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ABSTRACT Compressive data gathering (CDG) has been recognized as a promising technique to collect
sensory data in wireless sensor networks (WSN5s) with reduced energy cost and better traffic load balancing.
Besides, clustering is often integrated into CDG to further facilitate the network performance. However,
existing cluster-based CDG methods generally require a large number of sensor nodes to participate in each
compressive sensing (CS) measurement gathering and rarely consider possible node failures due to power
depletion or malicious attacks, leading to insufficient energy efficiency and poor system robustness. In this
paper, we propose a sparsest random sampling scheme for cluster-based CDG (SRS-CCDG) in WSNs to
achieve energy efficient and robust data collection. Specifically, sensor nodes are organized into clusters.
In each round of data gathering, a random subset of sensor nodes sense the monitored field and transmit
their measurements to the corresponding cluster heads (CHs). Then, each CH transmits the data gathered
within its cluster to the sink. In SRS-CCDG, each sensor reading is regarded as one CS measurement, and
both intra-cluster and inter-cluster data transmissions can be realized by two methods, i.e., relaying or direct
transmission. Furthermore, we propose analytical models that study the relationship between the size of
clusters and the energy cost when using different intra-cluster and inter-cluster transmission schemes, aimed
at finding the optimal size of clusters and transmission schemes that could lead to minimum energy cost.
Then, we present a centralized clustering algorithm based on the theoretical analysis. Finally, we investigate
the robustness of signal recovery performance of SRS-CCDG when node failures happen. Extensive
simulations demonstrate that SRS-CCDG can significantly reduce the energy cost and improve the system

robustness to node failures.

INDEX TERMS Compressive data gathering, cluster, node failures, wireless sensor networks.

I. INTRODUCTION

Advances in computing and communication technologies
have led to intensive research effort on wireless sensor
networks (WSNs) [1], [2]. WSNs have found extensive appli-
cations in urban traffic monitoring and environmental surveil-
lance [3], [4]. Typically, a WSN consists of a number of
sensor nodes, which are randomly distributed in the field

under surveillance, and a sink node. Generally, sensor nodes
are required to collect data periodically and transmit them to
the sink through multi-hop routing, and then the information
aggregation and extraction tasks are performed at the sink.
Considering that sensor nodes usually have limited energy
supply and that replacing or recharging the batteries of sensor
nodes is difficult in practical WSN deployments, a primary
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FIGURE 1. Comparison of different data gathering schemes under multi-hop tree-type topology. (a) Non-CS. (b) CDG. (c) H-CDG. (d) SRS-CDG.

objective of data gathering in WSNs is to obtain an accurate
approximation of the signal field with as little energy expen-
diture as possible.

The spatial correlation of sensor readings in WSNs results
in an inherent sparsity of data under a proper transform basis,
which facilitates the broad uses of compressive sensing (CS)
technology [5], [6] in data gathering in WSNs. CS provides
a new avenue for energy efficient data gathering in WSNss,
as it promises perfect recovery of sparse signals using only a
small number of random measurements [7], [8]. In the past
few years, there have been considerable research interests in
integrating CS into data gathering in WSNs. The scheme of
compressive data gathering (CDG) is first proposed in [9]
to reduce global scale communication cost and balance the
traffic load throughout the entire network. However, in CDG,
each sensor node needs to transmit M (M is the required num-
ber of measurements for accurate signal recovery) data pack-
ets in each round of data gathering. That is, the total number
of data transmissions for a network of N sensor nodes is MN,
which still incurs high communication cost. To address this
problem, hybrid CDG (H-CDG) approaches are proposed
in [10]-[12]. In the hybrid methods, the nodes close to the leaf
nodes transmit the original data without using the CS tech-
nique, while the nodes close to the sink transmit data to sink
using the CS method. In [13], a sparsest random scheduling
scheme is proposed for CDG (SRS-CDG) in WSNss to further
reduce the transmission cost by treating each sensor reading
as one CS measurement, where the measurement matrix is
a sparsest one. The non-CS, CDG, H-CDG and SRS-CDG
schemes are shown in Fig. 1, where the black sensor nodes
transmit data by using the CS technique while the white
sensor nodes directly transmit data without any compression.
The link labels represent the number of transmitted data
packets in one round of data gathering. Note that the above
mentioned CDG schemes are based on routing trees. Consid-
ering the vast advantages that the clustering method has over
the tree topology [14]-[16], e.g. fault tolerance and traffic
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load balancing, a number of cluster-based CDG approaches
have been proposed [17]-[20]. In [17], hybrid CS-based data
gathering scheme is first applied in clustered WSNs. Based
on traditional intra-cluster transmission and CS based inter-
cluster transmission schemes, an analytical model is proposed
in order to find the optimal size of clusters that could lead to
the minimum number of transmissions. In [18], the combina-
tion of CDG and clustering in WSNss is realized by utilizing
block diagonal matrices as the measurement matrices, which
results in significant reduction in transmission power con-
sumption. Nevertheless, these cluster-based CDG schemes
still need a large number of intra-cluster data transmissions.
Besides, none of the existing works have investigated the
robustness of signal recovery performance when node failures
happen in the network.

In this paper, we propose a sparsest random sam-
pling scheme for cluster-based compressive data gathering
(SRS-CCDG) in WSNs. Specifically, sensor nodes are orga-
nized into clusters. In each round of data gathering, a random
subset of sensor nodes sense the signal field and each gener-
ated sensor reading is treated as one CS measurement. Within
each cluster, the nodes that have participated in sensing trans-
mit their measurements to the CH, and then each CH trans-
mits the data gathered within its cluster to the sink through
relaying by other CHs. The comparison between traditional
cluster-based CDG approaches and SRS-CCDG is shown
in Fig. 2 (the required number of measurements for accurate
signal recovery is assumed to be 10). Note that in SRS-
CCDG both intra-cluster and inter-cluster data transmissions
can be implemented through direct transmission or relaying
by other intermediate nodes. Furthermore, we propose ana-
lytical models that study the relationship between the size of
clusters and the energy cost when using different intra-cluster
and inter-cluster transmission schemes, aimed at finding the
optimal size of clusters and transmission schemes that could
lead to minimum energy cost. Then, we present a central-
ized clustering algorithm based on the theoretical analysis.
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FIGURE 2. Comparison between traditional cluster-based CDG
approaches and SRS-CCDG. (a) Traditional cluster-based
CDG scheme [17]. (b) SRS-CCDG.

Finally, we investigate the robustness of signal recovery
performance of SRS-CCDG when node failures happen in
the network. Extensive simulation results demonstrate that
SRS-CCDG can significantly reduce the energy cost and
improve the system robustness to unavoidable node failures.

The main contributions of this paper can be summarized as
follows:

o We propose a sparsest random sampling scheme for
cluster-based compressive data gathering in WSNs,
where the sparest random sampling scheme (e.g. treating
each sensor reading as one CS measurement) is first inte-
grated into clustered WSNs to achieve energy efficient
and robust data collection.

o We propose analytical models that study the relationship
between the size of clusters and the energy cost when
using different intra-cluster and inter-cluster transmis-
sion schemes. The optimal size of clusters and transmis-
sion schemes are obtained to achieve minimum energy
cost.

o« We are the first to investigate the robustness of sig-
nal recovery performance to node failures for different
cluster-based CDG approaches, and simulation results
confirm that the performance of SRS-CCDG remains
relatively stable when node failures happen, outperform-
ing existing methods.

The remainder of this paper is organized as follows:
Section II presents an overview of the SRS-CCDG scheme.
Section III presents the analytical model of intra-cluster
data transmissions, where the two transmission schemes
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(e.g. direct transmission and relaying) are compared in terms
of the energy cost. Then in Section IV, the relationship
between the size of clusters and the total energy cost when
using different intra-cluster and inter-cluster transmission
schemes is investigated, and the optimal size of clusters and
transmission schemes are obtained. Section V provides a
centralized implementation of the SRS-CCDG scheme. The
simulations and performance evaluations are presented in
Section VI. Finally, Section VII concludes the paper.

Il. OVERVIEW OF SRS-CCDG

In the network model considered here, we assume that N
sensor nodes have been deployed in a square sensing area,
to measure the field of some physical phenomena (e.g. tem-
perature, humidity, pressure, etc.). The sensor nodes need to
collect data periodically and transmit them to the sink node.
First, we make the following reasonable assumptions:

o The sensor nodes are uniformly and independently dis-
tributed in the sensing area [17], [21], [22].

« All sensor nodes are aware of their own geographic loca-
tions through in-built GPS modules or utilizing other
sensor node localization techniques [23], [24].

o The sensor nodes are able to adjust the transmission
power according to the required communication dis-
tance [25], [26].

In each round of data gathering, the sensor readings of all
the N nodes in the network can be represented as a vector
X = [x1,x2,... ,xN]T, where x; is the measurement of the
i-th sensor node. Thanks to the spatial correlation of the
monitored signal field, x usually has a sparse (compressible)
representation under some transform basis [11], [27], [28],
e.g. Fourier, DCT, wavelets etc. Formally, if we denote by ¥
the sparsifying basis, we have x = Ws, and s is a sparse vec-
tor, which contains only a small number of nonzero entries,
ie. |sllp=K,K < N.

Instead of transmitting all N original sensor readings to the
sink as in data gathering without using CS, only M (M < N)
linear projections of x need to be transmitted to the sink in
CDG approaches. Then at the sink, we have

y = @x, ey

where ® is the measurement matrix of size M x N,y is the
measurement vector consisting of the M projections received
at the sink. Substituting x = Ws into (1), we then have

y = ®x = dP¥s = As, 2)

where A is the equivalent sensing matrix.
Taking the measurement noise into consideration, we have

y=As+e, 3)

where |le|l, < & represents the sensing noise induced by the
limitations in the sensing device.

Therefore, at the sink node, given the measurement
vector y, the measurement matrix @, and the sparsifying
basis ¥, reconstruction of the signal field x can be realized by
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solving the following constrained /;-norm based minimiza-
tion problem

min [|sfl;  s.z. ly —Asll, <&, “)

which can be solved using an efficient solver such as basis
pursuit de-noising (BPDN) or various greedy algorithms
(e.g. orthogonal matching pursuit, OMP) [29]-[31].

In our method, sensor nodes are organized into clusters,
and each cluster has a cluster head (CH). In each round of
data gathering, a random subset of sensor nodes sense the
signal field, and the generated sensor measurement, together
with the sensor node’s ID, is organized into a data packet,
which is then transmitted to the corresponding CH. After
receiving all the data packets generated within its cluster,
each CH transmits them to the sink node through relaying by
other CHs.

In order to lower the transmission energy cost, we need
to reduce the number of sensor nodes involved in each
CS measurement gathering. Therefore, in SRS-CCDG,
we refer to each sensor reading as one CS measurement, and
the resulting measurement matrix is a sparsest one containing
only one nonzero entry in each row, which can be formulated
as follows:

.o )0, ifj=J0)
@ @.j) = {1, otherwise )
wherei =1, 2, ..., M is the row index and also the sequence
number of the received data packets, j = 1,2,...,N is

the column index, and J (i) is a random index from the
interval [1, N1, representing the ID of the sensor node whose
data packet has been received at the sink. Based on the
definition of @, one round of data gathering can be modeled
as a CS process, which can be expressed as

X1
Y1 (I)l X2
» P, .
y=1|.1= : S, (6)
M Dy
xN

where ®; represents the i-th row of the measurement
matrix ®. The vectory = [y, y2, ... ,yM]T is the CS mea-
surement vector consisting of the M sensor measurements
received at the sink. It has been shown in [13] that this
kind of measurement matrix satisfies the restricted isometry
property (RIP) condition given enough number of measure-
ments. Therefore, recovery of the original signal field x can
be realized by solving a sparse signal reconstruction problem
as shown in (4).

Note that both intra-cluster and inter-cluster data trans-
missions can be realized through relaying by intermediate
sensor nodes or using direct transmission via transmission
power control. The total energy cost of SRS-CCDG is directly
related to the size of clusters and the adopted intra-cluster and
inter-cluster transmission schemes. In this regard, our goal
is to determine the optimal size of clusters and transmission
schemes, such that the total energy cost is minimized.
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IIl. ANALYSIS ON INTRA-CLUSTER TRANSMISSION

In this section, we conduct a thorough analysis on the energy
cost of intra-cluster data transmissions and make a compar-
ison between the two different transmission schemes, e.g.
direct transmission or data relaying. Without loss of gener-
ality, we assume that N sensor nodes are uniformly and inde-
pendently distributed in a square sensing area. The sensing
area is divided into small grids of size a x a, and sensor
nodes located in a square region of size Da x Da form a
cluster [17], as shown in Fig. 3. We assume that the default
transmission range of sensor nodes is r. That is, any two
nodes can communicate with each other, without the need
for relaying or transmission power control, if their euclidian
distance is within . In this paper, we let a = JLE so that any
two nodes in a grid are within the transmission range of each
other. The energy cost of data transmission can be calculated
as follows [32]:

Er(L,d) = Ectec X L+ €amp x L x d°, @)
ERX(L) = E¢jec X L, (8)

where E1.(L, d) represents the energy cost for tranmitting
L bits of data over a distance of d, Er,(L) represents the
energy cost for receiving L bits of data, E,j. is the energy
consumed in the transceiver circuitry at the transmitter or the
receiver, and &4, is the energy consumed at the output trans-
mitter antenna for transmitting one meter. Therefore, the total
energy cost for transmitting L bits of data over a distance of
dis Ep(L,d)+ Ery(L) = 2E,jocL + 8ampLd2, and we define
¢1 = 2EecL and c3 = g4ppL in the following analysis.

M

(D+1) /2

4
3
2
1
(]

FIGURE 3. The sensing area is divided into small grids of size a x a.
Sensor nodes located in a square region of size Da x Da form a cluster,
and the CH is located at the center of the cluster.

A. DIRECT TRANSMISSION

We assume that the CH is located at the center of the cluster,
which is the case that produces minimum intra-cluster trans-
mission energy cost [17], and the coordinates of the CH are
assumed to be (0, 0). Since the sensor nodes are uniformly
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distributed in the cluster, the density of the node distribution
in the center grid that contains the CH is

Q
Q

=y=

©))

N

1
f1(x,y)=a—2, -3 = <x=<o, —

Therefore, the expected squared distance between the sen-
sor nodes in the center grid and the CH, E(dlz), can be
calculated as

[\
N

E(d}) = / / — (&% + y)dxdy
5 i
=/ 2(x + y%)dxdy
3 a
$ 08 P
= —/ x“+y )dxdyzg, (10)
where Q) = {(x,y)| — § <x < 5. —§ <y <5} Note that

if the CH is not located at the center of the cluster, i.e. xp
and yp are not simultaneously equal to 0, we have E (dz) =

% + xg + y% 62 , which verifies that the optimal location
for the CH is indeed at the center of the cluster.

In a similar way, the expected squared distance from the
sensor nodes in the second layer of grids to the CH, E (d22),
can be expressed as

d i
E(a) = // (a )2

—/7 fi —(x2+ 2)dxa’
- 3a 37a8a2 Y Y
//3—1(2+2)dd
x° + y“)dxdy
a a 2
f_iga

- T’ (11)

(x + y*)dxdy

whereQz={(x VI-E Ly - <y<%}—521-

Following this pattern, the distribution density of the sensor

. C oy 1
nodes in the A-th (h > 2) layejr of grids is O D e
Thus, the expected squared distance between the sensor nodes

in the A-th layer of grids and the CH, E (d}%), is calculated as

E(d?) = / / ! (x2
" A (@h—1)-a)* = (2h - 3) - a)*
h

Qh—D)a
7

+ y?)dxdy

2h—1)a
7

1 2 2
_ [ s / oo =T 3N

(Zh 3)a (2h 3a

1
/(Zh 3a / @3 W(X +y )dxdy

_[@h— D — 2h - 31 _ -1’ + 11
- 48(h — 1) N 3 '

(12)

Since the number of grids in the h-th (A > 2) layer is
8(h — 1), and the number of sensor nodes in each grid is
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1.2 =
D 4 = D2’ the expected intra-cluster transmission

energy cost when using direct transmission scheme is given
as follows

d
Emtm

D+1
c1+c 2 2z 8h—1

_ T2y +Z (h—1)
- D2 D?

_1\2 2
.{C1+62[4(h 1; 4+ 1]a }

D+1

=12 (C1+C2_)+CIZ

h=2

8(h 1

D+18h—1 [4(h — 1% + 1]a?
+C2Z( ) [4( §+]a

D—l
1 a? 8cy 86‘261 3
= st a )+ Z + [4Zh +Zh]

1 a* c1(02 — 1) czaz(D4 -1
= E (Cl +62_)+ D2 6D2
czazD2
= o+ (13)

Note that when the direct transmission scheme is adopted
for intra-cluster transmission, the sensor nodes close to the
CH will consume less energy, which makes it convenient for
CH replacement when necessary.

B. DATA RELAYING

When intra-cluster data transmissions are realized through
relaying by other sensor nodes in the cluster, the sensor nodes
in the center grid take only one hop to transmit their data to
the CH. Obviously, the nodes in the A-th layer take / hops to
transmit data to the CH. Therefore, the expected number of
intra-cluster data transmissions is given as

D+1
1 = 8(h—1)
Er=—-1+Y) ———"h, (14)
D ~ D

given that one hop represents a communication distance
of a, the expected intra-cluster transmission energy cost when
using data relaying is

1 & 8(h—1)
Ez};ltra = ﬁ ~(c1+ C2a2) + D_ h-(c1+cra )
h=2
) D+1
1 8(c1 + c2a”)
= — (c1 +c2d?) + —Z(h— Dh
2
D D? P
1 8(c1 + cra”) 2
= 5 (o)t ——g— | Y P+ h
2 2
D D h=1 h=1
1 D> —1 1
= (c1+e2a®)+(c1+c2a?) [%H - ﬁ]
1
=(Cl+cza)|:——§+li| (15)
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Intuitively, when the cluster size (i.e. the value of D) is
relatively small, direct transmission will consume less energy,
while using data relaying will be more energy efficient when
the cluster size becomes larger. Now, we make a compari-
son between the two intra-cluster transmission schemes. The
difference of energy cost between the two intra-cluster trans-
mission schemes is defined as delta = EJ,, —E&  Assume
that there are 1000 sensor nodes uniformly distributed in a
1000m x 1000m two-dimensional sensing area. We show the
relationship between the energy cost difference and the size of
clusters for the following example set of system parameters:
Eejec = 50 nl/bit, £4p = 100 pJ/bit/mz, each transmitted
packet contains L = 1024 bits of data, and a is set to 7 when
the transmission power is —10dBm [33]. As we can observe
from Fig. 4, when the cluster size D < 42, direct transmission
scheme produces less energy cost than data relaying in intra-
cluster data transmissions. The reason is that when the cluster
size is relatively small, the majority of sensor nodes in the
cluster have a small communication distance to the CH, thus
the energy cost of direct transmission is small. In contrast,
the relaying scheme needs more than one transmission to
send data to the CH, leading to larger energy consumption.
However, when the cluster size is relatively large, the result
is reversed.

Energy cost difference delta/mJ

. . . . .
0 10 20 30 40 50 60 70 8 90 100
Cluster size D

FIGURE 4. Difference of intra-cluster transmission energy cost between
using direct transmission and data relaying as the transmission scheme.

IV. ANALYSIS ON INTER-CLUSTER TRANSMISSION AND
THE OPTIMAL CLUSTER SIZE
In this section, we first investigate the energy cost of inter-
cluster data transmissions under two different inter-cluster
transmission schemes. Assume that there is a sink node
located at the corner of the square sensing area, and the
coordinates of the sink are (0, 0). This assumption is typical
in WSNs [17] as the sink is usually placed outside the sensing
area for easy deployment. The results in this paper can be
easily extended to other cases when the sink is not located at
the corner of the sensing area.

In each round of data gathering of SRS-CCDG, after col-
lecting all the data packets generated within their clusters,
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the CHs then transmit them to the sink node along a backbone
tree. In our analytical model, the backbone tree is constructed
as shown in Fig. 5 [17]: 1) all CHs transmit data to their
left-neighbor CH until reaching the leftmost cluster; 2) for
clusters at the leftmost column, CHs transmit data to down-
neighbor CHs until reaching the left-bottom cluster; and
3) the CH of the left-bottom cluster transmits data to the
sink. Since the cluster size is D, it takes D hops to transmit
a data packet from one CH to its neighboring CH. For the
cluster at the left-bottom corner, it takes approximately %
hops to transmit a data packet from the CH to the sink.
Note that in SRS-CCDG, inter-cluster data transmissions
can be realized in two ways, i.e. through relaying by some
intermediate sensor nodes or direct transmission from one
CH to its neighboring CH via transmission power control.
Next, we propose analytical models that study the inter-
cluster transmission energy cost under the two transmission
schemes.

L
-

A

A
°®
A
®
A
A

~
|

[
A
AT
[
A
[
A
[
A

~
5 |

v _ ,
=t T
o = 7 - o = o = N -« -
#
v .
NN =t

-
Ry

=
|
|~

FIGURE 5. The inter-cluster data transmissions.

Assume the edge length of the sensing area is b, so the total
number of clusters in the network is 7 = DIZ—;. As shown
in Fig. 5, the CHs at the rightmost column (denoted by the
first column) have a probability of % to transmit data, and
the CHs at the second column transmit data with a probabil-
ity of % Except the leftmost column, the expected number
of transmissions for all CHs to forward one data packet is
expressed as

(1/h+2/h+...+ Vh=D/hxvVh= # (16)
After the data packets are forwarded to the leftmost col-
umn, the CHs there then transmit data to their down-neighbor
CHs until reaching the CH of the left-bottom cluster. There-
fore, except the left-bottom cluster, the expected number
of transmissions for all the CHs at the leftmost column to
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forward one data packet is

Vh/h+2Vh/h+ ...+ = DVh/k
=[1/h+2/h+ ...+ h=1)/hVh
Vh—1

== (17)

Finally, for the cluster at the left-bottom corner,
the expected number of transmissions for the CH to send one
data packet to the sink node is ﬁh‘/ﬁ = 1.

Therefore, the expected energy cost of inter-cluster trans-
mission when using direct transmission between neighboring

CHs for gathering M sensor measurements is given as

b
E¢ = (D—a —1)-M - (c| + c2D*a?)

inter
D, 5
+ M(cy +cz(2) a”), (18)

while when inter-cluster data transmissions (i.e. transmission
between neighboring CHs) are implemented through relaying
by some intermediate sensor nodes, the expected inter-cluster
transmission energy cost is

r b ». D 5

Einter = (D_a_l)'M'D'(C1+C2a )+5M(6‘1+6‘2a)
Mb  MD )

= (7 - T)'(Cl + c2a”). (19)

An important task of our method is to determine the optimal
size of clusters and intra-cluster and inter-cluster transmission
schemes, such that the total energy cost is minimized. We now
present the relationship between the size of clusters and the
total energy cost when using different intra-cluster and inter-
cluster transmission schemes in Fig. 6. Note that in this figure,
the parameters are configured as follows: E,;.=50 nJ/bit,
Eamp=100 pJ/bit/m?, the grid length a = 7m, the edge length
b = 1000m, the number of sensor nodes N = 1000, and the
required measurement number M = 200. As shown in Fig. 6,
‘intraD’ and ‘intraR’ represent that intra-cluster transmission

SRS-CCDG interR-intraR
SRS-CCDG interR-intraD
SRS-CCDG interD-intraR
SRS-CCDG interD-intraD

N
‘\

71 3 1
2 o
‘&;6,2.9/V 1
o
o
>
2.8
Ds5; .
[
c 21 215
[
©
-
o
[

w
I

1 L L L L L L L L L
0 10 20 30 40 50 60 70 8 90 100
Cluster size D

FIGURE 6. The relationship between the size of clusters and the total
energy cost when using different intra-cluster and inter-cluster
transmission schemes in SRS-CCDG.
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adopts direct transmission and data relaying, respectively.
‘interD’ and ‘interR’ mean using direct transmission or data
relaying in inter-cluster data transmissions. We can observe
from the figure that when using a proper cluster size, the total
energy cost is minimized when direct transmission scheme is
adopted in both intra-cluster and inter-cluster transmission.
In this case, the total energy cost can be calculated as
EY =gl +M-E

sum intra’

(20)

which is a convex function of D. Therefore, the optimal size of
clusters can be determined numerically via a gradient-descent
algorithm, as shown in Algorithm 1. It turns out that when
D = 5, the total energy cost is minimized. In summary,
the optimal size of clusters is D* = 5 and the optimal intra-
cluster and inter-cluster transmission schemes are both direct
transmission. In the following sections, the optimal case is
simply referred to as SRS-CCDG for clarity.

Algorithm 1 Gradient-Descent Algorithm for Optimal
Cluster Size

Input: E¢jec, £amp, Packet length L;
Node number N, Required measurement number M,
Stepsize n, Maximum number of iterations itermax
Output: Optimal cluster size D*

1 Initialize cluster size D;

dEdd boM 1 4ooMa* .
2 VE_ﬁ_bczMa—T-ﬁ—T~D,
3 for i = I to itermax do
4 D=D - n*VE,
5 end

We present the data gathering process of SRS-CCDG when
using direct transmission as both the intra-cluster and inter-
cluster transmission scheme in Fig. 7. Points marked with
different colors represent that the sensor nodes are organized
into different clusters, the red lines represent direct transmis-
sion between the nodes and their corresponding CHs, and
the direct data transmissions between neighboring CHs are
represented by blue lines.

V. MINIMUM ENERGY COST CLUSTERING ALGORITHM
This section presents a centralized clustering algorithm to
achieve energy efficient SRS-CCDG. We assume that the sink
node has the full knowledge of the network topology. The
sink will divide the sensor nodes into clusters, choose a CH
for each cluster, and construct a backbone tree that connects
all CHs to the sink.

Based on the theoretical analysis in Section IV, we can
determine the optimal number of clusters for a given square
sensing area with edge length b as

b2
e [(D*a)z} _ 1)

Therefore, the objective of SRS-CCDG is to divide the
N sensor nodes in the network into A* clusters and minimize
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FIGURE 7. Data gathering process of SRS-CCDG when using direct
transmission scheme in both intra-cluster and inter-cluster transmission.

the total energy cost, which can be formulated as

min {Eijyer +M - Eintra}
sit.Ecg, > Er, i=1,2,...,h, (22)
where Ecy, represents the residual energy of the i-th CH, and
E; is the minimum energy required to be a CH. That is, when
a CH’s remaining energy is less than E;, we need to conduct
CH replacement.

Now, we present the centralized clustering algorithm. This
algorithm consists of two steps: 1) after determining the opti-
mal number of clusters h*, select ~* CHs from the N sensor
nodes and divide them into A* clusters; 2) construct a back-
bone routing tree that connects all CHs to the sink node. The
above problem has been proven to be NP-hard [34], which
can be solved by an iterative method introduced in [17].

1) Randomly select #* CHs from the N sensor nodes, and
connect sensor nodes to their closest CHs.

2) In each cluster, choose a new CH, such that the total
intra-cluster transmission energy cost is minimized.

3) Repeat the above two steps until the CHs would not
change any more.

4) Construct a backbone routing tree that connects all CHs
to the sink node using a minimum spanning tree (MST)
based method.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
SRS-CCDG, and make a comparison with two traditional
schemes, i.e. the classical compressive data gathering (CDG)
[9] and the cluster-based hybrid CDG (HCS-CCDG) [17].
Note that in CDG, both intra-cluster and inter-cluster data
transmissions can be implemented through relaying by other
nodes or direct transmission. Thus, we first try to find the
optimal intra-cluster and inter-cluster transmission schemes
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in CDG, and then use the best performance of CDG as the
baseline.

A. SIMULATION SETTINGS

Since energy efficiency is one of the dominating issues in
WSNs, we use the energy cost as the performance metric.
In this paper, we only consider the energy cost for data gath-
ering as the energy cost for establishing routing information
is negligible [13]. The network parameters are configured as
shown in Table 1.

TABLE 1. Parameter configuration.

Eelee 50 nJ/bit

Eamp 100 pJ/bit/m?

Grid length a 1-7m (7 default)
Boundary length b 500-1000m (1000 default)
Sensor nodes number N 500-1000 (1000 default)
Threshold of Measurement number M | 100-200 (200 default)

B. ENERGY COST COMPARISON

We first present the relationship between the energy cost
and the size of clusters when using different intra-cluster
and inter-cluster transmission schemes in CDG. As we can
observe from Fig. §, the most energy efficient intra-cluster
and inter-cluster transmission schemes are both direct trans-
mission. Therefore, in the following simulations, CDG using
direct transmission scheme both in intra-cluster and inter-
cluster transmission is utilized as a baseline. Note that both
intra-cluster and inter-cluster transmission in HCS-CCDG are
realized through data relaying.

1800
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——— CDG interR-intraD
——— CDG interD-intraR
——— CDG interD-intraD

1600

1400

N

=]

=]
T

1000 -

Total energy cost/J
@
S

600 |-

. . , , , .
0 10 20 3 40 50 60 70 80 90 100
Cluster size D

0 I I I

FIGURE 8. The relationship between the energy cost and the size of
clusters when using different intra-cluster and inter-cluster transmission
schemes in CDG.

Now, we present the energy cost comparisons among CDG,
HCS-CCDG and our SRS-CCDG. Fig. 9(a) shows the result
when the number of sensor nodes in the network varies.
Since both CDG and HCS-CCDG require all sensor nodes to
participate in each CS measurement gathering, their energy
cost increases as N rises. In contrast, SRS-CCDG just needs
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FIGURE 9. Energy cost comparisons among different data gathering
schemes under varying node number N and measurement number M.
(a) Varying node number N. (b) Varying measurement number M.

M (M is the required number of measurements for accurate
signal recovery, and M <« N) sensor nodes to participate in
sensing and treats each sensor reading as one CS measure-
ment, the energy cost of SRS-CCDG is significantly reduced
compared to the two baseline methods and is independent of
N. The reason why HCS-CCDG consumes less energy than
CDG is that in intra-cluster transmission, each sensor node in
the cluster just needs one data transmission, while in CDG,
each sensor node in the cluster needs to transmit M projec-
tions to the CH. The relationship between the energy cost and
the required measurement number M for the three approaches
is shown in Fig. 9(b). As noted in the figure, the energy cost
of all the three schemes rises when M increases, which is
understandable. What is different among them is the growth
rate versus M. In CDG, each sensor node needs to conduct
M transmissions, and the total number of transmissions is
O(MN). Increasing M has no impact on the intra-cluster
transmission of HCS-CCDG but does make a difference to the
inter-cluster transmission. For SRS-CCDG, the total number
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FIGURE 10. Energy cost comparisons among different data gathering
schemes under varying network parameters. (a) Varying grid length a.
(b) Varying edge length b.

of transmissions is O(M). Therefore, the growth rate of the
energy cost for SRS-CCDG is the lowest among them, while
the energy cost of CDG increases most rapidly.

Next, we present the impact of different network parame-
ters on the energy cost of the three schemes. Fig. 10(a) shows
the energy cost comparison result when the grid length a
varies. Note that a represents the distance of one-hop trans-
mission. Thus, given the sender node and the destination,
a smaller @ means a larger number of hops when using relay-
ing as the transmission scheme, resulting in higher energy
cost. As shown in the figure, HCS-CCDG consumes more
energy when a becomes smaller as data relaying is adopted
as both intra-cluster and inter-cluster transmission scheme.
However, both the CDG and SRS-CCDG here use direct
transmission as intra-cluster and inter-cluster transmission
scheme, the energy cost is determined by the communication
distance between the sender and the receiver and is indepen-
dent of the number of hops, thus the energy cost of them
remains stable when a changes. The energy cost comparison
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result under varying edge length b is shown in Fig. 10(b).
As the sensing area expands (i.e. b grows), the average com-
munication distance from all sensor nodes to the sink node
increases, thus the energy cost of all the three methods rises.
What remains unchanged is that SRS-CCDG is always the
most energy efficient data gathering method.

C. SYSTEM ROBUSTNESS TO NODE FAILURES

Sensor node failures tend to happen in WSNs due to energy
depletion and various malicious attacks. In this part, we inves-
tigate the robustness of data gathering of the three approaches
when node failures happen. Note that the data set used here
is the temperature data trace provided by the Sensorscope
project [35], and we select the measurements of 128 sensor
nodes as the ground truth. Since both CDG and HCS-CCDG
require all sensor nodes to participate in each CS measure-
ment gathering, except for the difference in energy cost,
the impact of node failures on signal recovery performance is
identical for them. Thus, we integrate CDG and HCS-CCDG
as ‘CDG/HCS-CCDG’ here.

We first present the signal recovery performance compar-
ison when the number of failed nodes varies. Note that the
signal recovery performance is measured by the reconstruc-
tion error, which is defined as

oo =gl 03

I1lxl2

where x is the original signal field, and % is the recovered
signal field. Note that in this simulation, N is set to 128
and M is 25. As shown in Fig. 11(a), the signal recov-
ery performance of ‘CDG/HCS-CCDG’ deteriorates when
the number of failed nodes increases. In SRS-CCDG, how-
ever, each sensor reading is treated as one CS measurement,
and if the failed node happens to participate in CS mea-
surement gathering, we can simply discard it and employ
a nearby normal sensor node as a substitute. As a result,
the signal recovery performance of SRS-CCDG remains
relatively stable even though the number of failed nodes
increases.

Fig. 11(b) shows the signal recovery performance com-
parison with fixed number of failed nodes and increasing
number of measurements. The number of failed nodes is
8 here, and the number of measurements increases from
25 to 70 with an interval of 5. As we can observe from
the figure, in ‘CDG/HCS-CCDG’, increasing the num-
ber of measurements cannot improve the signal recovery
performance when the number of failed nodes reaches a
certain value. This is because each CS measurement in
‘CDG/HCS-CCDG’ is a linear combination of all sensor
readings, and when the number of failed nodes is fixed,
increasing the number of measurements doesn’t increase the
amount of useful information at the sink. In SRS-CCDG,
however, increasing the number of measurements indeed pro-
vides more useful information for accurate signal recovery.
Thus, the recovery error declines with increased number of
measurements.
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FIGURE 11. Signal recovery performance comparisons of different data
gathering schemes when node failures happen. (a) Fixed number of
measurements and varying number of failed nodes. (b) Fixed number of
failed nodes and varying number of measurements.

VIi. CONCLUSION

In this paper, we propose a sparsest random sampling scheme
for cluster-based compressive data gathering in WSNs.
Specifically, sensor nodes are organized into clusters. In each
round of data gathering, a random subset of sensor nodes
sense the signal field and transmit their measurements to
the corresponding CHs. Then, each CH transmits the data
gathered within its cluster to the sink node. In order to reduce
the number of sensor nodes involved in each CS measurement
gathering, we treat each sensor reading as one CS measure-
ment in SRS-CCDG. Both intra-cluster and inter-cluster data
transmissions can be realized using two methods, i.e. relaying
by other intermediate sensor nodes or direct transmission.
Furthermore, we propose analytical models that study the
relationship between the size of clusters and the energy cost
when using different intra-cluster and inter-cluster transmis-
sion schemes, aimed at finding the optimal size of clusters
and transmission schemes that could lead to minimum energy
cost. Then, we present a centralized clustering algorithm
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based on the theoretical analysis. Finally, we investigate the
robustness of signal recovery performance of SRS-CCDG
when node failures happen in the network. Extensive simula-
tions are performed, and results demonstrate that SRS-CCDG
can significantly reduce the energy cost of data gathering and
improve the system robustness to unavoidable node failures.
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