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ABSTRACT This paper presents a passivity-based control for the DC/DC Buck-Boost converter–inverter–
DCmotor system. Such control exploits the energy structure associated with the system error dynamics. This
in order to solve the trajectory tracking task for both the converter voltage and motor bidirectional angular
velocity, without using electromechanical sensors. The successful experimental validation of the proposed
control is performed in a built prototype of the system, using Matlab-Simulink and a DS1104 board.

INDEX TERMS DC/DC Buck-Boost converter, inverter, DC motor, passivity-based control, trajectory
tracking.

I. INTRODUCTION
Applications that have been profited from using elec-
tronic power converters can be found in mechanisms [1],
robotics [2], [3], electric cars [4], and airplanes [5], among
others. In such applications, in general, their correct opera-
tion involves high precision movements. These movements
are accomplished through the connection of power electron-
ics converters and motors both commanded with control
strategies.

In recent years, a great interest has arisen in the design
of controls for regulation and trajectory tracking tasks in a
DC/DC converter–DC motor system. In that direction, works
where the aforementioned tasks were solved, for several
topologies of DC/DC converters connected to DC motors,
are [6]–[22]. The contribution of these works summarizes in
driving the motor shaft in only one direction. This limitation
comes from the operating principle of DC/DC converters
because they only can supply unipolar voltage. Thus, in order
to face such a problem, research related to bipolar voltage
supply for DC motors using DC/DC converters has been
presented in [23]–[29]. In those works, an inverter circuit
is connected between the converter and motor, allowing the
bidirectional driving of both position and angular velocity

of the motor shaft. Thus, Ortigoza et al. presented the
experimental validation of a mathematical model for the
Buck converter–inverter–DC motor system and the design
of a passive tracking control in [23] and [24], respectively.
Also, García-Rodríguez et al. [25] developed a mathematical
model for the Boost converter–inverter–DC motor system.
Whereas Márquez et al. proposed a model for the DC/DC
Buck-Boost converter–inverter–DC motor system, validated
through simulation for constant duty cycles in [26] and
experiments for time-varying duty cycles in [27]. Likewise,
Hernández-Márquez et al. [28] designed a passive
control for the regulation of such a system. Lastly,
Linares-Flores et al. [29], via a passive control, solved the
regulation task associated with the Sepic converter–inverter–
DC motor system.

According to the presented review, it was found that
the angular velocity control has been solved unidirection-
ally [20], [21] and bidirectionally [28] for the configurations
that use the Buck-Boost converter. Therefore, as a continua-
tion of [28], a control for the bidirectional trajectory tracking
associated with the DC/DC Buck-Boost converter–inverter–
DC motor system is presented here. The control design is
based on passivity and its stability analysis is verified via
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Lyapunov and the Sylvester criterion [30]. Also, the con-
trol is experimentally tested using Matlab-Simulink and a
DS1104 board in a built prototype of the system.

The structure of the work is as follows. Section II describes
and develops the mathematical model of the system under
study. Whereas the control design is presented in Section III.
The reference variables are shown in Section IV. Section V
reports the built prototype and the results obtained from the
experiments. Lastly, conclusions and future work are given
in Section VI.

II. DC/DC BUCK-BOOST CONVERTER–INVERTER–DC
MOTOR SYSTEM
This section describes the parts composing the DC/DC
Buck-Boost converter–inverter–DC motor system. Later,
the associated average model is presented.

A. SYSTEM DESCRIPTION
The electronic diagram of the system under study is shown
in Fig. 1, which is composed of the following stages:

• DC/DC Buck-Boost converter. This reduces or increases
the voltage at the input of the inverter. The converter
comprises a power supply E , a transistor Q1 that regu-
lates the voltage υ at the terminals of the capacitorC and
the load R, an inductance L through which the current i
flows, and a diode D.

• Inverter. This stage of the system aims to change the
direction of the current flow entering the motor. The
inverter is composed of four transistors, two denoted by
Q2 and the others by Q2. If Q2 is activated, then Q2 is
deactivated and vice versa.

• DC motor. The parameters Ra and La represent the
resistance and inductance of the motor armature, respec-
tively. Meanwhile, ia and ω correspond to the armature
current and angular velocity. Implicitly, the parameters
J , b, ke, and km are considered in the motor and represent
the moment of inertia of the rotor plus the inertia of the
load, the coefficient of viscous friction, the constants of
counter electromotive force and torque.

FIGURE 1. DC/DC Buck-Boost converter–inverter–DC motor system.

B. AVERAGE MODEL
According to [26] and [27] the average model of the DC/DC
Buck-Boost converter–inverter–DC motor system, deduced
by using the Kirchhoff laws and the mathematical model of

the DC motor, is given by,

L
di
dt
= Eu1av + (1− u1av)υ,

C
dυ
dt
= −(1− u1av)i−

υ

R
− iau2av,

La
dia
dt
= υu2av − Raia − keω,

J
dω
dt
= kmia − bω, (1)

where u1av ∈ [0, 1) and u2av ∈ [−1, 1] are the average system
inputs, which allow the appropriate driving of υ and ω via a
control law. The rest of the variables and constants associated
with the model (1) have been previously declared.

An alternative representation for (1) that is useful in the
design of the control scheme, based on [31], is determined by,

Aẋ = [J (uav)−R]x + Buav, (2)

with

A = diag [L,C,La, J ] , R = diag
[
0,

1
R
,Ra, b

]
,

J (uav) =


0 −(u1av − 1) 0 0

u1av − 1 0 −u2av 0
0 u2av 0 −ke
0 0 km 0

,

B =


E 0
0 0
0 0
0 0

, x =


i
υ

ia
ω

, uav = [u1avu2av

]
.

Note that An×n is a symmetric and positive definite matrix,
Rn×n a symmetric and positive semidefinite matrix that rep-
resents the dissipative terms, J (uav)n×n an antisymmetric
matrix (due to ke = km [32]) representing the conservative
part of the system, Bn×m a constant matrix, xn×1 the state
vector of the system, and um×1av the average control vector of
the system. In this paper n = 4 and m = 2.

III. DESIGN OF THE PASSIVE CONTROL
A tracking control for the DC/DC Buck-Boost converter–
inverter–DC motor system is proposed in this section. Such a
control uses the exact tracking error dynamics passive output
feedback (ETEDPOF) of the system [31].

The desired dynamics associated with (2), for the reference
variables x∗ and u∗av, is determined by,

Aẋ∗ = [J (u∗av)−R]x∗ + Bu∗av. (3)

By subtracting (3) from (2) it is obtained:

A(ẋ − ẋ∗) = [J (uav)−R](x − x∗)+ [J (uav)− J (u∗av)]x
∗

+B(uav − u∗av). (4)

Since J (uav) and J (u∗av) can be expressed, for m inputs, as:

J (uav) = J0 +

m∑
i=1

Jiuiav ,

J (u∗av) = J0 +

m∑
i=1

Jiu∗iav , (5)
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where J0 is a constant antisymmetric matrix independent of
the inputs uiav and u

∗
iav , whereasJi are antisymmetric constant

matrices associated with the inputs. Then,

J (uav)− J (u∗av) =
m∑
i=1

Ji
(
uiav − u

∗
iav

)
. (6)

After replacing (6) in (4) the following is obtained:

A(ẋ − ẋ∗) = [J (uav)−R](x − x∗)

+
[
B +

(
J1x∗, . . . ,Jmx∗

)]︸ ︷︷ ︸
=:B∗

(uav − u∗av). (7)

Now, let the state and the control errors be defined as:

e = x − x∗, euav = uav − u∗av. (8)

By considering (7) and (8) the error dynamics in open-loop
is given by,

Aė = [J (uav)−R]e+ B∗euav . (9)

Thus, according to the ETEDPOF, the control euav that
achieves e→ 0 is determined by,

euav = −0B∗
T e, (10)

with 0 = diag[γ1, γ2, . . . , γm] > 0. In order to show that
e → 0, (10) is replaced in (9) and the following error
dynamics in closed-loop is obtained:

Aė = [J (uav)−R]e− B∗0B∗T e, (11)

whose stability analysis is performed via the Lyapunov
function candidate

V (e) =
1
2
eTAe. (12)

The time-derivative of (12) along (11) is given by

V̇ (e) = eTAė = −eT
[
R+ B∗0B∗T

]
e,

which guaranties that e→ 0 as long as

R+ B∗0B∗T > 0. (13)

The latter is easily verified by invoking Sylvester crite-
rion [30], since all principal diagonal minors of matrix[
R+ B∗0B∗T

]
, associated with system (2) in closed-loop

with (10), are positive. Thus, the control based on the
ETEDPOF, for the DC/DC Buck-Boost converter–inverter–
DC motor system, is given by

euav = −0B∗
T e, (14)

with:

euav =
[
eu1av
eu2av

]
=

[
u1av − u∗1av
u2av − u∗2av

]
, 0 =

[
γ1 0
0 γ2

]
> 0,

B∗ =


E − υ∗ 0

α −
bω∗

km
0 υ∗

0 0

, e =


e1
e2
e3
e4

 =

i− i∗

υ − υ∗

ia − i∗a
ω − ω∗

,

where

α =

(
υ∗ − E
E

)[(
Rab
km
+ km

)(
bω∗2

kmυ∗

)
+
υ∗

R

]
,

and i∗, υ∗, i∗a, ω
∗, u∗1av, u

∗

2av are the reference variables of the
system. Thus, (14) can be written explicitly as:[

u1av
u2av

]
=

[
u∗1av − γ1(υ

∗
− E)

(
−e1 + α

E e2
)

u∗2av − γ2
(
−
bω∗
km
e2 + υ∗e3

) ]
. (15)

IV. REFERENCE VARIABLES
The implementation of control (15) requires the dynamics
of the reference variables i∗, υ∗, i∗a, ω

∗, u∗1av, and u∗2av,
which are associated with (1). In that direction, according
to [27], a possible representation in terms of υ and ω is
determined by,

i =
υ − E
E

[
υ

R
+

(
J ω̇ + bω
kmυ

)
×

(
LaJ
km

ω̈ +
Lab+ RaJ

km
ω̇ +

(
Rab
km
+ km

)
ω

)]
,

(16)

ia =
1
km
(J ω̇ + bω) , (17)

u1av =
1

E − υ

(
L
di
dt
− υ

)
, (18)

u2av =
(
LaJ
km

)
ω̈

υ
+

(
Lab+ RaJ

km

)
ω̇

υ
+

(
Rab
km
+ km

)
ω

υ
.

(19)

In this way, the reference variables i∗, i∗a, u
∗

1av, and u
∗

2av are
obtained when υ∗ and ω∗ are replaced in (16)–(19).

V. BUILT PROTOTYPE AND EXPERIMENTAL RESULTS
In this section, the prototype built of the system under study
is described. Subsequently, the experimental results of such a
prototype in closed-loop are presented. Lastly, comments on
the obtained results are given.

A. BUILT PROTOTYPE
The electronic diagram of the built prototype, and its connec-
tions to the control by ETEDPOF (15) and the DS1104 board,
is shown in Fig. 2. The blocks composing the experimental
platform presented in Fig. 2 are described below.
DC/DC Buck-Boost converter–inverter–DC motor system.

This block corresponds to the system under study. The param-
eters of the Buck-Boost converter were selected as follows:

R = 64 �, C = 114.4 µF, L = 4.94 mH, E = 24 V.

In order to measure i and υ, Tektronix probes A622 for
current and P5200A for voltage, respectively, were used.
Regarding the inverter, four transistors IRF640 and two ICs
IR2113 were chosen. On the other hand, the DC motor used
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was the GNM5440E-G3.1 (24 V, 95 W), whose parameters
are:

Ra = 0.965 �, km = 120.1× 10−3
N ·m
A

,

La = 2.22 mH, ke = 120.1× 10−3
V · s
rad

,

J = 118.2× 10−3 kg·m2, b = 129.6× 10−3
N ·m · s

rad
.

Signals ia and ω were measured via an A622 current probe
and an encoder E6B2-CWZ6C, respectively.
ETEDPOF control. The control based on ETEDPOF (15)

is programmed here. Gains γ1 and γ2 were selected as:

γ1 = 0.0004, γ2 = 0.0002.

Meanwhile, the reference variables i∗, i∗a, u
∗

1av, and u
∗

2av, are
generated as a result of introducing the reference trajectories
υ∗ and ω∗ in (16)–(19).
Board and conditioning circuit. In this block, the con-

nections of the DS1104 board and the conditioning cir-
cuit with the system and the control block are shown. The
DS1104 board generates PWM signals that allow proper
driving of converter and inverter. Whereas, the conditioning
circuit electrically isolates the DS1104 board from the system
via optoisolators of the models NTE3087 and TLP250.

FIGURE 2. Electronic diagram and connections of the system in
closed-loop.

A picture of the built experimental prototype, associated
with the diagram in Fig. 2, is presented in Fig. 3.

FIGURE 3. Picture of the built experimental prototype.

B. EXPERIMENTAL RESULTS
In order to show the effectiveness of the proposed control,
the experimental results obtained in closed-loop are presented
here.

With the aim of supplying suitable voltage levels to the DC
motor, in all the experiments the desired voltage υ∗ is given
by the following Bézier polynomial:

υ∗ (t) = υ i (ti)+
[
υ f
(
tf
)
− υ i (ti)

]
ϕ
(
t, ti, tf

)
, (20)

where

ϕ
(
t, ti, tf

)

=



0 for t ≤ ti,(
t − ti
tf − ti

)3 [
r1 − r2

(
t − ti
tf − ti

)
+r3

(
t − ti
tf − ti

)2

−r4

(
t − ti
tf − ti

)3
]

for t ∈ (ti, tf ),
1 for t ≥ tf ,

with

r1 = 20, r2 = 45, r3 = 36, r4 = 10,

and

υ i = −25 V, υ f = −30 V.

It is worth mentioning that υ i and υ f are proposed consid-
ering (19) under steady-state, where the interaction of υ, ω,
and u2av is observed. The reference trajectory υ∗ smoothly
interpolates between the initial and final voltages υ i and υ f ,
respectively, in the time interval [ti, tf ]. Here, ti = 4 s and
tf = 6 s. With the intention of verifying the performance of
the system in closed-loop, the desired angular velocity ω∗ is
defined in each experiment as a bidirectional trajectory.
Experiment 1: Here, υ∗ is defined as in (20) and ω∗ is

proposed as follows:

ω∗ (t) = ωi (ti)+
[
ωf
(
tf
)
− ωi (ti)

]
ϕ
(
t, ti, tf

)
, (21)
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with ωi = −10 rad
s and ωf = 10 rad

s . Values for [ti, tf ] and ϕ
were previously defined. The experimental results in closed-
loop, when υ∗ and ω∗ are proposed as in (20) and (21), are
presented in Fig. 4. In this figure, it can be observed that
the ETEDPOF control solves the tracking task for υ and ω.
However, for i and ia, there is significant tracking error. This,
is due to the idealization of the mathematical model.

FIGURE 4. Results of the experiment 1.

Experiment 2: In this experiment υ∗ is proposed again as
in (20) and ω∗ is chosen as:

ω∗(t) = 10 sin(0.8π t). (22)

The corresponding experimental results are presented
in Fig. 5. In such results, a satisfactory performance of the
proposed control is presented, where a small tracking error
for υ and ω is observed. Regarding i and ia, it is observed
that there is a larger tracking error. This is due to energy loses
were not considered in the mathematical model.

FIGURE 5. Results of the experiment 2.

Experiment 3: In this experiment, the voltage υ∗ is defined
by (20) and the angular reference velocity by,

ω∗(t) = 10
(
1− e−0.2t

2
)
sin(2t). (23)

The experimental results in closed-loop are depicted in Fig. 6,
where, in general, a satisfactory trajectory tracking for
υ and ω is observed. Meanwhile, i and ia versus i∗ and i∗a,
differ in magnitude but not in form.
Experiment 4: In Fig. 7 the dynamic behavior of the system

in closed-loop is presented when υ∗ corresponds to (20)

FIGURE 6. Results of the experiment 3.

and ω∗ to

ω∗(t) =

{
10 0 ≤ t < 3.125 s,
10 sin(0.8π t) 3.125 ≤ t ≤ 10 s.

(24)

FIGURE 7. Results of the experiment 4.

Experiment 5: With the aim of evaluating the system
performance when abrupt variations are considered, the
following change in R is proposed:

Rm =

{
R 0 ≤ t < 7.5 s,
30%R 7.5 ≤ t ≤ 10 s.

(25)

Trajectories υ∗ and ω∗ considered in Experiment 5 are
defined in (20) and (21). The associated experimental results
are presented in Fig. 8. Since the control based on ETEDPOF
is not robust, a tracking error for υ and ω will remain from
t ≥ 7.5 to the end of the experiment.

C. GENERAL COMMENTS ON EXPERIMENTAL RESULTS
In the experimental results in closed-loop presented in
Figs. 4–7, it was observed, in general, a good trajectory
tracking for υ and ω. On the other hand, the shape of i and ia
are similar to i∗ and i∗a, respectively, but in magnitude a
tracking error can be observed. However, such a tracking error
could be minimized if a more complete mathematical model,
associated with the Buck-Boost converter, considering para-
sitic resistances and energy losses were used. By doing so,
the designed control would be more complex and out of the
objective of the paper. Regarding the inputs u1av and u2av,
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FIGURE 8. Results of the experiment 5.

it is observed that they are not saturated; which allows the
appropriate driving of the Buck-Boost converter and inverter.
Also, it is worth mentioning that oscillations in Figs. 5–7 are
due to the selection of the desired trajectories for ω.

VI. CONCLUSIONS
A passivity-based tracking control, whose experimental
implementation only requires electrical measurements, for
the DC/DCBuck-Boost converter–inverter–DCmotor system
was herein presented. This control system allows the driving
of bidirectional angular velocities.

The proposed control based on the ETEDPOF was
experimentally implemented using Matlab-Simulink and the
DS1104 board in a built prototype, achieving satisfactory
results in voltage and angular velocity tracking.

Motivated by the experimental results, particularly those in
Fig. 8, the design of robust controls as well as an application
in mobile robotics (see [2], [3], [33]) are considered as future
work.
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