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ABSTRACT To model the optimal control problem of path planning for unmanned ground systems (UGSs),
the motion and boundary constraints are described first by using the mathematical model proposed in this
paper, and the time-energy performance indicators are described by the Bolza cost function. Since the
traditional symplectic algorithm hardly solves the problem with uncertain time, the pseudospectral method,
almost the only way to solve the optimal control problem of path planning while the rapid path planning
is difficult to achieve, is prone to the phenomenon named ‘‘Curse of Dimensionality’’ with increasing
the number of discrete points. The symplectic pseudospectral method for improving the efficiency and
the precision of the calculation, based on the symplectic theory, third kind of generation function and
pseudospectral method is first proposed in this paper. Furthermore, the one-sided approximation is designed,
and the one-sided symplectic pseudospectral (OSSP) algorithm is established to solve the model introduced
in this paper. Finally, the experiments are conducted using the OSSP method and the pseudospectral method,
respectively, to verify the feasibility and the efficiency of the method. The results show that the OSSP is the
method with the highest accuracy, efficiency, and good stability to solve the optimal control problem of path
planning for UGS, and it has great maneuverability and feasibility for practical application.

INDEX TERMS Optimization, motion control, nonlinear control systems, autonomous vehicles.

I. INTRODUCTION
Recently, the Unmanned Ground Systems (UGS), including
unmanned vehicles and robots, have been widely used in
the aerospace, military, civil and other fields, and more and
more research on UGS is being performed. The path planning
and control technologies are the key questions of the UGS,
and it mainly comprises scene modeling, obstacle avoidance,
optimal path and control problems. Generally, there are four
main types of algorithms that are widely used for the UGS
path planning problem, namely the search algorithm based
on nodes, the potential field method, the intelligent algorithm
and the optimal control method.

The main idea of the search algorithm, based on nodes,
is simple: first, the environment map is divided into several
small areas, setting a rule to find some key nodes within
the feasible region and then connect the nodes to generate
the feasible path. It mainly includes Visible Graph, Voronoi
Diagram [1]–[3], A∗ algorithm [4]–[7], algorithm based on

tree theory [8], [9], bionic algorithm [10], [11], etc. The
algorithms are highly efficient, but it’s easy to ignore the non-
holonomic motion constraints, and even ignore the posture
information of the initial and final position.

The environment map is viewed as physical potential field
in the Potential field method, the final position provides the
gravitational field and the obstacles provide the repulsive
force field, and the path can be generated using the mechanics
theory in [12]–[14]. The method can achieve on-line plan-
ning with high efficiency, but the design of the appropriate
gravitational and repulsion field is a hard work, and it’s
easy to fall into local optimal solution, and even ignores the
nonholonomic motion constraints too.

With the development of artificial intelligence, the intelli-
gent algorithm has been applied to path planning [15]. A good
path planning model requires a lot of training with large
path and obstacles data, such as reinforcement learning [16]
and Support Vector Machine (SVM) [17], etc. This kind of
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algorithm is more self-learning and intelligent, but there is a
high demand for samples.

The above three methods, with different advantages and
disadvantages, are mainly focused on how to solve avoid-
ing collision problems and shorten the total distance as far
as possible, and the path planning is considered separately
from the corresponding control issues. However, in many
cases, the shortest path is not optimal without considering
nonholonomic motion and control constraints. Accordingly,
we adopted the optimal control technique to solve the above
problems in this paper.

The optimal control technique uses a mathematical model
to describe the path planning problem and constraints, and
gets the solution to minimize the objective function subjected
to the constraints. The method takes the control variables
into consideration, thus the optimal path and corresponding
control law can be obtained. And it satisfies the nonholo-
nomic constraints, the shortest time, as well as the minimum
energy requirements. Although the method is highly precise,
the main problem is hard to solve, and the computational
efficiency is poor.

The methods for solving the optimal control problem can
be divided into two types: the indirect and direct meth-
ods. The indirect method transforms the original problem
into a Hamilton boundary value problem by using the vari-
ational method, the Pontryagin’s maximum principle and
the Lagrangian function in [18]–[22]. This method can
achieve the local optimal solution with high precision, but
the costates are so sensitive to the initial value that it is
difficult to be applied in engineering practice. The direct
method, based on the discretion of state and control variables,
transforms the continuous optimization problem into a non-
linear programming problem. With the development of com-
putational science, the direct method has gradually become
the mainstream method of solving optimal control problems,
such as the Pseudospectral method. However, the compu-
tational efficiency is still hard to meet the needs of path
planning, and the increase of distribution points can easily
cause the ‘‘Curse of Dimensionality’’. Gong et al. [23] and
Lewis et al. [24] described a path planning problem with
constrained nonlinear optimal control problem, and obtained
the optimal path using the Pseudospectral method based on
the DIDO toolbox. Zeng et al. [25] divided the path planning
process into two stages: the shortest distance and the shortest
time stage, and solved the path planning problem for a multi-
robot using the harmony search algorithm.

Based on the characteristics of the direct and indirect meth-
ods, a high computationally efficient algorithm is considered
by combining the direct and indirect method. The four kinds
of generating functions proposed by Peng et al. [26]–[28],
based on the Symplectic theory and the variational method,
laid the foundation for the Symplectic algorithm. The Sym-
plectic algorithm, combined the First and the Second Kind
of Generation Function with the Pseudospectral method
in [29]–[31], has obvious advantages of accuracy, con-
vergence rate, computational efficiency for the energy

optimal problem. Additionally, based on the Symplectic the-
ory introduced, the characteristics of the original system will
not be destroyed after discretization while other methods are
hard to guarantee it. However, the complex constraints opti-
mization problem with uncertain time has not been studied.
And the time-energy optimal problem, very important for
path planning, has not been taken into consideration too.
Accordingly, a new method, based on the Third Kind of
Generation Function, Pseudospectral method and one-sided
approximation, is proposed in this paper for the first time.

II. METHODS
A. THE OPTIMAL CONTROL PROBLEM FOR UGS PATH
PLANNING
The UGS path planning and optimal control problem
described in this paper is solving a time-energy optimal con-
trol problem with the given initial and final posture condi-
tions, the nonholonomic motion and boundary constraints.
Thus, we need to describe them separately.

1) THE DESCRIPTION OF MOTION CONSTRAINTS
The acceleration of motion control for UGS is provided
by the rear wheels, and the orientation is controlled by the
front wheels. Assuming that sliding rolling will not occur,
the motion can be analyzed without considering the hori-
zontal thrust, friction or inertia characteristics, and a non-
holonomic constraint can be obtained in [32]. The motion
relationships for the UGS are illustrated in the Fig. 1,

FIGURE 1. The motion relationships for the UGS.

where, L denotes the longitudinal distance between the front
wheel and the rear wheel. The direction variable θ is the angle
between the x axis and the longitudinal axis of the UGS,
φ is the steering angle of the front wheel with respect to the
heading of the UGS. The kinematics equations [33] of motion
is

dX (t)
dt
=

d
dt

 x
y
θ

 =

V cos(θ)
V sin(θ)
V tan (φ)

L

 (1)

where, the state variables X include two coordinates
(
x y

)
and direction variable θ , the control variable U consists of
translational velocity V and steering angle φ. In addition,
some system may have strict requirements on translational
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velocity of the beginning and end moments. In order to give a
more representative model, translational velocity will be seen
as state variables, and acceleration awill be introduced in the
control variable.

So, X(t) =
(
x y θ V

)T , U(t) = (
φ a

)T , and the kine-
matics equations of motion can be obtained as follows,

dX (t)
dt
=

d
dt


x
y
θ

V

 =


V cos(θ )
V sin(θ )
V tan (u1)

L
u2

 (2)

To facilitate computation, the tan (u1) will be replaced by u1,
and the motion constraints are

dX (t)
dt
=

d
dt


x
y
θ

V

 =

V cos(θ )
V sin(θ )
Vu1
L
u2

 (3)

where, the boundary value condition is X (t0) and X
(
tf
)
.

The velocity and control variables should also satisfy the
following relation,Vmin ≤ V ≤ Vmax

φmin ≤ φ ≤ φmax
amin ≤ a ≤ amax

(4)

where, Vmin, Vmax, amin, amax depends on the UGS,
φmin, φmax can be calculated by the turning radius rf , the spe-
cific way of calculation is

rf =
L

tanφ
(5)

2) THE DESCRIPTION OF BOUNDARY CONSTRAINT
In the path planning, the most critical problem is the obstacle
avoidance, and how to find a feasible path connecting the
start and end position without any obstacle. Therefore, it is a
crucial step to use a suitable mathematical model to describe
the obstacles as accurately as possible. The circle and polygon
are widely used to describe the obstacles, and the circle
facilitates subsequent calculations too.

In Fig. 2, the red area indicates the UGS,O1
(
x y

)
denotes

the geometric center and r is the radius. The green area
represents the obstacles, O2

(
xo yo

)
is the geometric center,

ro is the radius, grey area represents the safe area and dist =
rso − ro is the safe distance. According to the relationship of

FIGURE 2. The collision detection for UGS.

the geometric center, it’s safe (no collision) when the UGS
satisfies the following relationship,

1−
(
x − x0
r + rso

)2

−

(
y− y0
r + rso

)2

≤ 0 (6)

However, the polygon can accurately describe the obstacles of
any shape, and it may be used for describing the obstacles too.
In order to avoid the sharp corners of polygon, the following
formula is used:(

x − xo
a

)p
+

(
y− yo
b

)p
= 1 (7)

The graphical representation is shown in Fig. 3,

FIGURE 3. The original rectangle and smooth quadrilateral.

The quadrilateral in Fig. 3 (a) is the original rectangle
with p = 200, and the corner becomes a smooth curve
in Fig. 3 (b) resulting from Eq. (8) with p = 3. The graph
will become the rectangle with p→∞, and the corner of the
rectangle becomemore andmore smooth with p→ 2, and the
circle or ellipse will be obtained with p = 2. For calculating
efficiency and precision, p is 3 or 4 when a rectangle is
selected to describe the obstacle in this paper.

And the rhombus will be obtained with p→ 1, it’s shown
in Fig. 4 with 1 ≤ p < 2,

FIGURE 4. The original rhombus and smooth quadrilateral.

The corner becomes a smooth curve in Fig. 4 (b) with
1 < p < 2, and the original rhombus in Fig. 4 (a) with p = 1.
It is safe (no collision) when the UGS obeys the following
relationships,

1−
(
x − xo
a+ dist

)p
−

(
y− yo
b+ dist

)p
≤ 0 (8)

where, p ∈ [ 1 ∞ ), and the value can be determined based on
the geometric shape of the actual obstacle. And the boundary
constraints of all obstacles can be expressed as:

1−
(
x − xoi
ai + dist

)pi
−

(
y− yoi
bi + dist

)pi
≤ 0 (9)
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where, 1 ≤ i ≤ n. The obstacles constraints, velocity and
control variables constraints are inequalities, then the Eq. (4)
and Eq. (9) can be considered together, and the boundary
constraints for UGS can be denoted as h ≤ 0.

3) THE OBJECTIVE FUNCTION
The shortest time from the starting point to the goal is usually
the main index for path planning. However, the velocity
needs to be as stable as possible in terms of controlling the
problem. As the high incidence stage is the turning process,
it’s necessary to make the path as straight as possible. And
the time, velocity and steering angle should be taken into
consideration simultaneously. Thus, the objective function
can be considered as a time-energy optimal Bolza function,

J
(
X (∗) U (∗) t

)
= wk

(
tf − t0

)
+

1
2

tf∫
t0

UTUdt (10)

where, tf is the time to reach the goal, t0 is the departure time,
wk is a weight factor and J is the objective function.
The system of differential equations is a nonlinear coupled

system, and it’s hard to solve it directly. Thus, we can adopt
the quasilinearization method to solve the equation. So, the
nonlinear optimal control model can be converted into a series
of linear-quadratic optimal control problems (LQOCPS) by
the linearization of nonholonomic motion and boundary con-
straints. Thus, the objective function can be expressed as,

J [k+1] = wk
(
tf − t0

)
+

1
2

tf∫
t0

(
U[k+1]

)T
U[k+1]dt (11)

where, (∗)[k+1] denotes the value within the (k + 1) − th
iterations.

The nonholonomic motion constraints can be expressed as

Ẋ[k+1]
= A[k]X[k+1]

+ B[k]U[k+1]
+W[k],X (t0) = X0

(12)

where,

A[k]
=
∂f
(
X U t

)
∂X

∣∣
X[k],U[k]

B[k]
=
∂f
(
X U t

)
∂U

∣∣
X[k],U[k]

W[k]
= f[k] − A[k]X[k]

− B[k]U[k]

The boundary constraints can be expressed as follows,

C[k]X[k+1]
+ D[k]U[k+1]

+ V[k]
≤ 0 (13)

where,

C[k]
=
∂h
(
X U t

)
∂X

∣∣
X[k],U[k]

D[k]
=
∂h
(
X U t

)
∂U

∣∣
X[k],U[k]

V[k]
= h[k] − C[k]X[k]

− D[k]U[k]

And the quasilinearization will not lead to the loss of preci-
sion for introducing the W[k] and V[k]. In order to make it
more concise, the iteration designation of constraints will be
ignored. The equality can be obtained by introducing a non-
negative compensation vector α for the inequalityč

CX+ DU+ V+ α = 0 (14)

Then, the optimal control model for path planning is
described as

Minimize J = wk
(
t f − t0

)
+

1
2

tf∫
t0

(
(U)T U

)
dt (15)

subject to

 Ẋ = AX+ BU+W,
X (t0) = X0,X

(
tf
)
= Xf

CX+ DU+ V+ α = 0
(16)

And Eq. (15∼16) can be transformed into an unconstrained
problem by introducing the Lagrange multiplier vector λ
and the multiplier vector β. According to the Pontryagin’s
maximum principle, the multiplier vector should satisfies
αTβ = 0, and β ≥ 0. So, the objective function can be
described as

J =

tf∫
t0

(
wk + H − λTẊ

)
dt (17)

where, the Hamiltonian function [34-35] is

H=
1
2
UTU+λT (AX+BU+W)+ βT (CX+DU+V+α)

(18)

According to the classical variational method, if J is minimal,
the Hamiltonian system needs to satisfy the control equation,
the Hamiltonian canonical equation and the transversality
conditions for the terminal state. And the control equation is

∂H
∂U
= U+ BTλ+ DTβ = 0 (19)

The Hamiltonian canonical equation is
Ẋ =

∂H
∂λ

λ̇ = −
∂H
∂X

(20)

The transversality conditions of the terminal state is

H
(
tf
)
= −

∂
(
wk
(
tf − t0

))
∂tf

(21)

The Hamiltonian function is the function ofX,U, λ, β and α,
and U can be expressed by X, λ, β and α according to
Eq. (19). Thus, H can be viewed as the function of the four
independent variables X, λ, β and α.

And the Third Kind of Generation Function within the time
interval

[
a b

]
is

S = (λb)T Xb +

∫ b

a

(
λTẊ− H

)
dt (22)
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According to the Hamiltonian canonical equation, the varia-
tion of S is

δS = (δλa)T Xa + (δXb)
T λb (23)

So, the Third Kind of Generation Function is just a function
of the state variables at the right end of the interval and costate
variables at the left end of the interval, and the OSSP method
will be developed in the next section based on it.

B. THE OSSP METHOD
1) THE APPROXIMATION OF THE FOUR INDEPENDENT
VARIABLES BASED ON THE LEGENDRE
PSEUDOSPECTRAL METHOD
First, initialize tf = t0f (t

0
f > t0), t0f ∈

[
t lowF , tupF

]
, where the[

t lowF , tupF
]
is the scope of initial guess.

The time domain T =
[
t0 tf

]
can be discretized into

P intervals, and the jth interval is T j =
[
tj−1 tj

]
, j =

1, 2, · · · , P .∀t ∈ T j, there is a mapping relations 4 to
realize the transformation from t to τ ∈

[
−1 1

]
,

4 : τ =
2t − (tj + tj−1)

tj − tj−1
(24)

Then, the following relationship can be obtained,

dτ
dt
=

2
tj − tj−1

(25)

In the next step, the Xj, λj, β j and αj in the j − th interval
should be approximated by the N j order Lagrange interpo-
lating polynomial based on the LGL quadrature nodes, and
the LGL nodes τ jl , l = 1, 2, · · · , N j

− 1 , are the roots
of the derivative of the Legendre polynomial L̇ j (τ ) = 0.
The nodes are located in

[
−1 1

]
, and the LGL nodes are(

−1, τ j1, · · · , τ
j
N j−2,

1
)

combined with the first nodes

τ
j
0 = −1 and the last nodes τ jN j = 1. The expression of H0j

is as follows:

H0j (τ ) =
N j∑
l=0

H0jl

(
τ 2 − 1

)
L̇ j (τ )

N j
(
N j + 1

) (
τ − τ

j
l

)
L jl

(26)

where, H0j can be Xj, λj, β jand αj, and (∗)j0 = (∗)
j−1
N j−1 ,

j = 2, 3, · · · P .

2) THE APPLICATION OF THE SYMPLECTIC METHOD
BASED ON THE THIRD KIND OF GENERATION
FUNCTION TO EACH INTERVAL
The derivative of state variables at the LGL node is given by

dXj
k (τ )

dτ
=

N j∑
l=0

Xj
lD

j
kl (27)

where, the differentiation matrix Dj
kl is defined as the

Pseudospectral differential matrix. And the Third Kind of

Generation Function can be expressed as

S
(
λ
j
0 Xj

N j

)
=

(
λ
j
0

)T
Xj
0

+

N j∑
k=0

wjk

(λjk)T N j∑
l=0

Dj
klX

j
l −

t j − t j−1

2
H

 (28)

where, wjk is the weight coefficient of the j− th interval, and
the expression is

wjk =
2

N j
(
N j + 1

) (
L jk
)2 (29)

Since the Third Kind of Generation Function is just a func-
tion of λj0 and Xj

N j , it can be considered as independent
variables, while the others are stationary points of S j in the
j− th interval, thus the stationary condition can be applied to
them as follows, 

∂S j

∂X̄
j = 0

∂S j

∂λ̄
j = 0

(30)

where,

X̄
j
=

{(
Xj
0

)T
,
(
Xj
1

)T
, · · · ,

(
Xj
N j−1

)T }T
λ̄
j
=

{(
λ
j
1

)T
,
(
λ
j
2

)T
, · · · ,

(
λ
j
N j

)T }T
And the costate and state variable at λj0, j = 1, 2, · · · , P ,
and Xj

N j can be obtained as follows


∂S j

∂λ
j
0

= Xj
0

∂S j

∂Xj
N j

= λ
j
N j

(31)

Describing the Eq. (30 ∼ 31) in a uniform format as

∂S j0
∂λ

j
0

= Xj
0

∂S jm

∂λ
j
m

= 0, m = 1, 2, · · · ,N j

∂S jm

∂Xj
m

= 0, m = 0, 1, · · · ,N j
− 1

∂S jN j

∂Xj
N j

= λ
j
N j

(32)
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And ∂S jm
∂Xjm

, ∂S
j
m

∂λ
j
m
can be expressed as

∂S jm

∂λ
j
m

=

N j∑
n=0

(
Kλλmn

)j
λ
j
n+

N j∑
n=0

(
KλXmn

)jXj
n+

(
ξλm

)j
β
j
m+

(
γ λm
)j

∂S jm

∂Xj
m

=

N j∑
n=0

(
KXλ
mn
)j
λ
j
n+

N j∑
n=0

(
KXX
mn
)jXj

n+

(
ξXm

)j
β
j
m+

(
γX
m
)j
(33)

where,(
Kλλmn

)j
=

t j − t j−1

2
wjmB

j
m

(
Bjm
)T
δnm(

KλXmn
)j
=

[(
KXλ
mn

)j]T
= −wjmD

j
mn − δ

0
mδ

0
mI−

t j − t j−1

2
wjm

(
Aj
m

)T
δnm(

KXX
mn

)j
= (0)4(N j+1)×4(N j+1)(

ξλm

)j
=

t j − t j−1

2
wjmB

j
m

(
Dj
m

)T
(
ξXm

)j
= −

t j − t j−1

2
wjm

(
Cj
m

)T
(
γ λm

)j
= −

t j − t j−1

2
Wj

m(
γ λm

)j
= (0)4(N j+1)×1

Then,
Kj

11 Kj
12 Kj

13 Kj
14

Kj
21 Kj

22 Kj
23 Kj

24
Kj

31 Kj
32 Kj

33 Kj
34

Kj
41 Kj

42 Kj
43 Kj

44

 σ j +
[
ξ
j
λ

ξ
j
X

]
β j +

[
γ
j
λ

γ
j
X

]

=


Xj−1

(0)N j×1
(0)N j×1
λj


where, the expression of σ j and β j is

σ j =

{ (
λj−1

)T
,
(
λ̄
j
)T
,
(
X̄
j
)T
,
(
Xj
)T }T

β j =

{(
β
j
0

)T
,
(
β
j
1

)T
, · · · ,

(
β
j
N j

)T }T (34)

The detailed coefficient expressions of σ j is Kj
11 =(

Kλλ
)j
(1:4)×(1:4), Kj

12 =
(
Kλλ

)j
(1:4)×(5:end), Kj

13 =(
KλX

)j
(1:4)×(1:4), K

j
21 =

(
Kj

12

)T
, Kj

23 =
(
KλX

)j
(5:end)×(1:4),

Kj
24 =

(
KλX

)j
(5:end)×(5:end), Kj

31 =

(
Kj

13

)T
, Kj

32 =(
Kj

23

)T
, Kj

33 =
(
Kλλ

)j
(1:end−4)×(1:4), Kj

34 =(
Kλλ

)j
(1:end−4)×(5:end), K

j
41 =

(
Kj

14

)T
, Kj

42 =

(
Kj

24

)T
,

Kj
43 =

(
Kj

34

)T
.

The coefficient matrix of β j is ξ j, the constant matrix term
is γ j, the right side term is rj, then,

Kjσ j + ξ jβ j + γ j = rj (35)

As U = g
(
X, λ, β

)
, the equation in the j − th interval can

be organized as

CjXj
−Hjλj −Mjβ j + Vj

+ αj = 0 (36)

where, the detailed coefficient expressions of Xj, λj, β j are
Cj
= diag

(
Cj
0, C

j
1, · · · , C

j
N j

)
Hj
= diag

{
Dj
0

(
Bj0
)T
, Dj

1

(
Bj1
)T
, · · · , Dj

N j

(
BjN j

)T }
Mj
= diag

{
Dj
0

(
Dj
0

)T
, Dj

1

(
Dj
1

)T
, · · · , Dj

N j

(
Dj
N j

)T }
and

Vj
=

{(
Vj
0

)T
,
(
Vj
1

)T
, · · · ,

(
Vj
N j

)T }T
αj =

{(
α
j
0

)T
,
(
α
j
1

)T
, · · · ,

(
α
j
N j

)T }T
Accordingly, the compact formula of the j− th interval is

Kjσ j + ξ jβ j + γ j = rj

0jσ j −Mjβ j + Vj
+ αj = 0(

αj
)T
β j = 0, αj ≥ 0, β j ≥ 0

(37)

where, 0j = [−Hj, Cj ].

3) THE RESULT OF THE WHOLE-TIME DOMAIN
The compact form can be obtained by assembling the result
of each interval in the whole-time domain as follows,

Kσ + ξβ + γ = r
0σ −Mβ + V+ α = 0
(α)T β = 0, α ≥ 0, β ≥ 0

(38)

where, the coefficient K is a sparse and symmetric matrix,
and the coefficient matrixes of Eq. (38) are

K =


K1 Z1(
Z1
)T K2 Z2(

Z2
)T . . . ZP−1(

ZP−1
)T KP


Zj =

[
0(8×N j+4)×4 0(8×N j+4)×(8×N j+4)
−I4×4 04×(8×N j+4)

]

ξ = diag

(
ξ1, ξ2, · · · , ξP

)
0 = diag

(
01, 02, · · · , 0P

)
M = diag

(
M1, M2, · · · , MP

)
The constant matrix terms are

γ =
{ (
γ 1
)T
,
(
γ 2
)T
, · · · ,

(
γ P
)T }T

r =
(
X0, 01×sd , λf

)T
V =

{ (
V1
)T
,
(
V2
)T
, · · · ,

(
VP
)T }T

α =
{ (
α1
)T
,
(
α2
)T
, · · · ,

(
αP
)T }T
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where, sd =
P∑
k=1

8
(
N j
+ 1

)
− 8, and



X =
{ (

X1
)T
,
(
X2
)T
, · · · ,

(
XP
)T }T

λ =
{ (
λ1
)T
,
(
λ2
)T
, · · · ,

(
λP
)T }T

β =

{(
β1
)T
,
(
β2
)T
, · · · ,

(
βP
)T }T

σ =
{ (
σ 1
)T
,
(
σ 2
)T
, · · · ,

(
σP
)T }T

Considering the boundary conditions X0 and Xf , the relevant
matrixes need to be modified as follows,

(1). The elements in the row 4
(
N 1
+ 1

)
+ 1:4

(
N 1
+ 2

)
of K, ξ and γ are replaced with 0, the sections of
columns 4

(
N 1
+ 1

)
+ 1:4

(
N 1
+ 2

)
and rows 4

(
N 1
+ 1

)
+

1:4
(
N 1
+ 2

)
are replaced with the unit matrix, the rows

4
(
N 1
+ 1

)
+ 1:4

(
N 1
+ 2

)
of r are replaced with X0;

(2). The elements in the last 4 rows of K, ξ and γ are
replaced with 0, the sections of the last 4 columns and the
last 4 rows ofK are replaced with the unit matrix, and the last
4 rows of r are replaced with Xf .

The state variables and covariates can be obtained as
follows,

σ = −K−1ξβ −K−1 (γ − r) (39)

Thus, the optimal control solution can be obtained by the
following relationship.{

Yβ + q = α
(α)T β = 0, α ≥ 0, β ≥ 0

(40)

where, Y = 0K−1ξ +M, q = 0K−1 (γ − r)− V.
Since the β and α satisfy the orthogonality relationship,

the Lemke method is adopted to obtain the β and α in this
paper, and the optimal control U = g

(
X, λ, β

)
can also be

obtained. Thus, the optimal control question at the condition
of t = tf is completely solved.

4) THE DETERMINATION OF THE OPTIMAL TIME FOR THE
TIME-ENERGY QUESTION BASED ON THE ONE-SIDED
APPROXIMATION
It’s necessary to meet the transversality conditions of the
terminal state for the optimal control problem with uncertain
time.

3
(
tf
)
= H

(
tf
)
+ wk = 0 (41)

The above relationship can be regarded as a question to solve
the nonlinear equation about tf . The equation of transversality
conditions is difficult to solve directly, it’s necessary to adopt
the approach of approximation or iteration. As the velocity
and steering angle are both constrained, there is a the shortest
theoretical motion time from the initial position to destination
along the shortest path with maximum velocity, and it’s cer-
tainly no solution for the trajectory-planning if motion time is
shorter than theoretical minimum. Considering the stability of
the control, the optimal solution is bigger than the minimum,

but the corresponding value is likely to get a smaller value
than the theoretical minimum in iterative process, and most
of the relevant methods can’t avoid it. In order to solve
this problem, one-sided approximation from the right side
of theoretical minimum (movement time is more abundant)
will adopted to get the optimal solution. It can make sure that
the corresponding value for each iteration is greater than the
theoretical minimum.

To determine the shortest time tF = min tf , the iteration
relationship can be designed as follows,

tu+1f = tuf − =
(
tuf − t

low
F

)
3
(
tuf
)

(42)

where, = is an adjusting parameter. According to the Eq. (42),
the result of the u + 1 iterations is determined by the u iter-
ations, it will continue iterating until meeting the following
relationship, ∣∣∣3 (tuf )∣∣∣ ≤ ρ (43)

where, ρ is the precision of the convergence. Then,
Xu
t=tf , U

u
t=tf , λ

u
t=tf , β

u
t=tf and αut=tf can be obtained under

the assumptions of tf = tuf by using the method. Thus,
the corresponding tF can be obtained with given initial value
t0f ∈

[
t lowF , tupF

]
by using the OSSP method.

5) THE DESCRIPTION OF THE OSSP METHOD
In this paper, the OSSP method is proposed for solving the
optimal control problem, the specific calculation steps are as
follows:

(1) Determination of the number of the LGL nodes in each
interval;

(2) Initialization of tf and the initial condition X[0],
U[0], λ[0], and discrete time domain;
(3) Determination of the approximation of the four inde-

pendent variables;
(4) Application of the Symplectic method based on the

Third Kind of Generation Function to each interval;
(5) Assembling the matrixes in the whole-time domain,

and the relevant matrixes need to be modified considering the
boundary conditions X0 and Xf ;
(6) Xu

t=tf , U
u
t=tf , λ

u
t=tf , β

u
t=tf and αut=tf can be obtained

under the assumptions of tf = tuf by iterating until∥∥X[k] − X[k−1]
∥∥/∥∥X[k]

∥∥ ≤ ε.
(7) If

∣∣H (tf )+ wk∣∣ ≤ ρ, stop and exit; Or, continue iter-
ating, update tf based on Eq. (42), and returning to step (2),
until satisfying Eq. (43).

According to the above steps, the optimal path and tf can
be obtained.

III. RESULTS AND DISCUSSION
A. THE DESCRIPTION OF THE ENVIRONMENT
In order to verify the efficiency and accuracy of the OSSP
method, the environment with static and dynamic obstacles
are selected in this paper. The computing environment is:
Win7 64bit, RAM 4.00 GB,MATLABR2010b. The state and
control variables constraints for an UGS are: Vmin = 0m/s,
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Vmax = 1m/s, u1min = −2, u1max = 2, amin = −1m/s2,
amax = 1m/s2. The whole-time domain can be divided into
8 intervals, and P = 8, the 8-order Legendre polynomial
interpolation is applied to each interval, and N j

= 8. Thus,
the whole domain can be divided into 64 segments with
65 discrete points. The index of convergence ε is 10−4,
ρ is 10−3.
The corresponding time will be greater than the energy

by analyzing the objective function. And several experiments
also show that the time index is at least 20 times larger than
the energy index. So, in order to balance the relationship
between time and energy term, and show the importance
of both, the value of wk cannot be too large here,
wk = 0.075 in this case (the value is determined by the
different understanding of the importance for time and energy
index within the right range). In this case, there are 6 obsta-
cles, the detailed parameters are listed in Table 1.

TABLE 1. The parameters of obstacles.

The radius of the UGS is r = 10m, the safe distance is
dist = 2m, the boundary conditions are X0 =

(
0 0 π 0

)T ,
Xf =

(
110 110 0 0

)T and L = 7m, t0 = 0s. The X[0] is the
state variable corresponding to any approximately feasible
path, and U[0], λ[0] could be any value (0.6 is given for this
case).

B. RESULTS OF EXPERIMENTS
Based on the OSSP method, the minimum objective function
Jmin = 26.6398, the optimal time tF = 191.6242s, the time
index term is 14.3718, the energy index term is 12.2680. And
the optimal path can be obtained as shown in Fig. 5.

The hollow red circles in Fig. 5 represent the UGS, and
the hollow purple circles represent the dynamic obstacle,
the black line is the trajectory of the center for UGS and O1 to
O6 are obstacles corresponding to those listed in Table 1 (The
safe area is included in obstacles in Fig. 5). It’s concluded that
the path is very smooth and meets the boundary state.

In order to clearly show the relative position between the
UGS and various obstacles, the distance index function, com-
bined with the Eq. (8), is introduced to represent the relative
distance between the UGS and each obstacle, the details are
shown below.

d =
(
x − xo
a+ dist

)p
+

(
y− yo
b+ dist

)p
− 1 (44)

FIGURE 5. The optimal path in the environment with dynamic obstacles.

where, there is no collision for UGS with d ≥ 0. And the
6 distance indexes can be obtained by Eq. (44), and it’s shown
as follows.

As shown in Fig. 5 and Fig. 6, the optimal path from the
starting point to the goal is along the edge of O1, O3, O4, O6.
The corresponding minimum value is: d1 = 1.6263× 10−12,
d2 = 1.8716, d3 = 2.4219 × 10−10, d4 = 3.6708 × 10−8,
d5 = 0.2627, d6 = 1.5125 × 10−8, and all of them
are positive. So, there is no collision for UGS along the
path obtained by using the proposed method. Additionally,
the control variables are

FIGURE 6. The figure of 6 distance indexes.

The control variables in Fig. 7 are relatively stable, u1 and
u2 keep a small value, and the acceleration is 0m/s2 unless
the starting and ending phase. With the increase of the curve

FIGURE 7. The figure of costates and control variable.
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of UGS at t ∈
[
20 30

]
and t ∈

[
175 190

]
, the u1 is

sharply changed, and the number of discrete points is so few
that it hardly fully expressed changing laws. So, the control
variables of this segment fluctuate within a very small range,
and it can be solved by adding the number of discrete points.
In order to further verify that the high quality path can be got
by this method, V and θ are analyzed as follows,
Comparative analysis of Fig. 7 and Fig. 8 indicates that

the change of θ and V are smooth during the whole move-
ment process. The UGS accelerates from 0m/s to the maxi-
mum speed 1m/s as soon as possible, and maintains uniform
motion until the speed is reduced to 0m/s at the end. The
result shows that both the path and the corresponding state
variables are continuous and relatively smooth, and a good
result will be obtained by using the OSSP method.

FIGURE 8. The figure of V and θ .

The specific results obtained by the OSSP method com-
pared with the Pseudospectral method, almost the only way
used to solve the optimal control problem for path planning,
are shown in Table 2.

TABLE 2. The comparison results.

According to the analysis results presented in Table 2,
the ratio of the computation time of the OSSP to the Pseu-
dospectral is 7.75%, and the computational efficiency is
significantly better than that of the Pseudospectral method
under the condition of static obstacles environment. To verify
the calculation efficiency of the proposed algorithm with
high dimension, experiments were conducted with different
number of discrete points, and the results are as follows.

The analysis results presented in Table 3 reveal that the
computational efficiency is lower with the increase of the
number of discrete points and the dimension. Additionally,
the computation time increases dramatically with the increase
of discrete points, and the phenomenon of ‘‘Curse of Dimen-
sionality’’ will occur by using the Pseudospectral method

TABLE 3. The comparison results with different number of discrete
points.

with high dimension. Although the computation time will
also slight increase using the OSSP method proposed in this
paper, the efficiency of optimization the calculation will be
higher compared with Pseudospectral method, and the phe-
nomenon of ‘‘Curse of Dimensionality’’ can be avoided too.

Accordingly, the OSSP method, with good accuracy and
computation efficiency, can solve optimal control problem
of the path planning for UGS under the complex conditions
with static and dynamic obstacles. The initial state variables
are the corresponding value of the feasible path, and there is
no requirement for the initial value of costates and control
variables, which means the algorithm is of good applicability
and operability, and it’s suitable for solving path planning for
the optimal control problem of UGS.

IV. CONCLUSION
The optimal control problem of the path planning for
UGS was modeled. To solve the problem, the OSSP method
is proposed based on the one-sided approximation, the Third
Kind of Generation Function and Pseudospectral method.
To verify the feasibility and efficiency of the method, exper-
iments were conducted under a static and dynamic obsta-
cles environment, and the results were compared with those
obtained by the Pseudospectral method. The results revealed
that the OSSP method can solve the optimal control problem
of the path planning for UGS with high accuracy and effi-
ciency, and the phenomenon of ‘‘Curse of Dimensionality’’
can be avoided. In addition, there is almost no requirement
for the initial assignment of costates and control variables,
which results in very strong maneuverability and feasibility
in practical application. However, although it’s easy to find
the initial assignment of state variables by the corresponding
feasible path, the different initial assignment will affect the
convergence speed. It is an interesting and meaningful work
to solve this problem so that it can be applied to the engi-
neering problem solving by the OSSP method. This study
also laid a good foundation for the direction of the follow-up
work. Indeed, to further improve the calculation efficiency,
the algorithm can be further optimized too.
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