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ABSTRACT The analysis of severe cascading blackouts is an essential issue in power grid planning and
operation. As there are a tremendous number of possible cascade paths in a large power system, it is
very challenging to determine the critical cascading paths that may have catastrophic consequences. This
paper proposes a complex network theory based methodology to determine such critical cascading paths
with high efficiency. To this end, we construct an improved interaction graph to cope with the situation
where the (N — 1) criterion is not satisfied during the follow-up cascade propagation after an initial fault.
Subsequently, based on the graph, we derive a modified PageRank model to fast rank the influence of
individual transmission lines on blackout risks. Further, leveraging the results of influence ranking, we devise
an efficient strategy for searching critical cascading paths. Then, we derive an unbiased probability estimation
method for individual cascading paths and the blackout. Simulations carried out on the IEEE 39-bus system,
the IEEE 118-bus system, and a real-world 1122-bus system in China show that our method can enhance the
searching efficiency by up to three orders of magnitude compared with standard Monte Carlo approaches,
demonstrating its potential for cascading blackout analysis in large-scale power systems. Results also
verify that the proposed probability estimation method is unbiased, and it can provide an efficient way for

probability estimation of the blackouts with very low probability but high losses.

INDEX TERMS Power grid, search strategy, cascading path, blackouts, probability estimation.

I. INTRODUCTION

Blackouts in power systems are recognized as rare events,
with low probability but high impact, which can cause huge
losses. The probability distribution of blackout size is usually
heavy-tailed, indicating that the risk of large rare blackouts
cannot be neglected [1]. Accordingly, a method that can
efficiently identify such large and rare events is desirable in
planning and operation, to facilitate the mitigation of blackout
risks. Thus far, conducting large-scale simulations is still the
main approach in analyzing cascading blackouts. However,
this is practically restrictive due to the “combinational explo-
sion” of possible cascade paths. For example, consider a
rare event that occurs with a probability of 107°. Even if
the computer can do 1000 runs per second, one still needs
11 days to capture such a rare event, from the point of view of
statistics. In this regard, this paper aims at proposing a method

to speed up cascading blackout simulation to determine those
paths that could lead to large blackouts in power system
operation, facilitating a high-efficiency blackout analysis.

In the literature, studies on cascading blackout simulations
in power grids can be roughly divided into two categories:
sampling-based approaches [2]-[7] and non-sampling-based
approaches [8], [9]. Regarding the former, Monte Carlo (MC)
methods are among the most popular. While they are
advantageous in modeling complicated systems, a high
computational burden largely restricts their practical
application [10]. To improve the efficiency, several vari-
ance reduction approaches have been proposed, such as
the importance sampling and splitting method. The concept
behind the importance sampling method is to use a proposal
failure probability distribution instead of the original one,
such that the probability of rare events can be significantly
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increased. Empirically, importance sampling, in combination
with variance reduction techniques, can achieve a speedup
of 2~4 in [2] and 1~2 orders of magnitude in [3]. The
splitting method follows an alternative idea. It divides black-
out simulation into stages, using the number of tripped
lines or the percentage of demand loss. In [5], a splitting
method is applied to compute the probability of events where
more than half the total load is shed. It is further developed
by optimizing the parameter settings in the simulation [6].
The optimal choice of splitting stages is also addressed
in [4] and [7]. Simulation results of these works indicate
that the splitting method can be 100 times faster than stan-
dard MC. Regarding non-sampling-based approaches, vari-
ous contingency/state combination selection techniques have
been proposed. In particular, the Random Chemistry (RC)
method presented in [8] and [9] demonstrates a high effi-
ciency in identifying (N — k) contingencies that may initiate
large blackouts. It is at least an order of magnitude faster than
the standard MC method. Nevertheless, room for improve-
ment in efficiency of searching for cascading paths that lead
to large blackouts still exists.

Note that, when sampling-based methods are applied,
lots of computation resources are wasted on sampling non-
influential states, which are unlikely to result in severe black-
outs. This indicates that one could capture blackout events
in a more efficient manner by focusing on the most influ-
ential states/components that exacerbate the propagation of
cascading failures. Following this line of thought, this paper
proposes a fast searching strategy for cascade paths that
would lead to severe blackouts by ranking the influence of
transmission lines in a power grid. Lines with high ranking
score are regarded as highly influential lines (HILs), which
play a core role in boosting cascading propagation of failures,
and could be remarkably helpful in searching for critical
cascading paths that may lead to blackouts. In this context,
the main contributions of this paper are as follows:

1) We improve the interaction graph presented in [11],
so that the PageRank algorithm [11] can be applied
to rank the influence of lines during the propagation
process of cascading failures. Crucially, it enables the
influence ranking algorithm to consider the situation
where the (N — 1) criterion is not satisfied during the
follow-up cascade propagation after an initial fault.

2) Based on the branching process model [12], we devise
a method to statistically simulate cascade propaga-
tion. Guided by the ranking results from 1), the algo-
rithm can efficiently search for critical cascading
paths leading to blackouts, up to three orders of mag-
nitude faster than the standard MC method.

3) Interms of the proposed searching strategy, we further
derive an unbiased probability estimation method for
individual cascading paths and the blackout.

The remainder of this paper is organized as follows.
Section II states the general problems associated with and the
procedure of simulating cascading blackouts. The improved
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PageRank-based algorithm for fast ranking the influence of
transmission lines is given in Section IIl. The generation
of subsequent cascading failures is discussed in Section IV.
Section V exhaustively presents the searching algorithm. The
unbiased probability estimation method for blackouts is given
in Section VI. Test results are presented in Section VII.
Finally, the conclusions are drawn in Section VIIIL.

Il. PROBLEM DESCRIPTION

A. PROCESS OF CASCADING FAILURES

Typically, cascading events comprise initiating and propagat-
ing events, which can be grouped into different generations.
Initiating events could be short circuits due to contact of a
transmission line with trees, operational errors, or vandalism.
This is followed by subsequent generations of propagating
events, which cause the system state to change and weaken.
In combination, these processes are a cascading failure. Math-
ematically, this can be formulated as a Markovian tree (MT)
[13], [14], which is shown in Fig.1. Each node in Fig.1
represents a system state, and the label on each node refers to
the set of tripped lines. Accordingly, a cascade path is defined
as the sequence of tripped lines in each generation, such as
(Zl([),Zéls) , - -+ ). Moreover, the nodes marked with grey color
in Fig.1 refer to influential events, which are subjected to the
corresponding HILs.

Generation-2 _
Outage L2
BN

Generation-1 _
Outage

O Non-influential Q Influential state \Pmbable severe

state cascade path

FIGURE 1. General propagation of cascading failure.

B. MOTIVATION
It has been well recognized that a small set of HILs in power
systems exist, which may exacerbate cascade propagation,
while others contribute much less [15], [16]. For the sake
of clearly demonstrating this interesting (also important) pat-
tern, we carried out a cascading blackout simulation on the
IEEE 39-bus system using the Monte Carlo method. The
statistical results are shown in Fig. 2.

In a total of 460,000 simulation runs, only 1,146 blackouts
result in power losses greater than 1,000 MW. Among these
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1,146 blackouts, 696 cascade paths (60.73% of the total) are
induced by the top 10 HILs, as shown in zone 1 of Fig.2.
For the surplus blackouts triggered by the other 36 non-
influential lines, there are 281 cascades whose generation-2
outages are triggered by the top 10 HILs, accounting
for 24.52% of the total (Fig.2, zone 2). Among the blackouts
causing power losses greater than 1,500 MW, the initial or
generation-2 outages of 64.91% and 21.83% blackouts,
respectively, are triggered by the top 10 HILs. Similar phe-
nomena are observed in the case of blackouts whose power
losses are greater than 2,000 MW.

threshold of power losses (MW)

0 10 20 30 40 50 60 70 80 90 100
percentage of blackouts (%)

FIGURE 2. Distribution of blackouts.

The above example empirically demonstrates that the crit-
ical cascading paths are dominated by those HILs, partic-
ularly at the initial states. This appealing feature indicates
that identifying such HILs may greatly help reduce the
search space for determining the critical cascading paths.
Following this line of thought, this paper aims at deriving a
methodology to accelerate critical cascading path searching
by leveraging the results of influence ranking of transmission
lines.

C. FRAMEWORK
The general outline of the cascading path searching procedure
is summarized in Fig.3, where Np,x refers to the total number
of simulation runs. In the procedure, three issues are critical:
1) determining the failure probabilities of individual com-
ponents, 2) determining the failed components at the child
generation and 3) recovering the true probability distribution
of blackouts. Regarding the first issue, one could assign larger
probabilities to the more influential components, to accelerate
the critical paths searching. As for the second issue, one
needs to determine how the failure propagates in the rest
of the grid. With regard to the third issue, one needs to re-
scale the simulation results to recover the consequent failure
probability distribution triggered by an (N — 1) contingency.
In this regard, the paper is focused on addressing three critical
problems:

P1: How to fast rank the influence of transmission lines

on cascading blackout risk with high accuracy?

36876

Initial Fault
Power Flow Calculation

Record the Cascading Path

num=num-+1
e
Yes

FIGURE 3. General outline of the cascading path searching procedure.

P2: How to select child failures to simulate subsequent
propagation of a cascading failure?
P3: How to re-scale the simulation results to recover the
true probability distribution of cascading blackouts?

Regarding the first problem, in the literature, graph-based
approaches have been primarily utilized to evaluate the
importance of components in power grids [12], [17]-[20].
Among these graph-based approaches, the eminent PageRank
algorithm is well known for its capability of quickly and
accurately identifying the most influential nodes in a directed
weighted network [21]-[25]. It has been deployed in our prior
work [11], in combination with the interaction graph repre-
sentation of cascading failures, to devise a fast algorithm to
screen out the most vulnerable lines in power grids. However,
this rudimentary work is built on the assumption that the
(N — 1) criterion is satisfied; this may not be true during the
propagation of cascading failure. In this paper, we extend this
work to facilitate influence ranking of lines in successively
weakened or degraded system states caused by cascading
failure [26]. The key challenge is to extend the interaction
graph representation of cascading failures to cope with the
situation where the (N — 1) criterion is not satisfied. Then the
PageRank algorithm can be deployed to rank the influence of
each line during the follow-up cascade propagation after an
initial fault. This problem will be addressed in Section III.

As for the second problem, several models have
been proposed to study cascading failures, such as the
CASCADE model [27], the branching process
model [28]-[31], the hidden failure model [32], the
OPA model, and its variants [33]-[35], to name a few. Among
them, the branching process model can describe the statistical
features of the average propagation and how the number of
outages increases in propagation. It has been further used
to estimate the probability distribution of blackout size,
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such as the load shed [30], [31] or the number of line
outages [28]-[31]. It is demonstrated that parameters of the
branching process model can adequately depict the average
propagation intensity in a statistical manner, with only a
small number of cascading failure simulations required [30].
Motivated by this salient feature, this paper deploys the
branching process model to statistically determine the num-
ber of line failures in each child generation, triggered by
parent failures. On the other hand, leveraging the results of
influence ranking, the failure probabilities of individual lines
are assigned in proportion to their rank scores. This problem
will be discussed in detail in Section I'V.

As for the third issue, following the idea of sequen-
tial importance sampling (SIS) suggested in [3], we devise
an unbiased probability estimation method for blackouts in
terms of the proposed searching strategy. See Section VI for
details.

IIl. INFLUENCE RANKING BASED ON PAGERANK

In this section, we address the problem P1. Specifically,
the interaction graph proposed in [11] is improved to enable
the PageRank algorithm to rank the influence of lines during
the propagation of a cascading failure after an initial fault,
where the (N — 1) criterion is not satisfied. To this end, we first
depict the impact of line outages on hidden failures in terms
of actual power fluctuation (see Eqs. (5)~(6) for details),
instead of equivalent power increment, as treated in [11].
Then, we modify the standard PageRank model to cope with
the improved interaction graph (IIG).

A. IMPROVED INTERACTION GRAPH

For a power system with n lines, denote the set of lines
by AN. When the hidden failure is considered, an IIG with
(n 4+ 1) nodes is derived, shown in Fig.4. Here the filled
circles denote lines in the system and the dashed circle rep-
resents the hidden failure node. It is assumed that the IIG is
directed and weighted. The probability that a line is tripped
due to hidden failure is modeled as a monotone function of
the line flow [32], which is given in Fig.5. Here, p stands
for the probability of mis-operation and Pp,x is the line
limit.

~
~

AN
~7 __~"hidden “~__ -~

“ failure .

FIGURE 4. Diagram of IIG.

line k&
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FIGURE 5. Hidden failure model.

The IIG can be described by a (n + 1) x (n 4 1) matrix X

X=[€ g] (1)

a

where the dimensions of K, b, a” are (n x n), (n x 1), and
(1 x n) respectively. The entries x;; denote the weights of links
from node j to i, which are defined as follows.
1 For1 <i<n,1 <j < n, wehave x;; = kj;, where
kij is defined as
AP Lo
—— i iF]
kij = M;
0: i=j

@

In (2), AP;; denotes the power increase on line i
caused by the outage of line j. M; is the security
margin of line i. In this situation, x;; denotes the
influence of line j on line i.

2) For1 <i <wn,j=n+1, we have x;; = b;, where
b; is defined as

by = — - tmax T i (3)

In (3), P; indicates the power on line i and P; pax 1S
the line limit of line i. Here, x;(,+1) is the influence
of hidden failure on line i.

3) Fori=n+1,1 <j <n,if the (N — 1) criterion is
satisfied, we have x;; = (aT)j. (aT)j is defined as

Ty, . n
(a®); = Zi:l,i;éj

In (4), Pi is the active power on line i after line j is
tripped. Pr(|P§|) stands for the tripping probability
of line i caused by the outage of line j, which can
be obtained by Fig.5. x(,41); denotes the expected
influence of line j on hidden failures via other lines.

4) Fori=n+ 1,1 <j < n, if the (N — 1) criterion
is not satisfied ( during the follow-up cascade prop-
agation after an initial fault), we have x;; = (aT)j.
(al);is

Pr(|P))) - bi

n—1

“

Pr(|P))) - b;

n—1

@y = Z;’:U# )
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where

|Pi| > 1.4P;max
otherwise

N |P}|—P;
bj:=1 M (6)
b;

The key difference between this construction and that
in [11] is 4), which accounts for the expected effect of line
tripping on hidden failures when the system state violates the
(N —1) criterion. As shown in (6), if |P§| exceeds 1.4 times its
maximum, the actual power fluctuation on i is used to depict
the impact from hidden failures.

B. MODIFIED PAGERANK MODEL
Based on interaction matrix X, we give the modified
PageRank model

[R(k+1)]T _ [R(k)]T Y %)
where
R=|" } ®)
Y = oX ©)
%= |k <(1 - Zi:l "")b} (10)
| aT &
(& 0
o = o7 (p} (11)

Here, R is the influence vector at iteration k. Y is the
normalized interaction matrix, i.e., the sum of entries in each
row is equal to one. When (7) converges, the equilibrium,
denoted by R*, is the final influence vector. The (n x 1)
column vector R is called line influence vector, whose i ele-
ment (denoted by E) is the influential degree of line i. r is the
influence score of hidden failures. X is a weighted partitioned
matrix. o and (1 — o) weight the interactive influence among
lines and the influence of hidden failure on lines, respectively.
Here, o is set as 0.85 [21]. ¢ > 0 is a small number, much
lower than components of a. ® is a diagonal matrix with

D=1/ Z"+1] X;j, where @ is the n'-order principal minor
determinant of ®. Specifically, we have

1
n
& + Zi:] a;
Similar to [11], it is easy to prove that Y is stochastic, irre-
ducible, and aperiodic. These three properties guarantee R to

converge to a unique influence vector R*. The stationary line
influence vector is denoted by R

¢ = (12)

C. PAGERANK-BASED RANKING ALGORITHM

The PageRank algorithm can be applied to obtain the sta-
tionary influence vector R*, leading to a PageRank-based
algorithm to rank the influence of lines. The overall algorithm
is given in Algorithm 1.
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Algorithm 1 PageRank-Based Influence Ranking

Input: Active power flow data
Output: Influential degree order of lines

1: for i=1:ndo

2: for j=1:ndo

3: if i #j then

4: Obtain AP;; by the line outage distribution
factor [36].

5 end if

6: end for

7: end for

8: Obtain matrix K by (2).

9: Obtain b by (3) and a by (4)~(6).

10: Obtain Y by (9)~(11).

11: Solve (7). Set the starting vector R© = 1 with all entries
as 1. Obtain R* by applying the power method to Y.

12: Rank transmlssmn lines by their 1nﬂuence degrees
according to R A bigger value in R indicates a higher
influence.

IV. SIMULATING SUBSEQUENT FAILURES
In this section, we focus on resolving problem P2, i.e., sim-
ulating the subsequent generations of cascading failure by
properly selecting child outage lines. Specifically, the branch-
ing process model, which is well known for depicting the
propagation of cascading failures from a macroscopic point
of view [29], is adopted here. It is assumed that each outage
at a generation propagates independently to the next gener-
ation [12]. While this assumption appears to be idealistic,
empirical results match well with many blackout models,
such as the OPA model [28] and the CASCADE model [37].
Denote Z,&,d) as the set of line outages at generation m of
cascade d. Under this assumption, for each line i € z,ﬁf”,
the resultant child outages at generation m 4+ 1 can be deter-
mined by the following two steps:

1) Ascertaining the number of child failures, denoted

by ki
2) Tripping k,,; lines by sampling from the rest of the lines
if Km,i > 0.

In the following subsections, we exhaustively address the

two issues.

A. THE NUMBER OF CHILD FAILURES

1) THE NUMBER OF CHILD FAILURES «/y, ; TRIGGERED

BY LINE /

It is suggested in [12] that the integer number, k;,,;, follows a
Poisson probability distribution, i.e.,

()";‘nK —l
e (K=0,1,2...) (13)

Pr(cpy,; = K) =
where, Al refers to the average number of line outages trig-
gered by the failure of line i at generation m. Consequently,
the number of child outages «,,; resulting from line i can be
determined by sampling from the Poisson distribution (13).
The details can be found in reference [12].
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Obviously, there will be no line tripped for «,,; = 0,
and one line tripped for «,,; = 1. However, if k,; > 1,
multiple lines will be tripped simultaneously. We consider the
scenarios that multiple lines might be tripped together due
to the following reasons. In practice, there does exist such a
situation that multiple lines fail together. For example, when
a short circuit happens on a bus, all the lines connected to
the bus will be tripped together. On the other hand, in cas-
cading failure simulations, it is common to use ‘‘generation
division” to group the events which happen very closely into
the same generation [26], [29], [39], [40].

2) POISSON PARAMETER A/,

Notably, before applying (13) to ascertain the number of child
outages k, ;, we need to estimate the Poisson parameter )\in
for each line i and each generation m. In [12], )Lin is statisti-
cally given by

Jom = Cou/ Py (14)

where, P, is the number of times that line i appears as a
parent outage at generation mi; C,’;l refers to the total number
of effective children,! which results from the failure of line i
at the respective generation(s).

Furthermore, A/, is simply divided into two cases [12]:
)»6 for the initial generation; )Ji . for all subsequent genera-
tions. This means that the number of child failures produced
by line i at the subsequent generations follows an identical
distribution. In this paper, we continue to adopt this rationale.

3) THE NUMBER OF CASCADES NEEDED TO
ESTIMATE i;, AND k’H

For the sake of estimating )»6 and )Ji 4» a certain number
of cascades, T, need to be performed in advance. These
simulated cascades are called pilot cascades. In order to
improve computational efficiency, it is desirable to minimize
the number of pilot cascades, which has not been addressed in
the literature, including [12]. Next, we use a simple heuristic
method to adaptively determine the minimum number of pilot
simulations, Tpin.

At the beginning, a certain number of pilot cascades,
denoted by 7y, are triggered by (n — 1) contingencies, to cal-
culate )Lé and Ail . foreachline i € N. Then, we gradually
increase the number of pilot cascades, until the calculated
ké and )Ji 4 converge. We denote the increased number of
pilot cascades by AT. Then, for the j-th run of pilot cascade
simulations, the number of pilot simulations is”

Ti=[to+AT x(G—Dlxn, j=12---.

At the end of each run j, we calculate Aé(j) and )J'l 4 () for
every line i. Heuristically, if four successive Ay (j) (and 1} Jr(j))

For example, if line i and j appear as parent outages at generation m of
a particular cascade, and generation (m + 1) of the same cascade includes
3 child outages, the effective children for line i and j could be 3/2=1.5.

2The multiplier n is due to the fact that there are n lines, and we need to
proceed pilot simulations for each of the n lines.
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are close enough (say, less than a given threshold t), the Pois-
son parameters )Lf) and )Ji o of line / are regarded as converged.
Then the corresponding number of pilot cascades for this
line can be obtained, denoted by Téﬁn. When the Poisson
parameters for all lines are converged, the pilot simulation
ends, and Thp is determined by

Tin = max {T1 T2 -, T

min> “ min> "~ ° min}

15)

The calculation process is illustrated in Fig. 6.

T;
£ number of pilot
.713_11?" AT cascades
AT AL AT AT -
line 1 < L ) B . Tain
A0 AT AT AT -
42 42 2 2
1ine2< L@ AT AT - AT } 7, | 03
R R@) 2@ e R - =) ’...
BRI BT @) . BT -
linen< To
AT AT AT AT -

FIGURE 6. Procedure of pilot cascade simulations.

B. SAMPLING FAILED LINES AT CHILD GENERATION

In this subsection, we focus on resolving the second issue:
for line i € Z,(,,d), if k,,,; > 0, determining its child outages at
the next generation by sampling «,, ; lines from the rest of the
power grid .

As stated in Section II, if the propagation of cascades can
be guided by HILs, it could significantly reduce the searching
space, resulting in a high-efficiency searching strategy of crit-
ical cascading paths toward blackouts. A straightforward idea
is to assign higher failure probabilities to lines with higher
influence rank scores. Specifically, we define the tripping
probability of line k as

o~

. . . Rm,k
Pr(line k fails at generationm + 1) := ————=— (16)

ZkeQm Rk

where, €2, is the set of normal lines at generation m and ﬁm, k
is the influential degree of line k at generation m, given by the
PageRank algorithm proposed in Section III (Algorithm 1).

The failed lines at the child generation can be sampled
subject to the probability function (16). Here, we use Roulette
selection [38] to realize the sampling. Note that if the number
of child outages satisfies «,,; > 0, one needs to repeat the
Roulette selection «,, ; times, as presented in Procedure I.

C. ALGORITHMS

By utilizing T, pilot cascades, Algorithm 2 presents the
approach for estimating )Lio and )LIH for each line i in a power
grid. Subsequently, for all lines in Z,Ef), the procedure for
selecting their child 0uta§es at the next generation is outlined
in Algorithm 3. Here, Z 9 denotes the set of child outages

. ‘m+1
at generation m + 1 of cascade d.
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Procedure I: ROULETTE SELECTION METHOD
For the 2t7 line I, of Qp (z = 1,2 -+, [y ), calculate
its cumulative probability by

q(lz) = Z::1 Pr(line I fails)

Here, |2, | denotes the cardinality of y,.

If q(l1) > -, select line I1; otherwise select line ., s.t.
q(l.—1) < v < q(l2). Here, ~y is a uniformly distributed
random number satisfying v € [0, 1].

Repeat Step 2 Ky,,; times. All the selected lines compose
the child outages triggered by line 7.

Step 1:

an

Step 2:

Step 3:

Algorithm 2 Estimating Poisson Parameters

Input: Active power flow data

Output: A6 and )Ji 4 for each line i in the power grid

1: Increase the number of pilot cascades, until the Poisson
parameters for all lines are converged.

2: Determine the minimum number of pilot cascades Tin
by (15).

3: Obtain )»6 and )J'l 4 for each line 7 in the power grid.

Algorithm 3 Simulating Subsequent Failures

Input: Active power flow data
Poisson parameter A, and A, for each line i € Z,(,,d)

Output: Zr(ndl |

1: Foreachlinei € Z,(,ld), determine how many child outages
Km,i exist by sampling from (13)~(14).

2: Call Algorithm 1 to obtain the influence value of the
lines.

3: Foreachlinei € Z,(nd), use the Roulette selection method
presented in Procedure I to obtain its child outages if
Km,i > 0.

4: All the child outages compose Z @)

m—+1"

V. OVERALL SEARCHING ALGORITHM

The overall searching strategy is presented in Fig.7, where
Algorithms 2 and 3 are embedded. It involves two phases:
PHASE 1 is processed to estimate )»6 and )L’i . for all lines
by calling Algorithm 2; PHASE II is then processed for
searching critical cascading paths by leveraging the results of
PHASE 1. PHASE I is executed only ONCE before running
PHASE 1II. As long as PHASE I is completed, it outputs )\6
and A7, of each line i as fixed parameters. When PHASE II
is executed, these Poisson parameters can be used directly
without any change throughout the follow-up process.

Vi. PROBABILITY ESTIMATION OF BLACKOUTS

In this section, we address the problem P3. Trip line i as an
initial fault, and the probability of a given event A causing the
power losses greater than PLy, is defined as (A, 7). If the
MC method is adopted, ©(A, i) is estimated by (18) after
N, simulation runs, denoted by fiyc (4, i).

~ A D) = 1 $ 5 . 18
amc( »l)—]7s2~:1 {h(&c)=PLit} (18)
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Initialization

Trip one line as initial fault
(m=1)

4>{ DC power flow calculation }47

Calculate line trip probability
according to Fig.5

Is there any line trip
with probability 1?
No

Determine the child outages at generation m+1
(Algorithm 3)

New child outages ?
Yes

m=m+1

New
network

4{

’ Record power losses

PHASE 11

PHASE I

FIGURE 7. Flow chart of fast searching strategy for critical cascading
paths.

where, Z]MC is the j sample of cascading paths; h(z’Mc) stands
for the total power loss of sample z’Mc; 81y is the indicator
function of set {-}. Here, §(; = 1 if the condition in set is
satisfied; otherwise 8;.y = 0.

Equation (18) provides an unbiased estimation on the true
probability u(A, i). However, it cannot be directly applied to
the proposed searching strategy, since PHASE II uses the sur-
rogate failure probabilities to replace the actual ones at each
generation of the subsequent cascading failure simulations.
Therefore, one has to re-scale the simulation results to recover
the actual probability distribution of the blackouts caused by
an (N — 1) contingency.

Denote the jfh samples resulting from PHASE I and
PHASE II by Z,, and Z,,, respectively. Denote the ratio
of actual and surrogate probability of these two samples by
w(z’m) and “)(Z]ssz)’ respectively. After obtaining Ny samples
by the proposed searching strategy, (A, i) can be estimated

by

- . 1 Tmin/n j
iss(A, i) = N, <2j=1 () - S{h(z_’;sl)zPL[h,-}
Ns 2.y 19
+ j:(Tmin/”)+1 (1)( SSZ) ' {h(Z{sz)ZPL(hr} ( )

Specifically, a)(zisl) in (19) is equal to 1, since PHASE I
directly uses the MC method to simulate cascading paths.
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As for a)(zixz), it is computed by
W
p]; mI:II p]m,m—H

0(F) = =" (20)
l:[l ZI/m,m—H

q

where

Bt = [ Pos [1 0 =500) 21)

kefzf,, keQﬁn
qfn,m—i—l = l_[ C}Im,k (22)
ke,

In (20), p’c and q’c refer to the actual probability and surrogate
probability of a given sample Z]s-SZ’ respectively. 7/ is the
length of this sample. In (21), I_Jlr.n,m—i-
probability from generation m to m + 1, of the sample Zl;sz‘

| is the actual transition

S_Zlm denotes the set of tripped lines at generation m of
the sample ngz' Accordingly, other normal lines compose
the set €2,, and they will be still in operation normally
at the (m + 1)-th generation. ﬁ’m’k is the actual tripping

probability of line k at generation m of the sample les2’
which can be obtained by employing the hidden failure
model in Fig.5. In (22), (}’m’m 41 describes the surrogate
transition probability from generation m to m + 1, of the
sample ngz' E/m,k refers to the surrogate tripping proba-
bility of line k at generation m, which can be calculated
by (16).

Remark 1: Essentially, the simulation process in PHASE Il
is the same as a sequence of sequential importance sampling
(SIS) steps [3]. Note that, in [3], it has been proved that the
SIS method gives an unbiased estimation on the probability
distribution of cascading blackouts. Therefore, [iss(A, 1) in
our method (computed by (19)-(22)) is also an unbiased
estimator for w(A, i).

VII. CASE STUDIES

In this section, we used the standard IEEE 39-bus system and
IEEE-118 system to verify the efficacy and efficiency of the
proposed methodology. Furthermore, a real-world 1,122-bus
power grid in China is used for demonstrate the practicality of
our method. All the three systems are set as initially (N — 1)
secure.

A. VERIFICATION TECHNIQUE

In the case studies, we used the standard MC method as
a comparison to demonstrate the efficiency of the pro-
posed searching strategy. Specifically, we employed the
improved blackout simulation model [11] incorporating the
hidden failure mechanism [32]. The key improvement is
that our model allows relay misoperations with certain prob-
abilities on all the operating lines rather than only the
lines exposed to incorrect tripping. Therefore, our model
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is more realistic. The flow chart of MC method is shown

in Fig.8.

’ Trip one line as initial fault ‘

v

’ DC power flow calculation Fi
i

Calculate tripping probability of each line
(Hidden failure model presented in Fig.5)

NO‘New line trip?
’ Trip those selected line(s) }7

Record power losses ‘

End

FIGURE 8. Flow chart of the Monte Carlo (MC) method.

Trip line i as the initial fault. The number of cascading
paths causing power losses greater than PLy,, obtained by the
proposed searching strategy and the MC method, are defined
as Wgs(7) and Wy (i), respectively. To quantitatively measure
the improvement in searching efficiency, we introduced an
indicator, which is given by

SF(i) := M (23)
Wic (i)
Clearly, a larger SF implies a more significant improvement
in searching efficiency.

B. CASE 1: IEEE 39-BUS SYSTEM
In this case, the IEEE 39-bus system was used for testing.

This system has 46 transmission lines, 10 generators, and
6,254 MW of load.

1) PILOT CASCADE SIMULATIONS

The datasets of pilot cascades were produced using the sim-
ulator presented in Section VII-A. We first determined the
minimum number of pilot cascades Ty, by using the method
proposed in Section IV-A, and then computed )»6 and )Ji 4 for
each line i in the power grid.

Next, the initial number of simulations 7y was set to 100.
We initiated from T} = #p x n = 100 x 46 = 4, 600 and set
AT as 4, 600. In addition, the convergence threshold t was
set to 0.1. For each line i € A/, we calculated its Poisson
parameters )»6 and )J'l 4 After 23 runs, all the parameters
converged (the variance of four successive parameters is less
than 7). The minimum number of pilot cascades for each line
is shown in Fig. 9. Clearly, the highest value of this histogram
is 105, 800, implying that pilot cascades T, = 105, 800.
Line 10 is taken as an example to illustrate the process of
convergence, as shown in Fig.10. Fig.11 shows the final
estimation of Poisson parameters A6 and )Ji 4 for some lines.
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FIGURE 11. Estimation results of Poisson parameters.

2) EFFICIENCY

Next, we compared the efficiency of the proposed search-
ing strategy in simulating severe blackouts with that of the
MC method.

For the MC method, we performed 10, 000 cascading sim-
ulations for each (N — 1) contingency (460,000 simulations in
total). For the proposed searching strategy, we first allocated
2,300 pilot cascades for each (N — 1) event (105,800 total
simulations) to estimate the Poisson parameters of all the
lines (PHASE I of searching strategy). Then, the remaining
7,700 cascading simulations were conducted for each initi-
ating event (354,200 total simulations) to search for critical
cascading paths (PHASE II of searching strategy). In this
way, the total number of samples in the two methods remains
the same. We considered the following three scenarios:

1) S1: PL = 1, 000MW;

2) S2: PLiyy = 1, 500MW;
3) 83: PLihr = 2, 000MW.

36882

For example, consider initial faults at line 5 and line 46,
respectively. The growth of identification results obtained
using the two aforementioned methods are compared
in Fig.12. The results show that the number of blackouts
captured using the proposed searching strategy is almost zero
when the given computation budget is used to simulate pilot
cascades, and then increases linearly with the increase in sim-
ulation runs. The growth rate of our proposed method is much
faster than that of the MC method. Interestingly, the results
also indicate that a vast major of blackouts obtained through
the proposed searching strategy are unique, as shown in Tab.1.
All these results confirm the high efficiency of our algorithm
in searching critical cascading paths toward blackouts.
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01

FIGURE 12. Comparison results for initial fault at (a) line 5 and
(b) at line 46.

TABLE 1. Percentage of unique blackouts for initial fault at lines 5 and 46.

Initial P Ly, Number of unique Number of Percentage(%)
fault blackouts blackouts
1000(MW) 4753 5162 92.08
line5 | 1500(MW) 3794 3849 98.57
2000(MW) 3273 3307 98.97
1000(MW) 5577 5839 95.51
line 46| 1500(MW) 5017 5127 97.85
2000(MW) 4640 4733 98.04

The speedup factors for different initial-fault lines are com-
pared in Fig.13. Note that the vertical axis is in logarithm. The
horizontal axis refers to the initial fault selected randomly.
As shown in Fig.13, most of the results provide a speedup
factor of 2~3 orders of magnitude. Specially, when PLy, =
2,000 MW, the speedup factor for line 34 is infinite since
the MC method fails to capture any blackouts (therefore the
result is not provided here). In addition, the results indicate
that the higher the power loss threshold PLy,,, the greater is
the speedup factor. It further certificates that the searching
strategy has a considerable advantage in effectively identify-
ing severe cascade events.

3) PROBABILITY DISTRIBUTION ESTIMATION OF
BLACKOUTS

Trip one line as the initial fault, and estimate the proba-
bility distribution of blackouts. For example, consider the
initial faults at line 5 and line 13, respectively. As shown
in Fig.14, the MC method and the proposed method out-
put almost the same estimations of the complementary
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FIGURE 13. Speedup factor for different initial-fault lines.

cumulative probability distribution when the power losses
are no more than 2,800MW (Fig.14(a)) and 2,600MW
(Fig.14(b)), respectively. It justifies that the proposed search-
ing strategy can achieve an unbiased estimation result.

10°
— MC
102} =
107
10} \
\
\
10 [
0 500 1000 1500 2000 2500 3000 3500
power losses(MW)
(a) line 5

10°

complementary cumulative probability

0 500 1000 1500 2000 2500 3000 3500
power losses(MW)
(b) line 13

FIGURE 14. Complementary cumulative probability distribution of power
losses with the initial fault at (a) line 5 and (b) line 13.

On the other hand, when the power losses are greater than
2,800 MW and the initial fault is set as line 5, the MC method
fails to find out any cascading path in 10,000 simulation
runs and cannot give the probability distribution estimation of
blackouts. In contrast, our searching strategy can find a great
number of such critical cascading paths. It is even able to give
the probability distribution estimation of the blackouts with a
power loss as high as 3,800MW. We further check the prob-
ability of every critical path that causes power losses more
than 2,800 MW. It is found that the probabilities of individual
critical paths range from 1.0227 x 107 to 1.2556 x 107°.
Similar results are obtained when the initial fault is set at
line 13.
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These results demonstrate that the proposed method pro-
vides an efficient way for searching critical paths and esti-
mating the probability distribution of blackouts.

C. CASE 2: IEEE 118-BUS SYSTEM

In this case, the IEEE-118 bus system is used for test. It has
186 transmission lines, 54 generators, and 6,363 MW of load
in total.

1) PILOT CASCADE SIMULATIONS

First, the method proposed in Section IV-A was applied to
determine the minimum number of pilot cascades Tiin. The
initial value of simulation runs #y was then set to 100. Start
from 71 = tH) x n = 18,600 and let AT = 18, 600.
The acceptable mismatch t was set to 0.1. The results show
that the minimum number of pilot cascades for each n — 1
contingency used to estimate Poisson parameters is 1,800.
Consequently, Tmin = 334, 800. Then, by utilizing those
pilot cascades, the estimated Poisson parameters )»6 and
A, for each line can be obtained. Owing to limited space,
Fig.15 presents only partial results.

N
W

paramter
—
— n N
. :

o
W

value of Poisson

(=]

]
26 7 55 70 106 147 9 33 15 87
line

FIGURE 15. Estimation of Poisson parameters.

2) EFFICIENCY

For the MC method, we simulated 10,000 samples of cas-
cades for each initial tripped line. The total number of
simulation runs is 1,860,000. For each (N — 1) contin-
gency, the computation budgets for PHASE I and II of the
proposed searching strategy were set to 1,800 and 8,200,
respectively. Similar to Case 1, consider the following three
scenarios:

1) S1: PLy, = 1,000 MW;
2) S2: PLy = 1,500 MW;
3) S3: PLy, = 2,000 MW.

The number of blackouts identified through the two meth-
ods are compared in Fig.16. The horizontal axis refers to the
initial fault selected randomly. These results indicate that the
critical cascading paths searched using the proposed method
far outnumber those obtained using the MC, as MC fails to
identify any severe blackouts. The results confirm the high
efficiency of the proposed searching strategy in capturing
cascading blackouts.
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FIGURE 16. Searching results under different initial faults.

3) PROBABILITY DISTRIBUTION ESTIMATION OF
BLACKOUTS

We consider the initial faults at line 26 and line 70 as exam-
ples. As shown in Fig.17, the estimation results of the com-
plementary cumulative probability distribution given by the
proposed searching strategy are almost the same as that given
by the MC method, when the power losses are small (PL,y <
700MW in Fig.17(a) and PLy,y < 900MW in Fig.17(b) ).
However, the MC method fails to find any critical paths in
terms of the initial fault at line 26 when the power losses
are larger than 700MW. In contrast, the proposed searching
strategy is still effective for capturing such critical paths.
By further checking the probability of every critical paths
causing power losses more than 700MW, we find that the
probabilities of these individual critical cascading paths are
extremely small. Specifically, they vary in a broad range from
1.5939 x 107218 10 2.9398 x 1073, The results demonstrate
that our estimation method is unbiased and further exhibit
the efficacy of the proposed strategy in searching critical
cascading paths.

D. CASE 3: 1122-BUS REAL SYSTEM IN CHINA

For test the scalability of the proposed searching strategy,
we compare it with the MC method in a large real power grid
in China, which has 1,792 transmission lines, 1,122 buses and
51.78GW of load in total.

1) PILOT CASCADE SIMULATIONS

In this case, the initial value of simulation runs ¢y was chosen
as 100. Start from 77 = typ x n = 179,200 and let AT =
179,200. The acceptable mismatch 7 was still set to 0.1.
Results indicate that the minimum number of pilot cascades
for each (NV — 1) contingency used to estimate Poisson param-
eters is 1,100. That is, Tnin = 1,971, 200. Consequently,
the estimated Poisson parameters for some lines are shown
in Fig.18.

2) EFFICIENCY
For each initial fault, the computation budgets for PHASE I
and PHASE II of the proposed searching strategy are
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FIGURE 18. Estimation of Poisson parameters.

1,100 and 8,900, respectively. For the Monte Carlo method,
we simulate 10,000 samples for each (N — 1) contingency.
Similar to Case 1 and Case 2, we consider the following three
scenarios:

1) S1: PLy, = 1,000 MW;

2) S2: PLiyy = 1,500 MW;

3) S3: PLy, = 2,000 MW.

Fig.19 shows the speedup factors for different initial-fault
lines, ranging from 102 to 103. Specifically, when PLy,, =
2,000 MW, the speedup factor for line 7 is infinite since
the MC method fails to capture any blackouts (therefore
the result is not provided here). Moreover, the result indi-
cates that the speedup factor is larger when the power loss
threshold PLy,, is higher. It verifies that the proposed method
indeed has high efficiency in searching critical cascading
paths toward blackouts, particularly in large-scale power
grids.
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3) PROBABILITY DISTRIBUTION ESTIMATION OF
BLACKOUTS

In this case, we consider the initial faults at line 134 and
line 1753 as examples. According to the estimation results
shown in Fig.20, the complementary cumulative probabil-
ity distributions given by these two methods match well
when the power losses are small (PLyp, < 3, 000MW
in Fig.20(a) and PLiy, < 2, 400MW in Fig.20(b)). Moreover,
the proposed searching strategy successfully finds out many
cascading paths with high power losses even larger than
8,000 MW. It further suggests that the proposed searching
strategy can considerably improve the capability of captur-
ing severe blackouts, particularly when the failure proba-
bilities are very low. The result also empirically demon-
strates that the proposed method is scalable and practical,
which is promising to real applications in large-scale power
systems.
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VIil. CONCLUSION

In this paper, we have proposed an improved interaction
graph to better represent cascading outages of a power grid,
particularly when the (N — 1) criterion is not satisfied during
the follow-up cascading propagation after an initial fault.
We then have proposed a PageRank-based algorithm to
rapidly rank the influence of lines during the propagation of
cascading failures. Further, we have devised a method to sim-
ulate subsequent generations of cascading outage based on
an improved branching process model. Afterwards, we have
devised an unbiased probability estimation method for indi-
vidual cascading paths and the blackout. The simulation
result indicates that our algorithm can significantly accelerate
the searching of critical cascading paths toward blackouts in
large-scale power systems. It also verifies that the proposed
probability estimation method is unbiased and can provide an
effective way for probability analysis in cascading blackout
simulations with very low probabilities but high losses.
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