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ABSTRACT This paper investigates the cross-layer optimization for anti-jamming in the network and MAC
layers, in which the jammer can adjust the jamming policies to maximize the jamming effectiveness. The
joint problem of routing selection, channel allocation, and power control is formulated as a Stackelberg
game. The jammer leads the game by choosing the optimal jamming power and channels. The user follows
by selecting the optimal nodes and corresponding channels, and adjusts its transmitting power to meet the
communication requirement. Then, based on Q-learning, a cross-layer anti-jamming learning algorithm
is proposed to obtain the Stackelberg equilibrium. Finally, simulation results are presented to verify the
effectiveness of the proposed algorithm.

INDEX TERMS Anti-jamming, Q-learning, Stackelberg game, cross-layer, routing selection, channel
allocation, power control.

I. INTRODUCTION
The smart jammer can adjust the jamming policies to max-
imize the jamming effectiveness, which severely degrades
the performance of wireless communication systems. It is
important to achieve effective and reliable communication
in the presence of jamming. Game theory can be employed
to analyze the interactions between the jammers and users,
in which both the jammers and users select their strategies
independently and selfishly. In [1], Wang et al. considered
cognitive jammer and proposed an anti-jamming stochastic
game framework to learn the optimal policy for maximizing
the spectrum-efficient throughput. In [2], a Bayesian game
was formulated to analyze the distributed competitive inter-
actions between a jammer and a secondary user. A two-
party zero-sum game was formulated in [3] to demonstrate
the strategic decision-making under hostile jamming. How-
ever, the above-mentioned game models never considered the
hierarchical behaviors among players. In the anti-jamming
field, the Stackelberg game is a sophisticated method to
deal with the hierarchical interactions among players. In [4],
a Stackelberg game approach for anti-jamming was proposed
to determine the optimal transmission power.

The problems of routing selection and channel alloca-
tion for anti-jamming have been separately investigated in
previous studies [5], [6]. In [7] and [8], Zhu et al. and

Yao et al. proposed an anti-jamming game to learn the chan-
nel selection policies. In [9], an anti-jamming relay game
was formulated to obtain the optimal relay strategy against
smart jammer in the vehicular ad-hoc networks. The lay-
ered structure of the OSI model leads to longer delays and
more signaling overhead when the communication network
is threatened by jamming. It is difficult to counter smart
jamming with fixed routing protocols and independent chan-
nel selection policies. The cross-layer design involving the
network layer and MAC layer is necessary to improve the
anti-jamming performance. Due to the unevenly distributed
spectrum, the channels available to each communication node
change over time and the links between nodes change with
the channel allocation. Therefore, the problem of routing
selection should be considered in unison with that of chan-
nel allocation to determine the next node in the communi-
cation path and corresponding channels for more effective
and reliable communication. In [10], the conjoint design of
channel allocation and network routing proved to improve
the connection stability and end-to-end throughput. In [11],
a cross-layer optimization solution was formulated to achieve
cooperation between the MAC layer and network layer by
hierarchical selection of routing and channels. In [12], a sys-
tematic layered Markov decision process (MDP) framework
was proposed to optimize the cross-layer transmission policy.
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However, the problem of cross-layer optimization in the
jamming environment has not been considered in the above
studies. Furthermore, power control is also an important
method that can be used for anti-jamming. It has a significant
impact on the quality of communication aswell as the channel
allocation. In [13], a Stackelberg gamewas formulated to ana-
lyze the anti-jamming problemwith discrete power strategies.
In [14] and [15], Xiao et al. proposed an anti-jamming game
to learn the power control strategies. The above studies only
focused on the power control policies without considering
routing selection and channel allocation.

Reinforcement learning methods have been applied to
learn the jamming rule, and obtain the optimal anti-jamming
policy [16]. Then, wireless communication systems can adapt
dynamically to the jamming strategy and achieve reliable
communication. In [17], based on Q-learning algorithm,
an cross-layer aware resource allocation algorithm was pro-
posed to allow dynamic spectrum access users to effectively
locate and exploit unused spectrum opportunities. In [18],
Ghaffari proposed a real-time routing algorithm based on
Q-Learning to solve the route instability problem caused
by the movement of nodes. In the existing literature, Q-
Learning algorithms have been widely applied to the field of
wireless communications. However, to the best of our knowl-
edge, work on cross-layer anti-jamming optimization using
Q-learning has not been reported openly. This observation
motivates the work in this paper.

The main contributions of this paper can be summarized as
follows
• A hierarchical learning scheme for anti-jamming Stack-
elberg game is proposed to solve the joint selection
problem of routing selection, channel allocation, and
power control.

• To obtain the solution of the anti-jamming game, a cross-
layer anti-jamming learning algorithm (CALA) is
proposed.

Note that some relevant works can be found in [7]–[9],
[13], and [15], which independently studied a certain aspect
of anti-jamming techniques, including power selection, chan-
nel allocation, and relay message. The main difference is
that we investigate the joint anti-jamming problem of routing
selection, channel allocation, and power control.

The rest of this paper is organized as follows. The
system model and problem formulation are established
in Section II. The anti-jamming game is formulated in
Section III. In Section IV, a cross-layer anti-jamming learn-
ing algorithm is proposed. In Section V, the simulation results
are shown and the performance of proposed algorithm is
analyzed. Section VI draws the conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
There are N channels whose bandwidths are Wch. A power-
limited jammer selects H channels to launch the jamming
attacks. The jamming area encompasses some communica-
tion nodes. The jamming power set and jamming channel

set are denoted as Pj =
[
pj1, pj2 . . . pjL

]
and Fj =[

fj1, fj2 . . . fjN
]
, respectively, where L is the number of avail-

able jamming power. In this paper, we assume that only
one channel is jammed at a time to simplify the analysis.
The jammer automatically adjusts its jamming power and
jamming channel according to the jamming effect on the
network to achieve smart jamming attacks. Every node imple-
ments the full-duplex strategy and there is no delay in packet
forwarding. The available transmitting power set of the user
is expressed as Pu = [pu1, pu2 . . . puL].

The set of channels available to every node is time-varying.
Based on the current network topology, the minimal num-
ber of hops M from the source node to destination node is
obtained via the minimum hop routing algorithm. Every node
is capable of spectrum sensing and it is able to select the next
routing node independently. The Signal-to-Jamming-plus-
Noise Ratio (SJNR) of each channel is denoted as SJNR =
[SJNR1,SJNR2, . . . SJNRN ]. The channel capacity is given
by C = Wthlog2(1+ SJNR). The entire communication path
consists ofM transmission links. The maximum transmission
rate of each link is expressed as

rm = Cm, 1 ≤ m ≤ M , (1)

The final data throughput is limited by the transmission link
with the minimal channel capacity

r = min (r1, r2, . . . rm, . . . rM ). (2)

B. PROBLEM FORMULATION
The selection of the destination node and corresponding
channel Lm in the m-th hop depends on the destination node
and the channel selected in Lm−1. Therefore, the selection of
the destination node and corresponding channel is regarded
as a Markov decision process [19].

FIGURE 1. The joint selection of nodes and channels in Lm.

Consider the selection of destination nodes and the cor-
responding channels in Lm as shown in Fig. 1, where the
circles represent the communication nodes, and the numbers
in each circle are expressed as the set of channels available at
each node in the current network topology. The links between
adjacent nodes represent the available channels common to
both nodes and these are the channels that can be used
for communication. The dotted red line is expressed as the
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jamming area. The solid black lines are the current available
channels, while the solid red lines are the channels which are
jammed. In Fig. 1, channel 5 is jammed at present.
S is denoted as the set of possible states

{sm ∈ S|S = [(q1, p1) , . . . , (q1, pN ) , . . .
(q2, p1) , . . .

(
qOm , pN

)]}
, (3)

where sm is the state in the m-th hop, comprised of the node
qm and the corresponding channel pm. Om is the number
of available nodes in the m-th hop and N is the number of
channels.
A is denoted as the set of possible actions

{am ∈ A|A = [(d1, z1) , . . . , (d1, zN ) , . . .
(d2, z1), . . .

(
dOm+1 , zN

)]}
, (4)

where am is comprised of the selected node dm+1 in the next
(m+1)-th hop and corresponding channel zm+1. Om+1 is the
number of available nodes in the (m+1)-th hop.

For each state-action pair {am|sm}, an immediate trans-
mission reward is defined as rm = C(zm). Based on [20],
the objective of the user is to find an optimal strategy π∗

which probabilistically maps state s to action a so that the
final data throughput r = min (r1, r2, . . . rm, . . . rM ) is max-
imized,

π∗ = P (am|sm). (5)

According to [20, 21], Q-value is given by

Q (sm, am) = R (sm, am)

+ γ
∑

sm+1∈S

Psm,sm+1 (am)Q (sm+1, am+1), (6)

where R (sm, am) is the mean value of rm, and γ ∈ (0, 1)
is the discount factor which maps the future reward to the
current state. The state transition probability from state sm to
state sm+1 with action am is expressed as Psm,sm+1 (am). Then,
the optimal policy π∗ can be obtained as follows

π∗ = arg max
π
{Q (s, a)} , (7)

However, it is usually difficult to obtain the values of
R (sm, am) and Psm,sm+1 (am). In this paper, based on Q-
Learning algorithm, a cross-layer anti-jamming learning
algorithm is proposed to determine the optimal policy π∗

without a priori information on R (sm, am) and Psm,sm+1 (am).
The user communicates on the optimal communication

path once the optimal nodes and corresponding optimal
channels in every hop are determined. However, the data
throughput may still fall under the minimum communication
requirement due to the action of the jammer. In this situation,
the user has to adaptively adjust the transmission power and
play a power game with the jammer to obtain the optimal
transmission power.

rm = Wthlog2

(
1+

pu,l
n0,m + pj,v

)
, (8)

p∗u,l = argmax
pu,l
{min (r1, . . . rm, . . . rM )} , (9)

where pu,l , n0,m, and pj,v are the transmission power, channel
noise, and jamming power in Lm, respectively.

III. ANTI-JAMMING GAME
A. ANTI-JAMMING ROUTING-CHANNEL
SELECTION GAME
Routing selection and channel allocation for anti-jamming
can be formulated as a Stackelberg game. Mathematically,
the anti-jamming routing-channel selection game is denoted
as ℘ =

{
Uc, Jc,A,Fj, ruc, rjc

}
, where Uc is denoted as the

user, Jc is expressed as the jammer, A and Fj represent the
strategy space of the user and jammer, ruc and rjc are the
utility functions of the user and jammer, respectively. To be
specific, the jammer leads the game by choosing its jamming
strategy first. The user then follows by detecting the jamming
environment and adjusting its communication strategy.

The utility function of the user in routing-channel selection
game can be given by

ruc = r . (10)

The utility function of the jammer is expressed as

rjc = rmax − r, (11)

where rmax is themaximal data throughput of the user without
jamming attacks.

B. ANTI-JAMMING POWER GAME
If the data throughput is still under the minimum communica-
tion requirement, the user should adaptively adjust the power
policy. Power control for anti-jamming is formulated as a
Stackelberg game. Mathematically, the anti-jamming power
game is denoted as = =

{
Up, Jp,Pu,Pj, rup, rjp

}
, whereUp is

expressed as the user, Jp is denoted as the jammer, Pu and Pj
represent the power strategy space of the user and jammer, rup
and rjp are the power utility functions of the user and jammer,
respectively. Again, the jammer is the leader, while the user
is the follower.

The utility function of the jammer in the power game is
given by

rjp = rjc − λj × pj,v, (12)

where λj represents the jamming cost per unit power of the
jammer. The objective of the jammer is to maximize the
jamming utility

ajp = arg max
ajp∈Pj

{
rjp
}
. (13)

The utility function of the user in the power game is
denoted as

rup = ruc − λu × pu,l, (14)

where λu represents the transmission cost per unit power. The
user chooses the optimum power strategy to maximize its
utility

aup = arg max
aup∈Pu

{
rup
}
. (15)
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C. STACKELBERG GAME SOLUTION
The jammer and user adopt mixed policies, which define
the probability distribution for all possible actions including
the jamming channel and jamming power for the jammer,
and the communication nodes, corresponding channels, and
transmission power for the user. The mixed policies of the
jammer and user are respectively denoted as πj and πu. The
expected utility of the player e (e ∈ {j, u}) is obtained by
r̂e
(
πj, πu

)
= E

[
re|πj, πu

]
. Motivated by [13] and [22],

the Stackelberg Equilibrium (SE) is defined as follows.
Definition 1: The strategy profile

(
π∗j , π

∗
u

)
constitutes

the SE if the following conditions in (16) hold. Thus, each
player cannot increase its own utility by deviating unilaterally
within the game framework,

r̂j
(
π∗j , π

∗
u

)
≥ r̂j

(
πj, π

∗
u

)
r̂u
(
π∗j , π

∗
u

)
≥ r̂j

(
π∗j , πu

)
. (16)

Theorem 1: In the proposed game, there exist stationary
policies of the user and jammer that constitute the SE.

Proof: Based on [13], [22]–[24], the finite strategic
game has a mixed policy equilibrium. Thus, there exists a SE,
in the meaning of stationary strategy, in the proposed game.

Based on Definition 1 and considering the objective of the
user is to maximize its communication utility, the optimal
strategy is obtained by

π∗u = argmax
πu

r̂u
(
πj, πu

)
. (17)

The optimal strategy of the jammer is given by

π∗j = argmax
πj

r̂j(πj, πu(πj)). (18)

Therefore,
(
π∗j , π

∗
u

(
π∗j

))
constitutes a stationary SE.

IV. CROSS-LAYER ANTI-JAMMING
LEARNING ALGORITHM
A. ALGORITHM DESCRIPTION
In this section, based on Q-Learning, the cross-layer anti-
jamming learning algorithm (CALA) is proposed. Denote
πup (i) =

[
πup,1 (i) , π

u
p,2 (i) . . . π

u
p,L (i)

]
as the transmission

power mixed policy at time i, where
∑L

l=1 π
u
p,l (i) = 1.

The policy πup,l (i) represents the probability of the user to
choose the power action pu,l ∈ [pu1, pu2 . . . puL]. Denote
πun (t) =

[
πun,1 (t) , π

u
n,2 (t) . . . π

u
n,Om+1

(t)
]
and πuc (t) =[

πuc,1 (t) , π
u
c,2 (t) . . . π

u
c,N (t)

]
as the mixed policies of the

node selection and channel selection in the m-th hop at time
t. Similarly, π jp (k) =

[
π
j
p,1 (k) , π

j
p,2 (k) . . . π

j
p,L (k)

]
and

π
j
f (k) =

[
π
j
f ,1 (k) , π

j
f ,2 (k) . . . π

j
f ,N (k)

]
are expressed as

the mixed policies of the jamming power and jamming chan-
nel at time k, respectively.
At time t, the Q-value of the user in Lm is denoted as

Qm,t (o, h, cn), where cn represents the current communica-
tion node in the m-th hop, o is expressed as the next node in

the (m+1)-th hop, and h is the communication channel from
them-th node to the (m+1)-th node.Qm,t (o, h, cn) is updated
as follows

Qm,t (o, h, cn) = Qm,t−1 (o, h, cn)

+α
(
rm,t − Qm,t−1 (o, h, cn)

)
. (19)

The learning rate α ∈ (0, 1) satisfies
∞∑
l=0
αl = ∞,

∞∑
l=0
α2l <

∞, which is updated according to

α = α0/µ (sm, am), (20)

where µ (sm, am) represents the times that the state-action
pair (sm, am) is visited, and α0 is the initial step size.
The node selection policy πun,o (t) and channel selection

policy πuc,h (t) are given by

πun,o (t + 1) =
τ
max
h′
(Qm,t(o,h′,cn))/ζu

∑Om+1
o′′=1 τ

max
h′
(Qm,t (o′′,h′,cn))/ζu

, (21)

πuc,h (t + 1) =
τQm(o,h,cn)/ζu∑N

h′′=1 τ
Qm(o,h′′,cn)/ζu

, (22)

where ζu and τ are the Boltzmann coefficients.

ζu = ζ0τ
(−υt), ζu ≥ ζfinal

ζu = ζfinal, ζu < ζfinal, (23)

where ζ0 is the initial parameter, which represents the time
of exploration, ζfinal is expressed as the ending condition in
the exploration state, τ and υ are the Boltzmann coefficients
which affect the transition from exploration to exploitation.

At time i, the power Q-value of the user is expressed as
Qp,i

(
pu,l

)
, and the transmission power selection policy is

denoted as πup,l (i),

Qp,i
(
pu,l

)
= Qp,i−1

(
pu,l

)
+ α

(
ru,i − Qp,i−1

(
pu,l

))
, (24)

πup,l (i+ 1) =
τQp,i(pu,l)/ζp∑L
l′=1 τ

Qp,i
(
pu,l′

)
/ζp
. (25)

Similarly, the Q-value of the jammer is denoted as
Qj,k

(
cf , x, pj,v

)
, where cf is expressed as the current jam-

ming channel, x represents the next jamming channel, and
pj,v is the next jamming power. Qj,k

(
cf , x, pj,v

)
is updated as

follows

Qj,k
(
cf , x, pj,v

)
= Qj,k−1

(
cf , x, pj,v

)
+α

(
rj,k − Qj,k−1

(
cf , x, pj,v

))
. (26)

Denote the jamming power selection policy and jamming
channel selection policy as π jp,v (k) and π

j
f ,x (k)

π jp,v(k + 1) =
τ
Qj,k (cf ,x,pj,v)/ζj∑L

v′=1 τ
Qj,k (cf ,x,pj,v′ )/ζj

(27)

π
j
f ,x (k + 1) =

τQJ ,k(cf ,x,pj,v)/ζj∑N
x ′=1 τ

Qj,k(cf ,x ′,pj,v)/ζj
. (28)
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The utility of the user and the jammer are respectively
given by

ru = r − I (r − R)× λu × pu,l, (29)

rj = rmax − r − λj × pj,v, (30)

where R is the minimum communication requirement, and
I (r − R) represents the sign function, which is equal to 1 if
r < R and 0 if r > R.

Each node detects the currently available channel set Fm =
[f1, f2, . . . fn] , 0 ≤ n ≤ N , where the common channel
between adjacent nodes is denoted as fm ∈ Fm. According
to the current network topology, W routing paths LKw, 1 ≤
w ≤ W , each of which consists of M links, can be obtained
using the minimum hop routing algorithm, where LKw =
[L1,L2, . . .Lm, . . .LM ] and Lm = fm.
If W = 1, i.e. there is only one minimum hop routing

path, the user chooses channels for each link according to the
current channel selection policy πuc (t). But, if W > 1, i.e.
the minimum hop routing path is not unique, the user selects
the routing path out of W routing paths and corresponding
channels according to the node and channel selection policies
πun (t) and π

u
c (t), respectively.

The user measures the communication utility rm =

C (fm) for each link Lm and the data throughput r =
min (r1, r2, . . . rm, . . . rM ). If the data throughput r is under
the minimum communication requirement R, i.e. r < R,
the user selects transmission power according to the power
selection policy πup (i) and plays a power game with the
jammer. Finally, the user communicates on the optimal path
with the optimal transmission power.

B. PERFORMANCE ANALYSIS
Motivated by [13], [22], and [25], the evolution of the
Q-values can be described using the differential equation as
follows

dQ (k + 1)
dk

= α (r − Q (k)) . (31)

However, the evolution of the policies, rather than that of
the Q-values, is of greater interest in this work. Using
Equation (31) and differentiating Equation (27) with respect
to k

dπ jp,v (k)
dk

= π jp,v (k)
αj

ζj

{[
rj,v (k−1)−

∑L

v′=1
π
j
p,v′ (k) rj,v′ (k − 1)

]
− ζj

∑L

v′=1
π
j
p,v′ (k) ln

[
[π jp,v (k)/π

j
p,v′ (k)

]}
. (32)

Based on [25], the steady jamming power selection strategy
profile can be obtained by equating the right-hand side of
Equation (32) to zero, which can be expressed as

π j∗p,s =
τ
rj,s/ζj∑L

s′=1 τ
r
j,s′
/ζj
. (33)

Algorithm 1 Cross-Layer Anti-Jamming Learning Algo-
rithm

Step 1: Set k = 0 and initialize Qj,k
(
cf , x, pj,v

)
= 0,

π
j
p (k) = 1/L, π jf (k) = 1/N .

Step 2: The jammer selects jamming power and jamming
channel according to π jp (k) and π

j
f (k).

Step 3: The user learns its optimal routing-channel selec-
tion and optimal transmission power.

(1) Routing-channel selection
1) Set t = 0 and initialize Qm,t

(
o, h, cn

)
= 0.

Initialize πun (t) = 1/Om+1 and πuc (t)=1/|Fm|.
2) If W = 1, choose channels for each link accord-

ing to πuc (t). If W > 1, select the routing path
and corresponding channels according to πun (t)
and πuc (t).

3) The user measures r and updates Qm,t (o, h, cn)
and πuc (t).

4) Update t = t + 1, and update αu, ζu.
5) Go to 2) and repeat process until converge
(2) If r < R, the user plays a power game with the

jammer.
1) Set i = 0, and initialize Qp,i

(
pu,l

)
= 0 and

πup (i) = 1/L.
2) The user chooses transmission power according

to πup (i), and measures ru.
3) Update Qp,i

(
pu,l

)
and πup (i).

4) Set i = i+ 1, and update αp, ζp.
5) Go to 2) and repeat process until converge

Step 4: The jammer measures rj. Then, update

Qj,k
(
cf , x, pj,v

)
, π jf (k), and π

j
p (k).

Step 5: Update k = k + 1, and update αj, ζj.
Step 6: Repeat algorithm starting from Step 2, until max-

imal iteration number is reached.

For the channel selection policies of both the user and
jammer, and the power and node selection policies of
the user, the evolution of these policies can be similarly
studied.

According to [13], [22], and [26], the policy profile of
the jammer and user at time t can be denoted as π (t) =(
πj (t) , πu (t)

)
. An ordinary differential equation (ODE) can

be used to determine the convergence of π (t). The right-
hand side of Equation (32) can be denoted as f (π). As α→
0, π (t) weakly converges to

(
π∗j , π

∗
u

(
π∗j

))
, which is the

solution of dπdt = f (π), with any initial conditionπ (0) = π0.
Theorem 2: The proposed algorithm can converge to a

mixed strategy SE.
Proof: Inspired by [27], the Q-learning algorithm can

converge to the true optimal value of the state-action pair,

provided it satisfies
∞∑
l=0
αl = ∞,

∞∑
l=0
α2l <∞, and all actions

in every state are accessed with non-zero probability. As the
algorithm iterates, each state is visited a sufficient number of
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TABLE 1. Simulation parameters.

times, and α is reduced to 0. Therefore, the CALA algorithm
will converge to the steady policy.

According to [13], the mixed strategy SE can be proved by
contradiction. Assuming that the learning process can con-
verge to a non-SE point. However, based on [26, Th. (3.1)],
the learning process converges to a stable point, which is the
solution of the ordinary differential equation. Therefore,
the non-SE point is stable.

V. SIMULATION RESULTS
In this section, the simulation results are presented to demon-
strate the performance of the proposed CALA algorithm.
In this paper, we focus on selecting the optimal routing path
and corresponding channels from the minimal hop routing
paths. There are N = 5 channels available for information
transmission. The number of the minimal hop routing paths
W = 4, including 6 communication nodes. Each communi-
cation path consists of M = 3 links. The other simulation
parameters are shown in Table 1.

A. PERFORMANCE OF ROUTING-CHANNEL
SELECTION GAME
In this simulation, the user plays a routing-channel selection
game with the jammer. The jammer chooses the optimal
channel to jam, and the user learns the optimal selection
of routing path and corresponding channels. The equivalent
noise power in each channel of the network topology A is
expressed as NA

mW = [0.05, 0.1, 0.25, 1.25, 3]. The jamming
power pj = 10mW, and the transmission power of user
pu = 5mW. The simulated network topology A without
jamming is shown in Fig. 2, where gm,i is expressed as the
i-th node in the m-th hop. The solid black lines represent the

FIGURE 2. Network topology A without jamming.

available channel sets. The first hop between g1 and g2,i can
select from 2 nodes. The available channel sets are expressed
as (g1, g21) = [2, 4, 5] and (g1, g22) = [1, 3, 4, 5], respec-
tively. Similarly, the available channel sets in the second hop
are given by (g21, g31) = [4, 5], (g21, g32) = [2, 4, 5],
(g22, g31) = [3, 4, 5], and (g22, g32) = [4, 5]. The available
channel sets in the third hop are expressed as (g31, g4) =
[3, 4, 5] and (g32, g4) = [2, 4, 5].

FIGURE 3. Network topology A with jamming.

The simulated network topology A with jamming is shown
in Fig. 3. The red solid line in Fig. 3 represents the optimal
communication path with the maximal data throughput in the
current network before the jamming is launched. The green
solid line is expressed as the communication path selected
by our proposed algorithm under the condition of smart
jamming.

Fig. 4 shows the channel selection probability of the jam-
mer. At the beginning of the simulation, the jammer launches
jamming attacks on the 5 channels with equal probability.
As the algorithm iterates, the selection probability of channel
2 converges to 1 in about 850 iterations, and those of the other
channels converge to 0 as expected. The optimal communi-
cation path without jamming is now disrupted.

Fig. 5 - Fig. 7 show the convergence of the channel selec-
tion probabilities in the first hop, the second hop, and the third
hop, respectively. The node and channel selection policies of
the user converge to node 2 (i.e. g22) and channel 1 in the first
hop, node 1 (i.e. g31) and channel 3 in the second hop, and
channel 3 in the third hop. The user selects the sub-optimal
communication path as shown by the green line in Fig. 3.

As we can see from Fig. 3 - Fig. 7, before the jamming
is launched, channel 2 provided the maximum transmission
rate. Thus, the data throughput of the entire communication
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FIGURE 4. The channel selection probability of the jammer.

FIGURE 5. The node and channel selection probabilities in the first hop.

FIGURE 6. The node and channel selection probabilities in the second
hop.

path is limited by the channel capacity of channel 2. The jam-
mer then launches jamming attacks on channel 2 to disrupt the
optimal communication path which is shown by the red solid
line in Fig. 3. However, the user reselects the current sub-
optimal communication path which is shown by the green line
in Fig. 3. Now, the transmission rate is limited by the channel
capacity of channel 3.

FIGURE 7. The channel selection probability in the third hop.

FIGURE 8. Network topology B with jamming.

The available channel sets of each node change over
time. Consider the original network topology A changing to
network topology B as shown in Fig. 8. After the routing-
channel selection game, the channel selection policy of the
jammer converges to channel 1 to disrupt the optimal commu-
nication path (the red solid line in Fig. 8) prior to jamming.
The user then reselects the sub-optimal communication path
(the green solid line in Fig. 8) under the condition of jamming.
Thus, node 1 and channel 2 are selected in the first hop, node
2 and channel 2 are selected in the second hop, and channel
2 is selected in the third hop.

B. PERFORMANCE OF THE ROUTING-CHANNEL
AND POWER GAME
If the wireless communication system is threatened by both
smart jamming and other fixed jamming, switching channel
may not be sufficient to meet the minimum communication
requirement. Then, the routing-channel selection game and
the power game are formulated to provide effective and
reliable communication to the user. The equivalent channel
noise of the network topology B is NB

mW = [0.5, 2, 4, 6, 8].
The jamming power options can be expressed as pj,mW =

[1, 3, 5, 7, 9]. The initial transmission power of the user is
pu0 = 1mW, and the transmission power options can be
denoted as pu,mW = [1, 3, 5, 7, 9]. The current network
topology is shown in Fig. 8.

As indicated in Fig. 9, the selection policies of the jamming
power and jamming channel converge to power 2 (3mW) and
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TABLE 2. The comparison of power selection policies.

FIGURE 9. The selection probabilities of the jamming channel and
jamming power.

FIGURE 10. The power selection probability of the user.

channel 1, respectively, to disrupt the optimal communication
path (the red solid line in Fig. 8) prior to jamming.

As can be seen from Fig. 10, the transmission power selec-
tion policy of the user converges to power 4 (7mW) which is
optimal in terms of communication utility. The user reselects
the sub-optimal communication path under jamming which
is shown by the green solid line in Fig. 8.

C. PERFORMANCE COMPARISON
As the cross-layer anti-jamming methods for smart jamming
in the field ofwireless communication are not proposed so far,
the proposed algorithm is compared with the fixed selection
policy and random selection algorithm. The performance

FIGURE 11. The comparison of average reward.

comparison of the cross-layer anti-jamming approach and
fixed-independent anti-jamming methods in the network and
MAC layers is shown in Fig. 11. The optimal-routing and
optimal-channel selection algorithm (OOSA) is able to make
the ideal decision with perfect information but it cannot be
implemented in practice. In the fixed-routing and random-
channel selection algorithm (FRSA), we choose a fixed
routing path and randomly select the corresponding channels
from the available channel set. Similarly, in the random-
routing and optimal-channel selection algorithm (ROSA),
we randomly choose a routing path and select the best
channels with the maximum channel capacity. The random-
routing and random-channel selection algorithm (RRSA) is
used to randomly select the routing path and corresponding
channels.

The average utility R̄, as determined by (34), of the OOSA
algorithm, FRSA algorithm, ROSA algorithm, RRSA algo-
rithm and the proposed algorithm (CALA) can be compared
in this section.

R̄ =

T∑
t=1

rt

T
. (34)

Under the condition of jamming, the proposed algorithm
eventually yields a higher average reward than the FRSA,
ROSA, and RRSA algorithms. Furthermore, the average
reward of the proposed algorithm generally converges to that
of the OOSA algorithm. The communication utility and data
throughput of the proposed power selection policy, the ran-
dom power selection policy (RPSP), and the fixed power
policy are shown in Table 2, and Fig. 12 - Fig. 13.
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FIGURE 12. The comparison of the normalized communication utility and
data throughput.

FIGURE 13. The corresponding jamming power of the jammer.

As shown in Fig. 12, the power selection policy of the pro-
posed CALA algorithm yields higher communication utility
and data throughput than the RPSP. Compared with the fixed
power policies of 1mW, 3mW, 5mW, 7mW, and 9mW, it can
be seen that the transmission power (7mW) selected by
CALA algorithm is optimal as it yields the maximal normal-
ized communication utility which makes a trade-off between
data throughput and power consumption. Fig. 13 shows the
corresponding jamming power of the jammer. It can be seen
that the jammer can adjust its jamming power policy to
maximize the jamming utility with its limited power.

VI. CONCLUSION
In this paper, the joint problem of routing-channel selection
and power control in smart jamming environment was formu-
lated as a Stackelberg game. Then, a cross-layer anti-jamming
learning algorithm (CALA) was proposed to learn the opti-
mal communication path and transmission power. Finally,
the simulation results showed that the joint optimization in
the network layer andMAC layer for anti-jamming had better
performance than the fixed and independent anti-jamming
methods. The user was able to determine the optimal anti-
jamming strategy for effective and reliable communication

in the dynamic jamming environment. In the future, we will
investigate the challenging issues which are caused by the
sharp increase in strategy space due to the smarter jammer
and the more complex communication systems.
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