘Human action recognition
using multi-velocity STIPs and motion energy orientation histogram,’’
J. Inf. Sci. Eng., vol. 30, no. 2, pp. 295–312, 2014.

[34] J. Lasenby, W. J. Fitzgerald, A. N. Lasenby, and C. J. L. Doran, ‘‘New
geometric methods for computer vision: An application to structure and
motion estimation,’’ Int. J. Comput. Vis., vol. 26, no. 3, pp. 191–213,
Feb. 1998.

[35] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1, Dec. 2001, pp. I-511–I-518.

[36] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier, ‘‘Large-scale image
retrieval with compressed Fisher vectors,’’ in Proc. IEEE Comput. Vis.
Pattern Recognit., Jun. 2010, pp. 3384–3391.

[37] K. Soomro, A. R. Zamir, and M. Shah, ‘‘UCF101: A dataset of 101 human
actions classes from videos in the wild,’’ CoRR, vol. abs/1212.0402, 2012.

[38] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, ‘‘Large-scale video classification with convolutional neural
networks,’’ in Proc. CVPR, Jun. 2014, pp. 1725–1732.

[39] J. Donahue et al., ‘‘Long-term recurrent convolutional networks for visual
recognition and description,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 2625–2634.

[40] D. Tran, L. Bourdev, R. Fergus, L. Torresani, andM. Paluri, ‘‘C3D:Generic
features for video analysis,’’ CoRR, vol. abs/1412.0767, Dec. 2014.

[41] K. Simonyan and A. Zisserman, ‘‘Two-stream convolutional networks for
action recognition in videos,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2014, pp. 568-576.

[42] M.-Y. Chen and A. Hauptmann, ‘‘MoSIFT: Recognizing human actions
in surveillance videos,’’ Dept. Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-CS- 09-161, 2009.

[43] M. Xin, H. Zhang, H. Wang, M. Sun, and D. Yuan, ‘‘ARCH: Adaptive
recurrent-convolutional hybrid networks for long-term action recogni-
tion,’’ Neurocomputing, vol. 178, pp. 87–102, Feb. 2016.

[44] B. Fernando, E. Gavves, J. Oramas M, A. Ghodrati, and T. Tuytelaars,
‘‘Rank pooling for action recognition,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 4, pp. 773–787, Apr. 2017.

[45] L. Wang, L. Ge, R. Li, and Y. Fang, ‘‘Three-stream CNNs for action
recognition,’’ Pattern Recognit. Lett., vol. 92, pp. 33–40, Jun. 2017.

[46] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, ‘‘Action
recognition in video sequences using deep bi-directional LSTMwith CNN
features,’’ IEEE Access, vol. 6, pp. 1155–1166, 2017.

[47] M. A. Uddin, J. B. Joolee, A. Alam, and Y. K. Lee, ‘‘Human action
recognition using adaptive local motion descriptor in spark,’’ IEEE Access,
vol. 5, pp. 21157–21167, 2017.

[48] Y. Hou, S. Wang, P. Wang, Z. Gao, and W. Li, ‘‘Spatially and temporally
structured global to local aggregation of dynamic depth information for
action recognition,’’ IEEE Access, vol. 6, pp. 2206–2219, 2018.

[49] Y. Li, R. Xia, Q. Huang, W. Xie, and X. Li, ‘‘Survey of spatio-temporal
interest point detection algorithms in video,’’ IEEE Access, vol. 5, no. 2,
pp. 10323–10331, Feb. 2017.

YANSHAN LI received the M.Sc. degree from the
Zhejiang University of Technology in 2005 and
the Ph.D. degree from the South China University
of Technology, China, in 2015. He is currently
an Associate Professor with the ATR National
Key Laboratory of Defense Technology, Shenzhen
University, China. His research interests cover
computer vision, machine learning, and image
analysis.

CONGZHU YANG is currently pursuing the M.S. degree in signal and
information processing with the ATR National Key Laboratory of Defense
Technology, Shenzhen University. His research interests include machine
learning, video processing, and pattern recognition.

VOLUME 6, 2018 31075



Y. Li et al.: Novel SURF Based on UMAMV

LI ZHANG received the bachelor’s degree in radio engineering and the
master’s degree in communications and information systems from the Harbin
Institute of Technology in 1997 and 1999, respectively, and the doctorate
degree in communications and information systems from the South China
University of Technology in 2002. He is currently a Professor with the School
of Information Engineering, Shenzhen University. His research interests
include digital signal processing and information security.

RONGJIE XIA received the B.E. degree in
information and engineering from Shenzhen
University, Shenzhen, China, in 2017, where he
is currently pursuing the M.S. degree in signal and
information processingwith theATRNational Key
Laboratory of Defense Technology. His research
interests include intelligent information process-
ing, video processing, and pattern recognition.

LEIDONG FAN received the B.E. degree in information and engineering
from Shenzhen University, Shenzhen, China, in 2015, where he is currently
pursuing the M.S. degree in signal and information processing with the
ATRNational Key Laboratory of Defense Technology. His research interests
include image processing and pattern recognition.

WEIXIN XIE received the Degree from Xidian
University, Xi’an. In 1965, he joined Xidian Uni-
versity as a Faculty Member. From 1981 to 1983,
he was a Visiting Scholar with the University of
Pennsylvania, USA. In 1989, he was invited to the
University of Pennsylvania, as a Visiting Profes-
sor. He is currently with the School of Informa-
tion Engineering, Shenzhen University, China. His
research interests include intelligent information
processing, fuzzy information processing, image
processing, and pattern recognition.

31076 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	THE UNIFIED MODEL OF APPEARANCE AND MOTION-VARIATION FOR VIDEO
	GENERAL GEOMETRIC ALGEBRA MODEL OF SPATIO-TEMPORAL DOMAIN FOR VIDEOS
	THE UNIFIED MODEL OF APPEARANCE AND MOTION-VARIATION FOR VIDEO

	HESSIAN MATRIX IN G3 
	SURF DETECTOR AND DESCRIPTOR BASED ON UMAMV
	DETECTOR
	INTEGRAL VIDEO ON UMAMV
	BOX FILTER
	THE DETERMINANT APPROXIMATION OF THE HESSIAN MATRIX IN G3 

	DESCRIPTOR
	GENERATING THE FEATURE DESCRIPTOR


	EXPERIMENTAL WORK
	EXPERIMENTAL SETTINGS
	EXPERIMENTAL RESULTS
	FEATURE POINT POSITION DISTRIBUTION EXPERIMENT
	TEN RANDOMLY SELECTED CLASSES OF VIDEO CLASSIFICATION EXPERIMENTS
	CLASSIFICATION RESULTS FOR THE FIVE DIFFERENT ACTION GROUPS
	CLASSIFICATION RESULTS AND ANALYSES FOR THE UCF101 DATASET
	CLASSIFICATION RESULTS AND ANALYSES FOR HDMB51 DATASET
	COMPUTATIONAL TIME COMPARISON


	CONCLUSION
	REFERENCES
	Biographies
	YANSHAN LI
	CONGZHU YANG
	LI ZHANG
	RONGJIE XIA
	LEIDONG FAN
	WEIXIN XIE


