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ABSTRACT Internet of Things (IoT) enables the devices to exchange data with each other. The wireless
sensor network is a key technology for making devices sensible and has been widely concerned. In the
clustering routing protocol of wireless sensor networks, the cluster heads have high energy consumption rate
since it undertakes data collection, fusion, and forwarding, which causes unbalanced energy consumption.
Thus, the network lifetime is limited. In this paper, we present the contribution as follows. First, we propose
an improved K-means algorithm to cluster the network and use the weighted evaluation function to optimize
the cluster structure. Then, we select to either split or merge the cluster structure according to the evaluation
results and in further to obtain a non-uniform clustering structure of the network. Second, in the data
transmission phase, the data fusion mechanism is used to improve the energy utilization rate of cluster heads.
Given the transmission delay problem caused by the data fusion, we propose a delay-optimized data fusion
tree construction-based algorithm. When an active node selects the parent node, the distance and the energy
factors are considered. The time slot allocation is optimized through constructing a data fusion tree, and
the transmission delay is minimized. Finally, compared with other algorithms in the simulation section,
the proposed algorithm can effectively reduce the energy consumption of the network, and the constructing
data fusion tree decreases the transmission delay caused by the data fusion process. The service quality of the
whole network is therefore improved. The proposed algorithm is suitable for the delay-constraint application
of IoT.

INDEX TERMS Internet of Things, wireless sensor networks, unequal clustering, K-means, time-delay.

I. INTRODUCTION
With the development of cloud computing [1], [2], big data
[3], [4] and mobile Internet [5], Internet of Things (IoT) has
been widely applied to fields such as industry [6], medical
treatment [7] and smart life [8], [9]. Concerning the Internet
of things (IoT), wireless sensor networks (WSNs) become
more and more critical in undertaking data monitoring and
data transmission [10]. Since the sensor nodes consisting a
network have insufficient energy, it is difficult to replenish
their energy after the deployment. Therefore, how to uti-
lize the limited energy to maximize the network lifetime
has become into focus. Two factors are restricting the net-
work lifetime. First, the sensor nodes collect data and send
them periodically to the base station (BS), and the cyclical
data transmission will result in a significant amount of data
redundancy, which would make the node consume a lot of
energy during transmission. Second, since the nodes near the
base station would prematurely exhaust their energy due to

overloaded forwarding tasks, they might destroy the con-
nectivity of the network and then lead to an ‘‘empty hole’’
problem [11]. To avoid or eliminate the mentioned empty
holes led in by the vulnerable network structure, the clus-
tering structure is introduced in WSNs. According to the
different tasks of nodes in the network, the network nodes
are divided into the cluster heads (CH) and the cluster mem-
bers (CM). After the data in a cluster is merged by the CH,
it is sent to the BS. The method could efficiently reduce the
amount of data transferred and the transmission energy con-
sumption. A reasonable CH election strategy can shorten the
frequency of cluster reconstruction [12], reduce the energy
consumption of cluster formation, and prolong the network
lifetime. Data redundancy reduction can also be achieved
through data fusion process. However, the construction of
data fusion tree and data scheduling can still result in trans-
mission delay and cause the drop of the network service
quality. For example, in a smart medical application, when
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the patient’s condition suddenly deteriorates, if the sensor
fails to transmit the patient information to the control center
in time, the patient may miss the optimal time of obtaining
some treatment, which may even endanger the patient’s life.
Therefore, how to reduce the delay caused by data fusion is
one of the important research work of WSNs.

Based on the above analysis, this paper presents an unequal
clustering algorithm concerned with time-delay (UCATD)
for IoT. An improved K-Means algorithm is brought into
to construct unequal clustering in the aim of solving the
‘‘empty hole’’ problem and balance the energy consumption
of nodes. The transmission delay caused by data fusion is
mainly affected by the data fusion tree structure and data
scheduling [13]. Therefore, this paper also provides a data
fusion tree with time-delay optimization, which could opti-
mize the delay of the transmission path and the scheduling
time slot. Meanwhile, the network lifetime could be pro-
longed supported by the reduction of the time delay. Themain
contributions of this paper include:

(1) We propose an improved K-means algorithm to act
a non-uniform clustering onto the network and build up
a weighted evaluation function of determining whether to
merge or split the given cluster. In this way, the cluster
structure could be optimized.

(2) During the process of constructing the data fusion tree
with the minimum delay, the node level is set to ensure that
the nodes at the same level in each time slot can select the
corresponding parent nodes to maximize the time slot reuse.

(3) Considering the two factors affecting the network life-
time, i.e., the distance between two nodes and the remaining
energy during the process of parent node selection, we choose
the optimal nodes to construct the optimal fusion tree so
that the final network structure will manifest itself with the
minimum delay.

The follow-up paper is organized as follows: Several stud-
ies on clustering-based routing algorithms and data fusion
algorithms are reviewed in Section 2. The models used in
this study are described in Section 3. Section 4 presents
the unequal clustering algorithm implementation process and
a delay optimized data fusion tree construction process.
A series of experiments are presented in Section 5. The
conclusion is drawn from the research results in Section 6.

II. RELATED WORKS
The problem of unbalanced energy consumption in the clus-
tering routing protocol of WSNs is a hot research topic in
recent years. Heinzelman et al. [14] proposed the LEACH.
The periodic CHs election is made during network operation,
and then the node energy consumption is balanced. A data
fusionmechanism is also used to reduce the data transmission
energy consumption. Reference [15] was proposed to reduce
the probability of forming energy hole near the base station
by increasing the node density near the base station in node
deployment. The algorithm is based on the clustering strategy
used in LEACH protocol, in line with the needs of balancing
network load, but not applicable for the network with node

random spreading. Reference [16] proposed a density-based
energy-efficient game theory routing algorithm. The algo-
rithm sets the utility function according to the node density,
residual energy and average energy consumption of neighbor
nodes. The iterative method is used to replace the CHs and
the data transmission adopts intra-cluster and inter-cluster
multi-hop routing algorithm. The algorithm effectively uses
a variety of parameters for the CH election, but the parame-
ter calculation process is relatively complicated, which will
increase the overall network transmission delay. The EEUC
algorithm proposed in [17] is an early non-uniform routing
protocol. This protocol preliminarily solves the problem that
the nodes that are closer to the base station die too soon
by making the clusters closer to the base station smaller
than the clusters far away from the base station. However,
the procedure of determining the clustering radius in EEUC
algorithm only depends on few factors and its proposed clus-
tering radius would be unreasonable. In [18], UCR algorithm
is proposed as a non-uniform clustering algorithm. However,
during the operation of the algorithm, the node’s competition
radius is unchanged and its proposed energy consumption
would thus be uneven. The CUCRA algorithm [19] is also
a non-uniform clustering algorithm. But the energy factor is
taken into account when calculating the competition radius,
so that the node’s competition radius becomes smaller as
the node’s residual energy is less. The algorithm proposed
in the literature [20] introduces the DB evaluation function
to obtain the number of clusters, and it uses the Gaussian
evaluation to measure the effectiveness of the cluster head,
which could reduce the energy consumed during each round
of cluster head replacement. The BPK-means algorithm pro-
posed in [21] adopts a balanced scheduling strategy after
cluster clustering so that the number of nodes in each cluster
tends to average. In this way, the total energy consumption
in each cluster is equalized. Since the communication phase
according to the algorithm employs the single-hop mode,
the algorithm is not proper to run under the large-scale net-
work model. Based on the k-means algorithm clustering,
the EKMT algorithm proposed in [22] integrates the distance
from the node to the cluster center point and the distance from
the node to the base station as the decision elements in the
cluster head election strategy. The algorithm takes the remain-
ing energy factor and could satisfy the energy balancing
requirements, but it could still not solve the energy consump-
tion hotspot problem in the many-to-one transmission mode.
However, once the nodes with more remaining energy are
too concentrated, the CH distribution will be unreasonable.
In clustering routing protocol, the CH conducts data fusion
to enhance its energy utilization. But the above algorithms
do not consider the transmission delay problem during data
fusion process.

Time-delay is an important criterion to measure the quality
of service (QoS) of WSNs. It usually refers to the total delay
required to transmit one (or a group) of data packets from the
source node to the destination node, including the propaga-
tion delay, queuing delay and routing delay, etc. Data fusion
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can reduce the redundancy of the data, achieve the purpose of
saving the network energy and improving the data reliability,
but it inevitably causes the transmission delay and makes
the QoS guarantee of WSN more complicated. Especially
concerning the applications that require the transmission of
real-time data (such as images or video), it becomes more
urgent to focus on the transmission delay. PEGASIS (power-
efficient gathering in sensor information systems) [23] is a
nearly optimal chain-based protocol originated fromLEACH,
which connects all the nodes in the network into a link in
which the adjacent nodes have the shortest distance. Through
randomly selecting a node as the leader from both ends of
the link, the nodes, in turn, send data to the leader node, and
the intermediate nodes will conduct fusion processing of the
received data, and send the fusion results to the next node.
Eventually, the data is sent to the BS by the leader node. The
disadvantage of PEGASIS is that it takes some additional
resources for nodes to maintain their location information.
The algorithm NCA [24] (Nearly Constant Approximation
for Data Aggregation Scheduling) establishes a Connected
Dominance Set (CDS) as a fusion tree. The dominating node
is firstly scheduled, and then the nodes in the CDS are dis-
patched progressively from the bottom up using the first fit
time slot assignment process. [25] proposed a centralized
and improved data fusion scheduling algorithm (CIAS) as
an improved algorithm based on NCA. By building a data
fusion tree routed to the center of the network, the network
center receives the fusion data and forwards the fusion result
to the BS. In [26], a heterogeneous RBF neural network
information fusion algorithm is proposed, which is used to
converge the heterogeneous information of aggregation nodes
with good real-time performance and small network delay.
Besides, the algorithm can reduce network conflicts and con-
gestion. In [27], a centralized algorithm was proposed, in
which no information about the candidate parent nodes or the
child nodes is provided to the scheduling algorithm. Tree
establishment and scheduling are carried out simultaneously.
According to [28], DADCNS algorithm reduces the data
fusion delay by constructing a network structure with delay
optimization, but it does not adequately control the energy
to save and the energy balance among nodes, which shortens
the network lifetime. The above fusion methods are all based
on a particular network structure. Reference [29] proposed an
extensible unstructured data fusion algorithm (SP), which is
a distributed dynamic fusion algorithm. The nodes merge the
data at the end of waiting time and send the merged data to
the best neighbor chosen by the proposed best neighbor algo-
rithm. The algorithm is superior to other algorithms regarding
scalability and convergence. The SFEB (structure-free and
energy-balanced data aggregation protocol) proposed in [30]
is also an unstructured and energy-balanced fusion algorithm.
Through the two stages of the fusion process and the dynamic
selection mechanism deployed within the fusion machine,
it could achieve efficient data collection and energy consump-
tion balance. However, in general, the energy consumption
performance of unstructured fusion is not as good as the

energy consumption performance brought by the structure
algorithm. Therefore, this paper will adopt a data fusion
method based on network structure.

To ensure the maximum network service quality,
we mainly focus the balanced energy consumption and the
transmission delay as the key factors. We thus propose an
unequal clustering algorithm to cope with ‘‘energy hole’’ and
the delay problem of data fusion. This paper firstly designs
a uniform energy-concentration clustering strategy based on
the improved k-means clustering algorithm. The introduced
clustering algorithm is used to cluster the network nodes
reasonably to avoid energy distribution imbalance caused
by unreasonable clustering. Then, referring to the hot-spot
problem caused by the multiple-to-one transmission mode,
a splitting andmerging strategy is proposed, which could thus
reduce the energy consumption in the area close to the base
station and extend the network lifetime. Second, we evaluate
the factors that affect the data transmission delay and build a
delayed optimized data fusion tree, whichmaximizes the time
slot utilization and reduces the transmission delay. The pro-
posed algorithm is optimized regarding energy consumption
and transmission delay.

III. MODELS PRESENTATION
A. NETWORK MODEL
The network model assumption used in this paper is as
follows:

(1) N sensor nodes are randomly deployed within the
monitoring area with an area of S = M∗M . The BS is located
at the center of the network, and both the sensor nodes and the
base stations are stationary.

(2) Nodes in the network have the same initial energy,
and each node has a unique ID identifier. The nodes have its
limited energy, and the BS has infinite energy.

(3) The link is symmetric. The node can calculate the
approximate distance between the sender and itself based on
the received signal strength.

(4) Each node only needs to spend one time-slot to com-
municate with its parent node, and each node can only
receive or send one data packet and corresponding control
packet in this time slot.

(5) The node can adjust the transmission power according
to the communication distance.

B. ENERGY CONSUMPTION MODEL
Most of the energy consumption of sensor nodes is spent in
the data communication. Thus, we only assume the energy
consumption cost in the data transmission and the fusion data
in this paper. The following equations formalize the energy
consumption of transmitting and receiving.

ETX (k, d) =
{
kEelec + kεfsd2, d < d0
kEelec + kεampd4, d ≥ d0

(1)

ERX (k) = kEelec (2)

where, k represents the data length, i.e., the number of bits. d
represents the data transmission distance, and Eelec represents
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the energy consumed during the transmission and reception
of the unit length data. εfs and εamp represents the amplifier
power consumption of the free-space model and multi-path
attenuation model respectively. When the distance d between
the transmitting node and the receiving node is less than the
energy consumptionmodel threshold d0, the free spacemodel
is adopted and the transmission power is attenuated as d2.
Otherwise, the multi-path attenuation model is adopted and
the transmission power is specified as d4.
The energy consumption required for nodes to fuse

k-length data is formalized as:

EA(k) = kEDA (3)

where EDA is the energy consumption required to fuse a unit
length of data.

IV. THE DETAIL OF UCATD
Clustering routing algorithms execute by rounds, and each
round includes two phases, namely cluster formation and data
transmission. In the clustering stage, the number of optimal
clusters is first calculated, and the initial clustering centers
required by the K-Means clustering algorithm are selected by
using the region division method, and clustering is performed
using the objective function. To avoid the uneven distribution
of node load caused by the many-to-one transmission mode,
this paper adopts the splitting and merging operations to
adjust the scale of the region with large energy consump-
tion so as to balance the energy consumption of nodes in
the network. In aim of ensuring the cluster head election
validity, this paper suggests a weighted evaluation function
to select the optimal cluster head in consideration of position
and energy, and to improve the node energy balance in the
network. In the data transmission phase, a delay optimized
data fusion tree is constructed to reduce the influence of data
fusion on transmission delay.

A. CLUSTER FORMATION
1) DETERMINATION OF OPTIMAL CLUSTER NUMBER
The rational determination of the cluster amount in WSN
is usually based on the consideration of energy efficiency.
If there are too many clusters, too much clustering cost would
be paid; if the number of clusters is too small, it would
lead to too many nodes in each cluster and a number of
cluster heads consuming more energy would die too soon.
So a reasonable number of clusters can not only effectively
improve the efficiency of the network link, but it could also
balance the node energy loss and extend the network life
cycle.

In this paper, the inter-cluster communication employs the
multi-hop routing mode. The distance from the base station
to the furthest cluster head is set to be D. This distance is
divided intomultiple hops. For the convenience of discussion,
we utilize the linear equidistant model as shown in Figure 1.

As illustrated in Figure 1, D = k · d , k is the number
of cluster heads, and d is the length of equidistance. Under

FIGURE 1. Multi-hop equidistant model.

the multi-hop transmission model, the energy consumption is
expressed as:

Emultihop = ERx + EDA + ETx (4)

If d < d0, c is the data compression ratio or data fusion
ratio (i.e., the data quantity before the compression/fusion is
divided by that after the compression/fusion). Then,

Emultihop
= (Eelec · l + εfs · l · d2)1
+ (Eelec · l + Eda · l + Eelec · c · l + εfs · c · l · d2)2

+

(
Eelec · c · l+Eda · c · l+Eelec · c2 · l+εfs · c2 · l · d2

)
3

+ . . .+ (Eelec · ck−2 · l + Eda · ck−2 · l + Eelec · ck−1 · l

+ εfs · ck−1 · l · d2)k (5)

when c = 1,

Emultihop = Eelec · l · (2k − 1)+ Eda · l · (k − 1)

+ εfs · l · d2 · k (6)

The total energy consumed through multi-hop transmission
could be denoted as the sum of the energy consumption cost
among the clusters and the energy consumption cost among
the nodes within each of the clusters which can be formulated
as (6).

Etotal = Emultihop + k · Eincluster (7)

The energy consumption within the cluster can be derived
according to the free-attenuating channel model as demon-
strated by (8).

Eincluster =
(
N
k
− 1

)
· l · Eelec +

(
N
k
− 1

)
· l · εfs · d2toCH

(8)

Assume that the network area is fully covered by the k
circular cluster domains, then

M2
= π · R2 · k (9)

The distance between clusters could be calculated by d =
2R = 2M

√
πk

as shown in Figure 2.

E
(
d2toCH

)
=

∫∫
(x2 + y2) · ρ(x, y)dxdy

= ρ ·

∫∫
(x2 + y2)dxdy
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FIGURE 2. Distance between clusters.

= ρ ·

∫ 2π

θ=0

∫ M
√
πk

r=0
r3drdθ (10)

Assume that the distribution of nodes is uniformly dis-
tributed, then

ρ =
1

M2
/
k

(11)

With putting (11) into (10), we could obtain:

E
(
d2toCH

)
=

M2

2πk
(12)

Thus, Etotal is expressed as (13):

Etotal = (2k − 1) · Eelec · l + (k − 1) · l · EA

+ 4M2
· εfs ·

l
π
+ N · l · Eelec + N · l · εfs ·

M2

2πk
(13)

In order to calculate the k-value that minimizes the total
energy consumption, we calculate the derivative of Etotal
with k and set the derivative as zero in order to induce the
optimal number of clusters kopt to minimize the total energy
consumption of the network.

∂Etotal
∂k

= 2Eelec · l + Eda · l − N · l · εfs ·
M2

2π
·
1
k2

(14)

Set ∂Etotal
∂k = 0, then

kopt =

√
N · εfs ·M2

2π · (2Eelec + EA)
(15)

2) STAGE OF FORMING CLUSTERS
When using K-means algorithm to cluster data, the choice of
the initial cluster center would directly affect the clustering
result and may have a great impact on the performance of
clustering. TheK-means algorithm is a local search clustering
algorithm. The result of the algorithm depends on the initial
state of the process, i.e., the selection of the initial cluster
center point, and the algorithm can only guarantee conver-
gence to a fixed point and cannot guarantee convergence to
the minimum point of the objective function. The algorithm
sometimes might converge to the saddle point of the objective
function. Therefore, to use K-means algorithm for obtaining
an optimized clustering structure, reasonably determining the
initial clustering center is an important step during clustering
implementation. The basic idea and procedures of the cluster
center point selection proposed in this paper are as follows.

To determine the distribution of nodes in an area, the cen-
troid of the nodes in the specified area Gk (x, y) is found
by (16).

x =

n∑
i=0

xi

n
, y =

n∑
i=0

yi

n
(16)

FIGURE 3. An example of dividing area.

where, n is the number of nodes. Focusing on the centroid of
the area, we divide the entire area and get the initial four areas
X1, X2, X3, X4. All nodes record the area information, and the
centroid of the new area could be recalculated. If k > 4, then
the four obtained areas (i.e., X1, X2, X3, X4) would be divided
in the same way to obtain 16 areas. The dividing process is
demonstrated as Figure 3. The number of the divided areas a
is related to the number of clusters k:
(1) when k < 4, the dividing process are executed to obtain 4
areas, i.e., a = 4;
(2) when 4 ≤ k ≤ 16, a second dividing process is executed
to obtained 16 areas, i.e., a = 16;
(3) when k > 16, a third dividing process is executed to
obtain 64 areas, i.e., a = 64, and so on.
Count the number of nodes in each area, and use the

centroid of the area having the most nodes as the first cluster
center p1. Calculate the distance between the centroid of other
area Ga and the first cluster center p1 in turn and select the
point with the largest distance to the first cluster center as the
second cluster center, i.e., p2. Keep calculating the distance
(i.e., d(Ga, p1), d(Ga, p2)) from the centroids of the other
areas to the determined cluster centers. Select the centroid
of the area which has max[d(Ga, p1)+d(Ga, p2)] as the third
cluster center and so on. Then the k-th cluster pk could be
induced according to (17).

pk = max(
k−1∑
i=1

d(Ga, pi)) (17)

The specific clustering steps are as follows:
Step 1: put the obtained k cluster centers into the equation.
Step 2: calculate the distances from the n nodes to the

cluster center point of k clusters. Each node selects to join
the cluster with the shortest distance.

Step 3: calculate the geometric mean of the nodes in each
cluster as a new cluster center point.

Step 4: utilize the error square sum criterion (i.e., denoted
as (18)) to determine if the error criteria have been reached.
If not, return to Step 2 to continue. Otherwise, the clustering
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process ends and k classes are taken as the output.

J =
k∑
i=1

∑
x∈Ci

(‖x − µi‖ 2) (18)

3) CLUSTER STRUCTURE OPTIMIZATION
a: DETERMINING THE NUMBER OF NODES
IN THE OPTIMAL CLUSTER
In a WSN, the many-to-one data stream transmission mode
makes the cluster heads that is closer to the base station carry
out the more data volume, which leads the cluster heads con-
sume energy faster. In this paper, the competition radius [17]
is introduced to describe the relationship between the number
of node in a cluster and the distance to the BS. It is expressed
as:

Ri = (1− τ ·
dmax − d(Si,BS)
dmax − dmin

) · R0 (19)

The competition radius of the node defined by (19) is the
initial competition radius, in which τ is the factor that adjusts
the scope of the competition radius and determines the impact
of the distance on the competition radius. The greater the
τ is, the greater the impact of distance on the competition
radius. R0 is the maximum competition radius. dmax and dmin
are the maximum and minimum distances from all nodes to
the base station. When τ increases, the variation ranges of
Ri value decreases; conversely, when τ decreases, the range
of variation of Ri value increases, and R0 directly affects
the value of Ri. From Equation 19, we can conclude that
the competition radius of the cluster is proportional to the
distance from the cluster to the base station. The competition
radius of the cluster always varies between R0 and (1−τ ) R0,
The closer a cluster is to the base station, the smaller the
competition radius is. The smaller the competition radius is,
the less energy is used to manage the members of the cluster,
so that it has more energy for data forwarding during multi-
hop transmission communications.

Assume that the nodes are randomly distributed within the
two-dimensional plane with satisfying the uniform distribu-
tion, the probability density of the nodes could be obtained,
and the cluster radius obtained by combining (19) can obtain
the reasonable value of the nodes amount in each cluster. Its
expression is expressed as:

Ni = π · R2i · ρ (i = 1, · · · , k) (20)

b: SPLITTING AND MERGING
According to the core idea of the K-means clustering algo-
rithm, the clustering effect of the algorithm is reflected in
the grouping of nodes close to each other into one cluster.
The size of the cluster domain is inhomogeneous and will
cause the problem of ‘‘energy hole’’, i.e., the clusters close
to the base station has too many nodes, which consumes a
large amount of data and the more energy. Especially, due to
the long distance, the clusters will make some uneven energy
consumption and then affect the function of the entire WSN.

Therefore, this paper proposes a split-and-merge operation
based on energy balance to adjust the cluster domain derived
from the K-means algorithm. It does not use the repeated iter-
ative method for splitting and merging which could preserve
the best clustering effect of the K-means algorithm.

When selecting clusters to be adjusted, a weighted evalua-
tion function is proposed whose expression is:

W (i) = α ·
Di − Dc

Dmax − Dmin
+ β · F(i) (21)

F(i) =


(1+ c) · Ni − ni

ni − Ni
(ni > (1+ c) · Ni)

(1− c) · Ni − ni
Ni − ni

(ni < (1− c) · Ni)
(22)

The weight function in equation (21) considers the distance
from the cluster to the base station and the number of nodes in
the cluster. In the equation, Di is the distance from the cluster
Si to the base station. Dc is the average distance from the
center point of all clusters to the base station, Dmax and Dmin
represent the maximum and the minimum distances from the
center point of all clusters to the base station. The denom-
inator of the equation is Dmax-Dmin. With the denominator,
the value of the first part can bemadewithin 0 to 1, effectively
playing a normalizing role. F(i) means the influence of the
node amount in the cluster on the evaluation value. α and β
denote the influence weight of the distance factor and the
number of nodes onto the evaluation value respectively.

In (22), Ni is the number of optimal cluster nodes found
in (20). ni is the actual number of nodes in the cluster after
K-means clustering, and c is the reasonable range of the
node amount in the cluster. If the value of ni is in the range
of [(1 − c)∗Ni, (1 + c)∗Ni], it is regarded as a reasonable
number of nodes in the cluster and the cluster should not be
split or merged.

The specific algorithms for splitting and merging opera-
tions are as follows:

Step 1: Splitting operation. Traverse all clusters Si, and
select the specific cluster whose actual node amount ni >
(1 + c)∗Ni. Then calculate the weighted evaluation values
W (i) using (21) and (22), and sortW (i). SelectW (i) from the
clusters whose W (i) is less than 0 from small to large W (i);
Step 2: Calculate the standard deviation of the nodes, i.e.,

Si, in the cluster that need to be split. Split the cluster average
into two cluster blocks whose centers are c+i and c−i and
discard the original center. Let k = k + 1. c+i and c−i are
calculated as follows: Given an h value such that 0 < h ≤ 1,
c+i = ci + hσi, c

−

i = ci − hσi where the value of h is chosen
to make the distance from the point in the cluster Si to c

+

i and
c−i are different, and meanwhile it is necessary to ensure that
the previous sample of Si is still in the two new sets.
Step 3: Merging operation. Traverse all the clusters Si and

use (21, 22) to find the weighted evaluation valuesW (i). Then
sort W (i), and select from the largest to the smallest W (i)
among the clusters whose W (i) > 0;

Step 4: Calculate the distance dij from the center point
Ci of clusters Si that need to be merged to all other cluster
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centers. Take the clusters Sj and Si who commonly have
the minimum dij and merge them. The cluster center after
merging is expressed as:

Cl =
Ni · Ci + Nj · Cj

Ni + Nj
(23)

Corresponding to the center Cl , the original centers Ci
and Cj are then discard. Then the number of cluster centers
turns to k = k − 1.

4) CLUSTER HEAD ELECTION
After the clusters is determined, the BS will send a broadcast
message to the node, and the message includes the cluster
ID of the cluster. After receiving the broadcast message,
the nodes in each cluster distribute the election for the cluster
head.

When considering the distance and energy factors,
the weighting evaluation function is as follows:

WDE (i) = w ·
Ec(i)
Eaver

· (Dmax − Dmin)+ (1− w) ·
Daver
D(i)

(24)

where, Ec and Eaver represent the current residual energy
of each node in the cluster and the average energy of all
nodes in the cluster respectively. D(i) and Daver represent the
distance from the given node, i.e., ni to the cluster center and
the average distance from all the nodes to the cluster center.
From (24), it can be seen that in a cluster, the more residual
energy of a node, the closer the node is to the cluster center
and it is firstly selected as a cluster head node.

After completing the CH election, the ordinary nodes begin
to select the CH. The CH node broadcasts the elected CH
message with the maximum election radius Rmax, and the
nodes within the coverage of CH send its joining message
according to the strength of the received signal. The ordinary
node selects the cluster to join according to the received
CH broadcast message, and the CH uses TDMA strategy to
allocate time slots to the CMs. After receiving the assigned
time-slots, all CMs send the monitoring data information to
the CHs within their assigned time slots.

The flow of the clustering process is presented as figure 4.
After deploying the nodes, the optimal cluster amount is first
calculated according to the energy consumption model, and
the optimized clustering center is determined by using the
area division method. Based on the obtained optimal cluster
amount and clustering center, the network is clustered using
the k-means method. The objective function is equation (18).
Relying on the relationship between the node location and
the cluster radius described by the competition radius. The
cluster structure is then evaluated and the splitting and merg-
ing operations to optimize the cluster structure are executed.
During the cluster head election stage, the weighting function
is constructed based on considering the distance and the node
residual energy to balance node energy consumption in the
network. The algorithm is executed in turn, and the cluster

FIGURE 4. The flow of the clustering process.

heads are alternated periodically, thereby to ensure the energy
balance of the nodes.

The clustering process can be divided into two part: the
cluster forming and cluster structure optimization. In the
cluster forming phase, it is consist of the computation process
of the cluster center and K-means iterative process, the time
complexity is O(k∗a) and O(k∗t), respectively, where k is
the optimal number of clusters, a is the number of initial
zones and t is the number of iterative. In the cluster structure
optimization phase, the time complexity is O(k).

B. THE PROCESS OF DELAY OPTIMIZED
DATA FUSION TREE CONSTRUCTION
In order to reduce data redundancy and save part of transmis-
sion energy consumption in network, the CH executes data
fusion when data transmission is carried out. Considering
the transmission delay caused by data fusion, a data fusion
tree is constructed in this paper based on delay optimization,
the detail of data fusion tree constructing process consists of
the following three steps:
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1) INITIALIZATION
At first, all of CHs are independent and do not make any
connections with other nodes, so they are all active nodes and
have a level of 0. In this algorithm, only the nodes with the
same level of the subtree can be connected with each other
to form a minimum delay fusion tree. If a connection request
comes from a node with different level, the node will reject
the connection request and send a refusal message. If a node
receives a rejection message, it will send a connection request
to its neighbors.

2) BUILDING NODE PAIR
All CHs in the network broadcast their connection requests
within their transmission radius. After receiving a connection
request, each node can estimate the distance to each adjacent
node according to the signal strength. When a node selects
a neighbor node for connection, if the neighbor node has
already connected to other nodes, the node will select the
neighbor node second nearest to it for connection. We treat
each node pair as a subtree, so the rank of each node in the
subtree is (log22 = 1). If there is still no connection with other
nodes within the node coverage, it will be directly connected
with the BS. The node directly connected to the BS is not
changed in the level value. The level of node i is denoted as

Leveli = log2(SUMi) (25)

where, SUMi represents the total number of nodes in the
subtree where node i is currently located.
If the connection between two nodes in the network that

are the closest to each other, the two nodes that are far away
from each other need to be connected finally, it will increase
energy consumption. To avoid this phenomenon, the function
that is inversely proportional to the distance is used to control
the order of selecting one node’s adjacent nodes. In this way,
the nodes farther away from the base station will select the
adjacent nodes preferentially, and the remaining nodes will be
concentrated near the BS. The overall length of the network
structure will be shortened.

Tw(di,BS ) =
1

di,BS
+ random(0, c) (26)

The waiting time of node i is calculated by (26). di,BS
denotes the distance from node i to the BS. According to the
range of the first part, the value of c is set to 0.001. Random
function is introduced into to avoid conflicts between nodes
with equal distances from the BS. An example of node-to-
node connection is shown in Figure 5.

3) CONSTRUCTING DATA FUSION TREE
After the connection of independent nodes, multiple pairs of
connected nodes form in the network. Then the nodes should
be connected, and the nodes to be connected are named as
active nodes. The two active nodes in each sub-tree exchange
their respective adjacent node information and the one with a
smaller weight sends the connection request to the other. If the
two nodes have the same level, a connection is established

FIGURE 5. Node-to-node connection.

between the two nodes. The two nodes work as the active
nodes of the new composition tree. The other nodes keep the
current connection, and the algorithm ends. If the two nodes
have different levels, it will reject the connection request and
send a rejection message. This process is repeated until all the
nodes are connected to the data fusion tree.

Although the communication distance between nodes is
minimum, there could be other problem. If the distance
between nodes is taken as the weight of the edge, the min-
imum spanning tree is fixed in each round. Because the
position of the node is unchanged and the distance between
the nodes is fixed. For the nodes with more branches, it will
consume in each round a significant amount of energy to
receive, fuse, and send data. However, the nodes with fewer
branches would consume less energy. To prolong the network
service life, we should keep the energy consumption balanced
as much as possible. The remaining energy of the node should
be examined when it comes to the connection weight. The
node with more residual energy is more likely to be selected
as the parent. Otherwise, the probability is smaller. When two
nodes consume less energy in data transmission and mean-
while the total residual energy is more, the possibility that
their connected edges to be selected during the tree spanning
is larger so as to balance the energy consumption of all the
nodes in the network. When a data transmission is performed
between two nodes i, j, the total energy consumed by them
can be expressed as follows:

ECOS=ETX + ERX =
{
2kEelec+kεampd2, d < d0
2kEelec+ kεfsd4, d ≥ d0

(27)

then the energy weight W (E)i,j of the edge can be expressed
as:

W (E)i,j =
ECOS
Ei + Ej

(28)

where, Ei and Ej are the residual energy of two nodes
respectively.

When two subtrees are merged, only the two nodes partic-
ipating in the join continue to participate in the next round
of merge as active nodes of the composite subtree, while
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the other nodes will keep the current connection and end
the algorithm. In this way, the density of candidate parent
nodes in the network becomes smaller that could increase
the distance between them. Therefore, treating the weight of
the link should also take the distance between the two parent
nodes and the BS into account so that the candidate parent
nodes of the synthetic subtree converges at the BS. In this
way, the distance between the candidate parents becomes
shorter, and eventually, the parents of all the sub-trees gather
near the BS, so that their communication distance to the BS
drops. The distance weight W (D)i,j of the edge to which
node i, j is connected can be expressed as:

W (D)i,j =
di,j

di,BS + dj,BS
(29)

And then the weight function can be expressed as:

Wi,j = αW (E)i,j + (1− α)W (D)i,j (30)

FIGURE 6. The value of α.

where, the coefficient α ⊂ [0, 1] is a parameter that controls
the convergence speed of the candidate node to the BS. If the
value of α is larger, the node with larger remaining energy is
more advantageous when selecting the adjacent node. Con-
versely, when the value of α is smaller, the nodes with shorter
distances are more advantageous. In order to obtain a better
delay result, we must choose an appropriate α value. In this
paper, simulation experiments are conducted to determine the
value of α. Figure 6 shows the impact of different α values on
the network lifetime. Because the data fusion delay is only
associated with the formation of the data fusion tree structure
and data scheduling, but not related to the value of α. The
optimal value of α is chosen through examining the effect of
α on the network lifetime. Based on the iterative experiments,
the optimal value of α is acquired as 0.45.

The implementation of the algorithm is shown in Figure 7.

C. DELAY ANALYSIS
The transmission delay proposed in this paper refers to the
time required for all nodes in the network to collect data
in a round. This parameter is particularly crucial for time-
limited applications. In the data transmission process, each
node is assigned a time slot. Within its time slot, the node
begins to transmit data to its parent node. Assuming that

FIGURE 7. Fusion tree construction flow chart.

the time required for any two nodes to transmit a data is t
and the total number of time slots allocated in a round is m,
the delay caused by this round of data transmission is m∗t .
The following is the analysis and comparison of the delay
generated by this algorithm and PEGASIS algorithm in each
round. Suppose there are n nodes in the network.

FIGURE 8. PEGASIS link.

PEGASIS eventually generates a linked list, and it selects
a root node randomly. The root node sends the fusion data
to the BS in each round. As shown in following Figure 8,
there are 8 nodes in the network. If node 3 is selected as the
root node, the data will be transmitted in the following order:
4 → 2 → 0 → 7 → 3 ← 1 ← 5 ← 6. Because
the root node is waiting for receiving data from both ends
of the chain, so PEGASIS can generate a significant delay.
Especially when the root node is at either end of the linked
list (such as node 4 or 6), the data transfer can only start with
the node at the other end and only one pair of nodes in per
slot can work. Since the linked list has n− 1 edges, the total
number of the allocated time slots is n−1. Assuming that the
time required for transmitting data from the root node to the
base station is t ′, the total time required to transmit the data
is (n− 1)∗t + t ′.
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FIGURE 9. Time slot allocation in UCATD.

Referring to the fusion tree constructed in this paper, there
are n/2 nodes in the first time slot being transmitted at the
same time, there are n/22 nodes in the second time slot,
Thus, there are n/2m nodes in the m-th time slot, then the
total number of allocated time slots is

⌈
log2n

⌉
. As shown

in Figure 9, the network contains eight nodes. Time slot
T1 has 4 pairs of nodes to transmit simultaneously, and time
slot T2 has 2 pairs of nodes to transmit simultaneously, and
time slot T3 has 1 pairs of nodes to transmit simultaneously.
The optimal situation for the network of 8 nodes is to allocate
3 time slots, and the total time required to transmit data is⌈
log2n

⌉∗ t + t ′.
Time slot T1: A→ F, B→ E, C→ G, D→ H;
Time slot T2: F→ E, H→ G;
Time slot T3: E→ G.

V. SIMULATIONS
A. SIMULATION PARAMTER SETTINGS
In this paper, we use MATLABR2016a to simulate the
proposed DOUCA algorithm and analyze the performance
through comparing the proposed algorithmwith EKMT,UCR
and CUCRA. The experimental environment and necessary
parameters are listed in Table 1.

TABLE 1. Parameter settings.

B. PERFORMANCE COMPARISON AND ANALYSIS
1) DB INDEX EVALUATION
This paper introduces the DB index [31] evaluation value
to judge and measure the effectiveness of the clustering
algorithm. Intra-class dispersion and inter-class clustering
are often used to judge the effectiveness of clustering. The
DB index criterion simultaneously employs the inter-class
clustering and the intra-class dispersion. Through calculating

the index, we could determine which clustering method is the
most reasonable.

¬ Intra-class dispersion: Si = 1
|Ci|

∑
X∈Ci
‖X − Zi‖, in which

Zi is the class center of classCi and |Ci| represents the number
of samples in class Ci.

 Inter-class distance: dij =
∥∥Zi − Zj∥∥, which employs the

distance between the two class center to represent the inter-
class distance.

® DB index:

DBk =
1
k

k∑
i=1

Ri (31)

where k is the cluster amount. According to DB index evalu-
ation, the lower the DBk value is, the better performance the
clustering plays. Ri could be expressed as:

Ri = max
j=1,...,k,j 6=i

Si + Sj
dij

(32)

FIGURE 10. The condition before splitting and merging operations.

2) ALGORITHM PERFORMANCE ANALYSIS
a: SPLITTING AND MERGING OPERATION EVALUATION
There are 100 nodes deployed in a (100∗100) m2 network
area. Figure 10 shows the network clustering before splitting
and merging operations. As illustrated by the figure, the clus-
tering structure cannot avoid the impact of ‘‘energy hole’’,
i.e., in the condition where Cluster 1 area close to the base
station (The solid triangle in red color) contains too many
nodes and consumes too much energy, the data transmis-
sion of the network is affected correspondingly. Figure 11
shows the node cluster distribution after splitting andmerging
operations. Cluster 1 and Cluster 2 areas in Figure 10 are
split. Cluster 7 and Cluster 8 areas in Figure 10 are merged.
The radius of the cluster domain in the entire network meets
the minimum energy consumption model under multi-hop
transmission, which could effectively prolong the network
life cycle.
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FIGURE 11. The condition after splitting and merging operations.

FIGURE 12. Number of clusters.

b: DETERMINED THE NUMBER OF CLUSTERS
Splitting and merging operations are mainly used to solve
the energy hole problem. That is, in a multi-hop transmission
route, the energy consumption of a cluster head node closer
to a base station is higher than that of other nodes, which
leads to a decrease in the life cycle of the nodes near the base
station and then affecting the entire network service cycle.
Therefore, during the splitting andmerging operations, taking
the splitting operation as the core act would make the k value
increase accordingly. At this moment, given the values larger
than the initial k value, it is feasible to control k value through
the splitting and merging operation in the consideration of the
influence of the cluster amount onto the DB index evaluation
and network life cycle. The UCATD algorithm proposed in
this paper derives the optimal k value as 18 with the lowest
energy consumption Equation (13) in the clustering process.
It can be seen in Figure 12 that when the number of clusters is
20, the DB evaluation value is at the minimum value and the
network life is high. The network life cycle achieves the max-
imum value, so the value of the parameter c in Equation (20)
can be changed to control the number of final clusters.
After splitting and merging operations, the value of k turns
to 20.

FIGURE 13. The influence of splitting and merging operations onto node
life cycle.

c: INFLUENCE OF SPLITTING AND MERGING OPERATIONS
ONTO NODE LIFE CYCLE
Figure 13 shows the comparison of the number of survival
rounds of the nodes (distance from the base station) at dif-
ferent positions before and after splitting and merging opera-
tions. As illustrated in the figure, the lifetime of nodes from
the BS 50m is increased by 42%, when it comes to 100m,
the lifetime of nodes is increase by 23%. Thus, the splitting
and merging operations significantly improves the survival
time of nodes near the base station and eliminates the ‘‘energy
hole’’ effect on the network lifetime in the multi-hop trans-
mission model, and the operations effectively improves the
network life cycle.

FIGURE 14. Clustering evaluation.

3) COMPARISON OF ALGORITHM PERFORMANCE
a: CLUSTERING EVALUATION
The UCATD algorithm proposed in this paper uses the max-
imum distance method when selecting initial k values in the
clustering process. The EKMT algorithm adopts the random
selection method in the original K-means algorithm when k
initial values are selected. As can be seen from Figure 14,
corresponding to the different cluster numbers k , the DB

VOLUME 6, 2018 33905



X. Feng et al.: UCATD for IoT

evaluation value of the proposedUCATD algorithm is smaller
than the DB evaluation value of the EKMT algorithm, which
implies the clustering performance of UCATD is better.
Meanwhile, the average delay during executing clustering
by the UCATD algorithm is shorter than that by the EKMT
algorithm. TheUCATDalgorithm thus could reduce the delay
of the entire network and improve the data transmission
efficiency.

FIGURE 15. Network life cycle.

b: NETWORK LIFECYCLE
Figure 15 shows the network life cycle comparison curves
for the four highlighted algorithms. It can be seen from the
figure that the network life cycle of the UCATD algorithm is
longer than that of other comparison algorithms. The network
lifetime is prolonged to 19%, 21% and 65%when it compares
with UCR, CUCRA and EKMT. Although the round amount
of the last dead node of the EKMT algorithm is higher than
that of the UCATD algorithm, the round amount interval from
the first-appeared node death of the UCATD algorithm to
the last-appeared node death is relatively low, which means
that the energy consumption of all nodes in the network is
balanced, and the effective life cycle of the entire network is
extended by the UCATD algorithm.

FIGURE 16. The comparison of the dead nodes.

c: COMPARISON OF DEAD NODES
Figure 16 shows the number of rounds for the first dead node
appears, the number of rounds for the half number of dead

nodes appear, and the number of rounds for all of nodes
die. Comparison among the UCATD algorithm, the UCR
algorithm, the CUCRA algorithm, and the EKMT algorithm
in form of histogram, it can be seen from the figure that
the UCATD algorithm has a longer network cycle than the
other algorithms in the three cases, especially referring to the
number of rounds when the first dead node appears, the result
indicates that the UCATD algorithm could prolong the node
survival time and effectively extend the network life cycle.

FIGURE 17. The comparison of network residual energy.

d: NETWORK RESIDUAL ENERGY
Figure 17 shows the network residual energy comparison
curves for the four algorithms. It can be seen from the
figure that the UCATD algorithm has the most remaining
energy in each rounds, followed by UCR and CUCRA and
the least is the EKMT algorithm. The network residual energy
curve reflects the energy consumption of the four algorithms
and is consistent with the network life cycle curve shown
in Figure 15.

e: NETWORK THROUGHPUT
Figure 18 shows the comparison curves of the total data
volume transmitted by the four algorithms during the network
life cycle. It can be seen from the figure that the UCATD
algorithm has the largest amount of data transmission and the
EKMT algorithm has the least amount of data transmission,
which verifies the validity of the data fusion tree constructed
in this paper and the UCATD algorithm could improve the
throughput of the network by assigning a reasonable times-
tamp to the cluster nodes. The throughput is increased by up
to 20%, 19% and 68% when comparing with UCR, CUCRA
and EKMT.

f: CLUSTER HEAD ELECTION
Figure 19 shows the comparison of the number of nodes’
being elected as heads under the UCR algorithm, CUCRA
algorithm, EKMT algorithm, and UCATD algorithm. It can
be seen from the figure that the UCR and CUCRA algorithms
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FIGURE 18. Network throughput.

FIGURE 19. The number of nodes’ being elected as head.

have a wide range of variation. The EKMT algorithm and
the UCATD algorithm have a smaller range of variation. This
indicates that the UCR algorithm and the CUCRA algorithm
lack the consideration of the remaining energy of the nodes
during choosing cluster heads. If one node is frequently
elected as cluster heads, its corresponding number of survival
rounds will also decrease. The UCATD algorithm is based on
k-means clustering, which adopts the intra-cluster head elec-
tion, and simultaneously considers the location information
of the nodes, the cluster center points and the base station.
Meanwhile, the consideration also integrates the remaining
energy factor to balance the energy consumption of each node
in the network. In this way, the early death of some nodes due
to the high number of being elected as cluster heads could be
avoided.

g: AVERAGE ENERGY CONSUMPTION OF CLUSTER
HEAD NODE
Figure 20 shows a comparison of the average energy con-
sumption of cluster head nodes by the four algorithms. It can
be seen from the figure that the cluster head energy consump-
tion of the UCATD algorithm is lower than that of the UCR

FIGURE 20. Average energy consumption of cluster head node.

FIGURE 21. Energy consumption standard deviation of cluster head
nodes.

algorithm, CUCRA algorithm and EKMT algorithm, which
verifies the effectiveness of cluster head distribution of the
UCATD algorithm.

h: ENERGY CONSUMPTION STANDARD DEVIATION
OF CLUSTER HEAD NODES
Figure 21 shows the standard deviation of cluster head
node energy consumption by the four algorithms in different
rounds. It can be seen from the figure that the UCATD algo-
rithm makes the energy consumption of cluster heads more
balanced, while the UCR algorithm and CUCRA algorithm
select the cluster heads in a random manner, and the clus-
ter head energy consumption standard deviation fluctuates
greatly.

VI. CONCLUSIONS
As an underlying technology of IoT, the development of
WSNs technology makes the application of IoT widespread.
For solving the problem of unbalanced energy consumption
and data transmission delay in WSNs, an unequal clustering
concerned with time-delay routing protocol is proposed. This
paper firstly proposes an improved K-means algorithm. Aim-
ing at resolving the difficulty of determining the number of
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cluster heads, a method for calculating the optimal number
of cluster heads in multi-hop transmission mode is proposed.
In the clustering stage, the initial center is selected by region
division method to make the clustering more uniform which
brings the improved efficiency of the algorithm. Concern-
ing the problem of ‘‘energy hole’’ caused by non-uniform
clustering, splitting and merging operations are introduced
to make the energy consumption of nodes in the network
more evenly. To decrease transmission delay in the process
of data fusion, we construct a data fusion tree to maximize
the time slots utilization. At the same time, the fusion tree
construction algorithm is adopted independently. Simulation
experiment results show that the proposed unequal clustering
routing protocol improves the performance of the network
and balances network energy consumption, and thus extends
the network lifetime. The proposed algorithm is especially
suitable for the delay-limited applications of IoT.
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