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ABSTRACT In the context of fifth-generationmobile networks, the concept of ‘‘Slice as a Service’’ promotes
mobile network operators to flexibly share infrastructures with mobile service providers and stakeholders.
However, it also challenges with an emerging demand for efficient online algorithms to optimize the
request-and-decision-based inter-slice resource management strategy. Based on genetic algorithms, this
paper presents a novel online optimizer that efficiently approaches toward the ideal slicing strategy with
maximized long-term network utility. The proposed method encodes slicing strategies into binary sequences
to cope with the request-and-decision mechanism. It requires no a priori knowledge about the traffic/utility
models and therefore supports heterogeneous slices while providing solid effectiveness, good robustness
against non-stationary service scenarios, and high scalability.

INDEX TERMS 5G mobile communication, business model, communication system operations and
management, genetic algorithms, network slicing, optimal scheduling, optimization, resource management.

I. INTRODUCTION
Network slicing was proposed by theNext GenerationMobile
Networks (NGMN) Alliance [1]. Since then, it has become
one of the hottest topics in the filed of future 5th Gener-
ation (5G) mobile communication networks. Generally,
the concept of network slicing can be understood as creating
and maintaining multiple independent logical networks on a
common physical infrastructure platform, every slice oper-
ates a separate business service with certain Quality of
Service (QoS) requirements. Enabled and supported by the
emerging technologies of software defined networks (SDN)
and network function virtualization (NFV), network slicing
exhibits great potentials – as indicated in [2] – not only
in supporting specialized applications with extreme perfor-
mance requirements, but also in benefiting the mobile
network operators (MNOs) with increased revenue. A sliced
mobile network manages its infrastructure and virtual
resources in independent scalable slices, each slice runs a
homogeneous service with a specific business model. Thus,
an MNO can dynamically and flexibly create, terminate and
scale its slices to optimize the resource utilization.

In a previous paper [3], we have proposed a profit opti-
mization model for sliced mobile networks that applies on the
traditional business mode: the MNOs with network resources
implement the slices and provide all network services directly
to their end-users. In this case, a MNO is fully aware
of a priori knowledge about the service demands and the
cost/revenuemodels of every slice. It is able to scale the slices
in real time according to their utility efficiencies (which can
be flexibly defined as such like someQoS or the revenue rate),
in order to achieve the maximal overall network utility under
the resource constraints. This is a classical multi-objective
optimization problem (MOOP), in which the main challenge
is to solve the optimal resource allocation, or at least to find
a satisfactory solution, with affordable computing efforts.

Unfortunately, this model does not apply on the slices
operated by tenants such as mobile virtual network oper-
ators (MVNOs), which are considered to play an impor-
tant role in 5G networks [4]. Tenants are third-parties that
provide services without owning any network infrastructure,
some instances are utility/automotive companies and over-
the-top service providers such as YouTube R©. To provide
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connection services, they have to be granted by MNOs with
network resources, including radio/infrastructure resources
and virtualized resource blocks, i.e. computation resources.
In legacy networks, every tenant makes its contractual agree-
ment with the MNO(s), to pay a fixed and coarsely estimated
annual/monthly fee for these resource sharing concepts. In the
context of network slicing, in contrast, the resources are
first bundled into slices before granted to tenants upon
demand. Depending on the slice type, different slices have
various utility efficiencies and periodical payments. For
example, with the same amount of resource, slices for
mobile broadband (MBB) servicesrequire high average user
throughput, while slices for massive Machine-Type Commu-
nication (mMTC) services focus more to simultaneously
serve more low-traffic devices [5]. Even with the same
service type, elastic slices can be defined to guarantee an
average QoS level for a lower payment, while inelastic
slices provide guaranteed minimal QoS level for a higher
payment [6]. This approach, usually known as ‘‘Slice as a
Service’’ (SlaaS) [7], improves the sharing efficiency and
the resource utilization rate. However, as such slices are
operated by tenants, and their scales shall be formulated
and protected by contractual agreements, a new agreement
between the MNO and tenant may therefore be essential to
flexibly rescale or terminate a slice at arbitrary time, which
leads to extra operations expenditure (OPEX). As an effi-
cient alternative, the MNO can offer resources to implement
slices of different types, and macroscopically optimize its
resource allocation by choosing if to accept or decline every
request from tenant for slice creation. On the other hand,
as every slice is logically isolated from the others, a tenant
has no access to slices operated by other tenants, but only
the administration over its own resources by requesting new
slices or terminating active slices of its own. In this case,
neither theMNOnor the tenants can jointly optimize all slices
in a fully dynamic approach, which disables most classical
techniques of resource allocation and proposes a new chal-
lenge of network resource management.

First efforts have been made recently on this emerging
topic. On the one hand, focusing on how the tenants
adjust slice parameters to reduce cost while maintaining
the quality of service, a game theory model has been
proposed in [8]. On the other hand, taking the MNO’s point
of view, the authors of [6] have proposed to optimize the
slicing strategy in order to maximize the overall revenue.
In this paper, we focus on the latter problem, and propose
a novel online genetic approach of slicing strategy optimiza-
tion. Compared to existing methods, our proposed approach
encodes every feasible slicing strategy into an individual
binary sequence, so that it copes with the binary-decision
based inter-slice control mechanism. Furthermore, it requires
no pre-knowledge about the utility model, and therefore
allows heterogeneous utility functions for different slice
types, in order to better support the coexistence of hetero-
geneous slices with highly various QoS requirements in
5G networks.

The rest part of this paper is organized as follows: In Sec. II,
we setup the system model to describe the business process
of SlaaS. Then in Sec. III we review the existing methods of
resource allocation, especially the Q-Learning method in [6],
and discuss about their limits. Afterwards, Sec. IV briefly
introduces genetic algorithms to help readers understand our
proposed method which we present in Sec. V. Subsequently,
we evaluate the performance of our approach through numer-
ical simulations in Sec. VI, before Sec. VII closes the paper
with conclusions and some outlooks.

II. SYSTEM MODEL
A. SPACE OF RESOURCE FEASIBILITY
Consider a MNO with M different types of resources to
support the maintenance of up to N different types of
slices. The resource pool can be therefore described with a
M -dimensional vector r = [r1, r2, . . . , rM ]T. Every slice
type n ∈ {1, . . . ,N } is characterized by its resource cost
vector cn = [c1,n, c2,n, . . . , cM ,n]T. At any time instance,
the active slice set can be represented by a N -dimensional
vector s = [s1, s2, . . . , sN ]T, where sn denotes the number of
active slices of type n. Correspondingly, the resource assign-
ment can be described as

a , [a1, a2, . . . , aM ]T = C× s, (1)

where C = [c1, c2, . . . , cN ]. Thus, the space of resource
feasibility is given by

S = {s : rm − am ≥ 0,∀1 ≤ m ≤ M}, (2)

which is illustrated bottom-left in Fig. 1.
It should be noticed that this is a highly abstracted defi-

nition of resource for keeping the generality. In practice,
network slicing can be applied both on physical resources,
i.e. radio/infrastructure resources [9], and on virtualized
resource blocks, i.e. computational capacity [10]. The prac-
tical design of resource pool, therefore, depends on the use
case specification. Generally, all virtualized resource blocks
on the same server or server cluster, no matter exploited by
which virtual network function (VNF), can be considered
as homogeneous and therefore modeled with one dimen-
sion of the resource vector r. In contrast, heterogeneous
physical resources such as frequency bands and transmis-
sion power, must be distinguished with different orthogonal
dimensions in r.

It also worths to note, that the linear resource assign-
ment (1) formally excludes any resource multiplexing over
different slices, which is, especially for physical resources,
not only common in practice but also essential for realizing
slice elasticity. Nevertheless, as derived in [6], in the context
of inter-slice resource management, an elastic slice that
shares resources with other homogeneous slices is equivalent
in resource consumption to an inelastic slice with downscaled
utility efficiency. Therefore, in this work we consider only
inelastic slices for simplification, as elastic slices can be
modeled as their inelastic equivalents.
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FIGURE 1. System model of inter-slice resource management based on tenant requests and
binary decisions. M = N = 2 taken for the illustration.

B. RESOURCE ASSIGNMENT AND RELEASE
In SlaaS, resource requests for implementing slices of
different types randomly arrive from various tenants. Here we
consider a time-frame-based processing of tenant requests:
in every time frame, a random number of requests for every
type of slices are proposed by tenants. In this paper, we use
the term operations period to denote the length of this time
frame. Once a request for slice type n arrives, the MNO
checks if its idle resources can support it to create such a slice.
If not, the request will be immediately declined. Otherwise,
the MNO can decide if to accept the request or to decline it.
Upon acceptance, the MNO creates a new slice of type n,
and allocates a corresponding resource bundle cn from its idle
resource pool to the new slice.

If the request is declined, no slice will be created. This
implies that some tenant may fail to immediately obtain
the required network resource for their service, especially
when the resource pool is highly occupied. To solve this
problem, a mechanism of delayed service upon request
decline is required instead of a simple denial. For example,
a random-access-alike protocol can be designed to let the
tenant resubmit its declined slice creation request after a
random delay. Alternatively, the MNO can buffer all declined
requests in a waiting queue for future decision. In case a
bidding mechanism is valid as proposed in [8], the declined
tenant can also reattempt with a raised bid for a better
opportunity of acceptance. With such approaches, the binary
decisionmechanism is able to eventually accept every request

after some delay. As the scope of this paper focuses mainly on
the optimization of binary decision, we consider the random
delay approach which keeps the request arrivals Poisson
distributed, and do not discuss its impact on the latency of
slice creation, which worths further studies in future.

Depending on the business mode, the termination of a slice
can either be planned in the request, or randomly happen upon
cancellation by the tenant. In this work, we consider the latter
case, where every slice of type n has a random lifetime.When
a slice of type n is terminated, its resource bundle cn will be
released and returned to the MNO’s idle resource pool.

To simplify the analysis and simulation, in this work we
assume that all requests for slice termination only arrive and
get handled at the beginning/end of operation periods, while
requests for slice termination can arrive any time and will be
responded by the MNO immediately. Fig. 1 briefly concludes
this procedure of releasing and assigning resources.

C. SPACE OF FREE DECISION AND SLICING STRATEGY
So far, we can describe the MNO’s decision on an incoming
resource request of slice type n with a binary variable
d ∈ {0, 1}, where d = 0 denotes decline and d = 1 stands for
acceptance. Upon the decision, the active slice set is updated
from its previous value s to

g(s, n, d) =

{
s d = 0,
[s1, . . . , sn−1, sn+1, sn+1 . . . , sN ] d = 1.

(3)
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Given a certain space of resource feasibility S, if the deci-
sion d is a function of the current active slice set s and the
incoming request n, we say that the MNO has a consistent
slicing strategy

d(s, n) : S × {1, 2, . . . ,N } → {0, 1}. (4)

In this case, g(s, n, d) = g(s, n), i.e. the new active slice set
is uniquely determined by the current active slice set and the
incoming request.

As the incoming request n is independent of the current
active slice set s, the amount of all different possible construc-
tions of the mapping described by Eq. (3) is 2‖S‖×N , where
‖S‖ is the number of all s ∈ S. However, as discussed earlier
in Sec.II-B, the MNO cannot accept but only decline the
request if its idle resources are not sufficient. Hence, we can
further restrict the domain of slicing strategy d to the space
of free decision:

D = {(s, n) : ∀s ∈ S,∀1 ≤ n ≤ N , d(s, n) ∈ S}, (5)

whose size ‖D‖ is slightly smaller than ‖S‖ × N .

D. UTILITY MODEL AND LONG-TERM
STRATEGY OPTIMIZATION
Depending on the slice type n, every active slice generates a
certain utility in every operations period, which we denote
with un. Depending on the use case, the utility can be
flexibly defined in the tenant’s point of view as a function of
some specified key performance indicator (KPI) such as the
network throughput, the average latency or the network relia-
bility. Alternatively, it can also be defined in theMNO’s point
of view as a direct payoff such as the payment for renting the
network resource bundle. The overall utility generated by all
slices in an arbitrary operations period t is

u6(t) =
N∑
n=1

sn(t) · un. (6)

In this work, our interests focus on selecting the optimal
slicing strategy that maximize the expected average overall
utility over a long term of T operations periods:

dopt = argmax
d

E

{
1
T

T∑
t=1

u6(t)

}
. (7)

Such a strategy is supposed to optimize, depending on the
selection of utility function, either the overall performance
of the entire sliced network, the economic revenue of the
MNO, or other target metric. This is a non-convex optimiza-
tion problem, where no analytic solution is available and
heuristic techniques are therefore needed.

III. EXISTING METHODS AND LIMITS
SlaaS shall be considered as a specific form of cloud
computing. The problem of network resource management
also commonly exists in the classical cloud environments,
including Infrastructure as a Service (IaaS), Platform as a

Service (PaaS) and Software as a Service (SaaS). Since over
a decade, various approaches have been proposed to schedule
and allocate physical and logical resources over different
cloud clients [11], [12].

Nevertheless, the ubiquitous features of 5G network slicing
are challenging the deployment of classical cloud resource
allocation schemes in SlaaS. First, it usually considers
almost homogeneous instances and simple resource pool in
classical public cloud environments, which simplifies the
resource constraints to one-dimensional [13], [14], or two-
dimensional [15]. In 5G networks, as indicated in [3],
a large number of slice types N can be required to support
highly heterogeneous mobile services, and the dimension of
resource pool M can also be considerably large. These can
lead to a high computational complexity of global optimizing
algorithms with cascaded loops such as [14], and reduce
their feasibilities. Second, depending on the use scenario,
different slices in 5G networks can even have highly hetero-
geneous constructions of the utility function un. For instance,
the energy efficiency is a critical term in the utility function
of mMTC slices, the delay is more important for ultra-low-
latency reliable communications (URLLC) slices, while the
MBB slices are more evaluated regarding the throughput.
Classical cloud resource allocating approaches that mostly
consider one or few homogeneous cost functions, such as
power [16], throughput [17] or resource utilization rate [15],
for all instances, can be hardly applied in 5G SlaaS. Novel
methods are therefore called for, which are expected to be
flexible with various constructions of resource constraints
and heterogeneous utility functions. Recently, two numerical
algorithms have been proposed in [6] to obtain the global
optimum of inter-slice resource management : the Value
Iteration which is an iterative full-search approach, and the
Q-Learning which is a model-free online machine learning
algorithm. Compared to the Value Iteration, the Q-Learning
approach is not only capable to support a flexible selection of
optimization target, i.e. the utility function, but also proven
to effectively reduce the computational cost while approxi-
mating the optimal performance.

However, the Q-Learning approach has a drawback intrin-
sically rooting in its action-based optimization framework,
that it intends to maximize the average reward that the
MNO receives from every decision it makes. This ‘‘decision
reward’’ lacks of intuitiveness in the business view, and is
difficult to map onto common business metrics such as the
overall network utility defined in Eq. (6).

Furthermore, the Q-Learning algorithm is limited in scala-
bility. The method needs to keep a value table for all possible
‘‘actions’’ that the system can take, and to update the values
online through an exploration-exploitation process. In the
exploration-exploitation process, the algorithm has a chance
of δ to intentionally make a wrong or unevaluated deci-
sion, so that it guarantees to traverse all possible actions
in long-term. By modifying the value of δ, the algorithm
takes its preference between the converging speed and the
exploration efficiency. In our case, an action refers to a
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FIGURE 2. The reproduction procedure in standard GAs.

combination of an arbitrary state in the space of free deci-
sion and an arbitrary binary decision, so the size of value
table is 2‖D‖. When ‖D‖ grows to a large number, despite
of the exploration-exploitation process, the essential time
for convergence increases linearly [18] – which reduces the
applicability of the algorithm in practice. This problem can
become even worse, when the environment, i.e. the statis-
tical behavior of request arrivals and / or slice terminations,
is non-stationary.

IV. GENETIC ALGORITHM
Since the 1980s, a category of evolutionary hill-climbing
algorithms, known as genetic algorithms (GAs), have been
widely applied on various search and optimization problems
in the fields of engineering and operations research [19].
They have been proved to be efficient in addressing some
difficult challenges in such problems, including large state
spaces, incomplete state information and non-stationary
environments [20].

A GA is intrinsically integrated with a specified encoder,
which maps every candidate strategy to an individual binary
sequence (code) of a certain length. At the initialization step,
a random set of sequences are selected from the codebook,
corresponding to the so-called initial population. Each candi-
date strategy is evaluated to obtain its fitness, i.e. the value of
objective function to optimize. Subsequently, according to the
fitness values of the current population, new populations are
iteratively generated. In a standard GA [19], every iteration
consists of three sequential steps:

1) Reproduction: in this step, every individual strategy in
the last population is copied into a new set according
to its fitness. The number of copies occurring in the
reproduced set is proportional to the fitness value of
origin in the last population. The reproduced set has
the same size as the last population – so that the better
candidates proliferate through the reproduction, while
the worst outperformed candidates are eliminated. The
procedure is briefly illustrated in Fig. 2.

2) Crossover: in this step, all sequences in the repro-
duced set are randomly paired. Each pair has a chance

to randomly swap a subsequence with each other.
By doing so, new sequences are randomly gener-
ated, where each ‘‘child’’ has a chance to inherit and
combine advanced ‘‘genes’’ from its both ‘‘parents.’’
A larger chance of swap (crossover rate) leads to
a faster convergence to the optimum, while also
increasing the risk of premature convergence to local
maximums. The procedure is shown in the left part
of Fig. 3.

3) Mutation: where every candidate sequence has a
chance to invert one or several random bits of it,
which encourages an exploration in the codebook.
An increase in either the number of mutation rounds β
or the chance of one-bit-mutation per round γ leads
to a reduced risk of premature convergence, while also
aggravating the meandering during the convergence –
and therefore raising the risk of drifting away from the
global optimum. The procedure is shown in the right
part of Fig. 3.

By iterating these steps, a GA is able to approach to the
optimum through a winding process. It shall be noted that,
differing from classical optimization techniques, GAs do
not guarantee to converge at the global optimum due to an
endogenous risk of premature convergence. Nevertheless,
such risk can be minimized with a variety of techniques.
To the readers with further interest on the converging perfor-
mance of GAs, we recommend the empirical and analytical
studies in [19] and [21], respectively.
Similar to the Q-Learning algorithm, GAs also possess

the advantages of model-free and can be applied online.
But differing from most reinforcement learning techniques
including the Q-Learning, GAs rely on the quantized
‘‘fitness’’ values of different overall strategies instead of the
reward value of every single action. This is sometimes consid-
ered as a drawback of GAs, because in some applications the
fitness function can be difficult to appropriately select [22].
Nevertheless, this is hardly a flaw in the context of SlaaS,
because business metrics such as the long-term average
network utility defined by Eq. (7) are available as fitness
functions. On the contrary, it even benefits the deployment
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FIGURE 3. The crossover (left) and mutation (right) procedures in standard GAs.

of heterogeneous slices to customize the fitness value with
different utility functions for various slice types, as discussed
earlier in Sec. III.

Another common complain about GAs is that the strategy
encoder can be challenging to design. However, in our case
of SlaaS here, the binary nature of slicing strategy d(s, n)
enables a simple and effective encoder design, which is an
important and essential novelty of our work in comparison to
existing applications of GA on resource allocation, as we will
discuss in the next section.

V. PROPOSED METHOD
A. SLICING STRATEGIES AS BINARY SEQUENCE CODES
This is not the first attempt to deploy GA for optimization of
resource allocation. Mature solutions have been proposed for
allocation of generic resource [23], [24], radio resource [25]
and cloud resource [26], [27]. All these approaches consider
the problem of global resource optimization, where the
system allocates resource blocks from a certain pool to a
known set of targets (activities, links, users, etc.). Therefore,
they generally aim to optimize the static resource schedule,
which is a sequence of resource-target pairs, so every
code of theirs represents an individual schedule. In SlaaS,
as discussed in Sec. I, the MNO does not jointly rescale
existing slices but make binary decisions to every arriving
request for a new slice of random type. The target of optimiza-
tion here is the slicing strategy d(s, n) as defined in Eq. (4),
and the classical encoding scheme in literature therefore does
not apply.

Noticing from Eq. (3) that d(s, n) is a binary function over
a limited domain, every individual slicing strategy can be
simply encoded into a binary sequence of length ‖S‖ × N ,
where each bit represents the MNO’s decision to a request
for new slice of specific type 1 ≤ n ≤ N with a given
active slice set s ∈ S. Furthermore, as discussed earlier
in Sec. II-C, the MNO can only make a free binary deci-
sion when its current active slice set falls in the space of

free decisionD. In any other case, the MNO has to decline all
incoming requests for new slice creation. Thus, the set of all
feasible slicing strategies can be enumerated with a codebook
of ‖D‖-bit-long binary sequences.

FIGURE 4. Every feasible slicing strategy can be uniquely encoded into a
binary sequence by a look-up table, where ‘T’ stands for True (accept) and
‘F’ for False (decline). The dark states do not map into the codebook,
as they are not in the known space of free decision and therefore always
map to ‘F.’

Therefore, as the first step to encode slicing strategies,
we computed the MNO’s space of free decision D, which is
a limited enumerable set. Subsequently, we mapped D to the
integer set [0, ‖D‖ − 1], which represents the bit positions
of a codeword, as illustrated in Fig. 4. By always declining
in states outside the space of free decision, i.e. not indexed
in the codebook, it guarantees that no decision will break
the resource feasibility as far as both the overall resource
pool and the list of slice types remain consistent. In case that
either of them variates, e.g. when the network infrastructure is
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FIGURE 5. Diagram of the proposed genetic slicing strategy optimizer. Both d j and P j are randomly initialized at j = 1.

maintained or upgraded, both ‖S‖ and ‖D‖ have to be recal-
culated, and the codebook must be correspondingly updated
as well.

B. GENETIC SLICING STRATEGY OPTIMIZER
With the code designed above, we implemented a slicing
strategy optimizer based on the standard genetic algorithm,
which runs in a online mode as Fig. 5 illustrates.

1) INITIALIZATION
An initial population of candidate strategies, P1 with certain
size P, are randomly selected from the pre-generated code-
book and kept by theMNO in background for ‘‘virtual’’ oper-
ation.Meanwhile, an initial strategy d1 is randomly generated
and applied by the MNO for actual operation.

2) ONLINE FITNESS EVALUATION
The MNO sets an evolution term T > 1 (normalized to
one operations period), and records its active slice set at
the beginning of every evolution term. As the network runs,
the MNO responses every incoming tenant request according
to its currently applied slicing strategy, and meanwhile makes
an individual ‘‘virtual’’ decision in the background according

to every candidate strategy in the current population. For
every single candidate strategy, theMNO tracks the simulated
utility every operations period. At the end of the jth evolution
term, letting P j denote the current population, the optimizer
evaluates every strategy candidate pji ∈ P j with the average
utility it generated (or simulated) over the last evolution term,
i.e. the last T operations period:

ūji =
1
T

jT∑
t=(j−1)T+1

u
6,pji

(t), ∀1 ≤ i ≤ P, j ∈ N+, (8)

which is taken as the fitness value (see Fig. 2). This implies
that, the more utility efficient a candidate strategy performed
in the ith evolution term, the higher fitness value it gets.

3) EVOLUTION
First, the best candidate in P j with respect to the fitness is
selected to update the strategy for actual operation in the next
evolution term:

d j+1 = arg max
pji∈P j

ūji. (9)
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TABLE 1. The spaces of resource feasibility and free decision under the
simulation specification.

That is, the candidate strategy that had generated / simulated
themost utility in the jth evolution term is applied by theMNO
for its actual operation in the (j+ 1)th evolution term.
Afterwards, a reproduction P̃ j of P j is generated with

respect to the normalized fitness values. The reproduction
numbers of an arbirary pji ∈ P j in P̃ j is

Aji = round

{
P×

ūji + ε∑P
i=1 ū

j
i + P×ε

}
, (10)

where ε is a small number to mitigate error in the rare case
that

∑P
i=1 ū

j
i = 0. The rounding operation here intends to

ensure the number of copies Aji to be an integer. As shown
in Figs.2–3, the elements in P̃ j are then shuffled and paired,
each pair has a chance of α to execute the crossover opera-
tion. After the crossover, every candidate strategy in the new
population experiences β turns of mutation, in each turn the
candidate strategy has an independent chance of γ to invert
one random bit of it, as shown in Fig. 3. The resulted set of
strategies is taken to update the population P j+1 for virtual
operation in the next evolution term.

VI. PERFORMANCE EVALUATION
A. SETUP OF SIMULATION ENVIRONMENT
Towards a brief and convincing demonstration with mini-
mized computational complexity, we considered aMNOwith
one-dimensional normalized resource pool:

r = [r1] = [1], (11)

which accepts two different slice types, i.e. M = 1 and
N = 2. Thus, the resource cost vector of each slice type
cn is also one-dimensional, which we set to c1 = c2 =
[0.3]. A small space of resource feasibility S with size
of 10 and a small space of free decisionD with size of 12 can
be then obtained, as listed in Tab.1. Under this specifica-
tion, the number of all feasible slicing strategies d sums
to 212 = 4096.
We considered the periodical utilities of the two slice types

as u1 = 2 and u2 = 1, respectively, so that the slice type 1
is twice so utility efficient as the slice type 2. Furthermore,
we set the length of an evolution term to T = 6 operations
periods.

B. DEFINITION OF SERVICE SCENARIOS
Similar to [6], we assumed the arrivals of requests for
slice creation as Poisson processes, i.e. for every slice type
n ∈ {1, 2}, the number of arriving requests kn over one

TABLE 2. The model parameters of slice request arrivals and slice
terminations in different scenarios.

operations period is Poisson distributed:

P(kn requests arrive) = e−λn
λ
kn
n

kn!
, ∀1 ≤ n ≤ N . (12)

Meanwhile, we assumed every slice of arbitrary type
n ∈ {1, 2} to have a random lifetime (normalized to one oper-
ations period) that obeys the exponential distribution:

f (τn = tn) =
1
µn

e−
tn
µn , ∀tn ∈ N+, ∀1 ≤ n ≤ N . (13)

For our simulations, we defined three service scenarios with
different parameter sets [λ1, λ2, µ1, µ2], as listed in Tab. 2.

C. EFFECTIVENESS
To demonstrate the effectiveness of our proposed method,
we simulated two genetic slicing strategy optimizers in
scenario #1: one with 10 candidate strategies in every gener-
ation, and the other with a larger population size of 50. Each
optimizer was initiated with a random population of candi-
date strategies and a fully idle resource pool, then evolved
20 generations. Aiming at a fast convergence, both genetic
optimizers were set to have full crossover rate α = 1 and
β = 1 round of mutation with rate of γ = 0.1. We repeated
this simulation 500 times for Monte-Carlo test, and tracked
the long-term average network utility defined in Eq. (6).
Meanwhile, as a benchmark, the global optimum out of all
4096 feasible strategies was obtained by full-search through
500 times of the same Monte-Carlo test. Besides, we also
tested three ‘‘naive’’ reference strategies as baselines for
performance comparison:
• Greedy: accepting all incoming requests, so long as the
resource pool supports

• Conservative: accepting all requests for type 2 slices,
while declining all requests for type 1 slices

• Opportunistic: accepting all requests for type 1 slices,
while declining all requests for type 2 slices

As the benchmark strategies do not evolve, they remain
constant over all generations. The results are illustrated
in Fig. 6. It can be observed that both genetic optimizers
started on poor initial utility levels, but then converged to
competitive slicing strategies with satisfying performances
quickly (within 4 generations). The genetic optimizers failed
to achieve the global optimum of utility efficiency within the
simulated progress, converging to a local maximum. Never-
theless, from the fourth generation of evolution on, i.e. after
evaluating 30 or 150 out of the 4096 strategies, both genetic
optimizer outperformed all three static naive reference strate-
gies with long-term average network utilities over 90% with
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FIGURE 6. Network utilities generated by proposed genetic optimizer in
comparison to those under reference slicing strategies.

respect to the global optimum. Additionally, comparing the
two optimizers with each other, it can be observed that the
increase in population size boosts the convergence.

D. EVOLUTION OF THE ENTIRE POPULATION
An important feature of GA is that not only the best candi-
date but also the entire population evolve in every iteration.
Fig. 7 shows the performance distribution of the genetic opti-
mizer’s population with 50 strategies in different generations.
A significant approach towards an overall ‘‘good’’ strategy set
can be observed. This phenomenon reveals a potential of our
genetic optimizer in generating training sets for initialization
and updating, when it is jointly applied with other machine
learning methods.

FIGURE 7. As the genetic optimizer runs, the entire population generally
approach towards a ‘‘good’’ strategy set.

E. ROBUSTNESS AGAINST NON-STATIONARITY
As mentioned earlier in Sec. IV, GAs are known to be robust
against non-stationary environments. In the context of slicing
strategy optimization, this refers to time-varying statistical
behavior of resource requests and slice terminations. To test

our genetic slicing strategy optimizer under such conditions,
we conducted a simulation over 60 generations of evolu-
tion, i.e. 360 operations periods. For the first 20 generations,
the scenario was set to #1, so that the same global optimal
strategy obtained in Sec. VI-C remained valid; during the
generations 21 to 40, the scenario was set to #2; during the
generations 41 to 60, the scenario was updated again to #3.
We deployed a genetic optimizer in this scenario, which was
specified to the parameters [α, β, γ ] = [1, 1, 0.1] and a popu-
lation size of 50. Its performance was compared with those of
the global optimal strategy obtained in scenario #1, as well as
of the three aforementioned naive reference strategies. The
results given by 500 times of Monte-Carlo tests are illus-
trated in Fig. 8. It can be observed that the genetic optimizer
succeeded to quickly adapt with environmental variations,
and hence remained on a high performance level. In contrast,
the scenario-specified optimum gave a poor dynamic perfor-
mance when the environment changed. Similarly, the perfor-
mances of all static reference strategies also turned out to
strongly rely on the environment.

FIGURE 8. Genetic optimizers are feasible in non-stationary scenarios,
outperforming all static reference strategies.

F. SCALABILITY AND ENHANCEMENTS
To test the computational scalability of our genetic slicing
strategy optimizer, we set a complexer environment with
significantly smaller slice scales c1 = c2 = 0.03. Under
this specification, theMNO has a space of resource feasibility
S with size 595, a space of free decision D with size 1122.
The amount of its possible slicing strategies d therefore sums
to an astronomical figure of 21122. We also correspondingly
scaled the utility efficiencies to [u1, u2] = [0.2, 0.1], and
set the service scenario parameters to [λ1, λ2, µ1, µ2] =
[2.5, 10, 2, 10].

Then we tested two genetic optimizers with population
sizes of 10 and 50, respectively. Both optimizers were
set to [α, β, γ ] = [1, 1, 0.1]. Once again, we took the
reference strategies ‘‘Greedy,’’ ‘‘Conservative’’ and ‘‘Oppor-
tunistic’’ as benchmarks. No global optimum was evaluated,
as the computational cost of full-search for the optimum is
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FIGURE 9. When the solution space is huge, genetic optimizers are still
able to evolve fast, but can easily converge to poor local maximums.

unbearably high. As illustrated in Fig. 9, both optimizers
succeeded to quickly converge within 10 generations, but
only to reach local maximums that are much worse than all
reference strategies.

This phenomenon has its origin in the fact, that as the size
of strategy space grows, both the amount of local maximums
and the average distance between a random strategy and
the global optimum increase. As a consequence, the risk of
premature convergence also rises. Additionally, as the GA
initiates with a random population, it can easily converge to
a poor level.

To counter this effect, efforts can be made in two aspects:
1) to improve the initial population, and 2) to mitigate
early convergences at local maximums. The first one can be
achieved by involving one or several reference strategies into
the initial population, so that the performance evolves from
the benchmark level. For the second, either a lower crossover
rate or a higher mutation rate can help. Additionally, it is a
common technique in GAs to preserve one or several ‘‘elite’’
individuals in every generation from the crossover and muta-
tion operations, and directly put it into the next generation,
in order to suppress the random degradation that may caused
by mutations [28].

So we repeated the aforementioned simulation, manu-
ally involving the reference strategy ‘‘Greedy’’ in the initial
random populations of both optimizers. Both optimizers were
configured to [α, β, γ ] = [0.9, 1, 0.1] and to preserve one
best individual in every generation of population. The results
are depicted in Fig. 10. It can be observed that the genetic
optimizers either outperformed the benchmark or at least
draw it with these simple enhancements. Both optimizers
converged within 6 generations.

Another phenomenon that worths to notice is that,
the genetic optimizer with smaller population may
temporarily outperform the one with larger population in the
first generations, as Fig. 10 exhibits. This is determined by
the stochastic and winding nature of evolving process, and
the fact that the initial population of candidate strategies are

FIGURE 10. With minor enhancements, genetic optimizers guarantee to
outperform any certain strategy. The convergence can be further
improved at the expense of population size without significantly
increased time complexity.

randomly selected as well. Nevertheless, as we can learn from
Figs. 9 and 10, a large population brings a long-term utility
gain when the optimizer eventually converges.

G. SUMMARY
So far, we can assert that our genetic optimizer guarantees to
converge to outperform any certain static strategy, while the
essential time for convergence only slightly increases with
the size of solution space. It is also worth to note that we
can improve the convergence by extending the population.
As the evaluation of different candidate strategies in the
same generation can be easily parallelized [19], the upscaling
of population impacts little on the time complexity of our
proposed method, making it highly scalable and practical for
complex realistic applications.

VII. CONCLUSION AND OUTLOOKS
In this paper, we have presented a novel online genetic slicing
strategy optimizer to maximize the long-term network utility
in SlaaS. The proposed approach has been evaluated through
numerical simulations, exhibiting a satisfying approximate to
the global optimum, a fast convergence, a timely adaptation
to environment variation and a good scalability. It encodes
slicing strategies instead of resource schedules into binary
sequences, which enables genetic optimization for inter-slice
resource management based on tenant requests and MNO’s
binary decisions. Besides, it requires no a priori knowledge
about the traffic or utility model.

As follow-up work, it remains interesting to enhance the
convergence performance of the proposed slicing strategy
optimizer with advanced operations and techniques in genetic
search, such as fitness scaling, diploid evolution and sequence
reordering [19]. Especially, it worths an attempt to ameliorate
the rate of convergence of GA with heuristic searching as
reported in [23], in order to meet the real-time requirement
of network resource management. Besides, as referred in
Sec. VI-D, there is also a great potential to combine our
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genetic slicing strategy optimizer with othermachine learning
approaches such as reinforcement learning and artificial
neural networks. Additionally, as mentioned in Sec.II-B,
different mechanisms to grant declined tenants slices after
delays and their impacts on the business case of SlaaS worth
further studies, as well.
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