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ABSTRACT Having a better understanding of the key performance indicators (KPIs, e.g., demand and unmet
demand) in the next time slot (e.g., next hour) is important for on-demand transport services, such as Uber
and DiDi, to improve the service quality. In addition to the spatio-temporal dynamics, KPIs of on-demand
transport services are also affected by many exogenous factors from different domains, e.g., the traffic
condition from transportation domain and the weather condition from meteorology domain. Therefore, this
paper proposes a unified framework to fuse the data collected from different domains to predict multiple
KPIs for on-demand transport services. As demonstrated by the experiments, the proposed framework can
capture both long-term regularity and short-term dynamics, thus achieving a better performance than the
existing solutions in predicting KPIs.

INDEX TERMS On-demand transport service, key performance indicator, cross-domain data fusion, feature
selection.

I. INTRODUCTION
In recent years, on-demand transport services such as Uber,1

DiDi2 and Lyft3 have received tremendous popularity due
to their remarkable convenience and high efficiency. In on-
demand transport services, as illustrated in Figure 1, pas-
sengers issue orders while drivers provide services to serve
the orders. Different from traditional taxi services, A service
platform is introduced to bridge passengers and drivers in
on-demand transport services. Concretely, passengers and
drivers are connected via an application provided by the
service platform. Orders issued by passengers are dispatched
to drivers regarding the locations of both orders and drivers,
the requirements of orders, and the preferences of drivers.
In general, drivers have autonomy to accept or reject the
dispatched orders.

For on-demand transport service platforms, it is of high
importance to know the Key Performance Indicators (KPIs,
e.g., demand, unmet demand, unmet rate and cancel rate of
orders) in advance to evaluate the quality of their services in

1https://www.uber.com/
2http://www.didichuxing.com/en/
3https://www.lyft.com/

FIGURE 1. The general paradigm of on-demand transport services, where
passengers issue orders (i.e., demand) while drivers provide services
(i.e., supply) to serve the orders.

the near future. On the one hand, the dynamic pricing mech-
anisms in on-demand transport services are highly dependent
on these KPIs. For example, the price should increase if the
unmet rate is high so that the passengers willing to pay more
get a high priority to be served. On the other hand, if the
service platforms know the emerging bad KPIs (e.g., a high
unmet rate) in advance, they can take appropriate actions
to improve the corresponding KPIs to ensure high service
quality.

However, it is difficult to achieve accurate prediction for
multiple KPIs in on-demand transport services due to the
following challenges.
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• Cross-domain issue: The KPIs in on-demand transport
services are generally affected by many factors from
different domains, such as the traffic condition from
transportation domain and the weather condition from
meteorology domain. Therefore, it is necessary to pro-
pose effective data fusion methods to combine infor-
mation from different domains to obtain comprehensive
knowledge for predicting KPIs. However, the granular-
ity, format and quality of the data from involved domains
could be quite different, which makes it challenging to
achieve effective cross-domain data fusion.

• Heterogeneity: Different KPIs usually have different
characteristics. As illustrated by Figure 2, the temporal
distributions of demand (i.e., total orders) and unmet rate
(i.e., the percentage of orders that are not accepted by
any drivers) are significantly different. The demand has
high regularity while the unmet rate does not. Therefore,
it is difficult to build a unified framework to cover
multiple KPIs of different characteristics. Meanwhile,
different KPIs are also likely to be correlated. For exam-
ple, demand is an important factor that affects unmet
rate. However, it is generally non-trivial to utilize such
correlations to improve the accuracy of prediction due to
the heterogeneity of KPIs.

FIGURE 2. The hourly demand and unmet rate of a region in Hong Kong
for an on-demand transport service platform that has thousands of
regular drivers, where the time period spans 14 days and has
24x14=336 time slots (i.e., hours) in total.

• High dynamics: The KPIs of on-demand transport ser-
vices are dynamically varying over time and space. It is
thus difficult to build a prediction model to capture such
dual dynamics, i.e., spatio-temporal dynamics.

To address the challenges above, we propose a unified
framework which can predict multiple spatially and tempo-
rally varyingKPIs for on-demand transport services by fusing
data from different domains. In practice, data fusion has
been widely applied to various spatio-temporal contexts, e.g.,
decision fusion in wireless sensor network (WSN) [1], [2],
and traffic modeling and prediction in mobility-on-demand
systems [3]. The major reason for requiring data fusion is that
many decisions are related to the information from multiple
sources/domains and thus require a data fusing operation
to get more comprehensive knowledge. Concretely, in this
work, the proposed framework first extracts distinguishable

features (e.g., historical KPI features, static urban features,
and dynamic urban features) from data in multiple domains.
Then, all the extracted features are coupled to train time-
dependent KPI predictionmodels which are further employed
to predict KPIs in the future time slots.

In summary, we make the following contributions in this
work.
• We formulate the problem of predicting multiple KPIs
for on-demand transport services and identify the major
challenges to solve this problem.

• We propose a unified framework which extracts features
from different domains to predict multiple KPIs and cov-
ers both long-term regularity and short-term dynamics in
KPIs.

• We conduct extensive experiments to evaluate the per-
formance of the proposed framework by comparing it
with the existing methods.

The remainder of this work is organized as follows.
Section II reviews the related work on KPI prediction in
transport services. Section III presents the definitions of mul-
tiple KPIs, formulates the prediction problem, and briefly
introduces the datasets involved. Section IV overviews the
proposed framework and elaborates the details of its com-
ponents. Section V conducts experiments to evaluate the
proposed solution and provides a case study.We conclude this
work and highlight the potential directions for future work in
Section VI.

Table 1 lists the notations that will be frequently used in
this paper.

TABLE 1. Frequently used notations.

II. RELATED WORK
To the best of our knowledge, the research on predicting KPIs
for on-demand transport services is quite limited. Due to the
lack of readily available data about KPIs, existing studies
mainly focus on the demand prediction and the estimation of
unmet demand for traditional taxi services in which drivers
cruise along the roads to search for passengers.

A. DEMAND PREDICTION
Demand prediction aims to predict the demand (i.e., the num-
ber of orders or passengers) in the future. Roughly, the
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existing studies dealing with demand prediction can be
divided into three categories according to the techniques
they use, i.e., time series-based approaches, clustering-based
approaches, and advanced model-based approaches.

1) TIME SERIES-BASED APPROACHES [4]–[9]
This line of research takes advantage of the temporal regular-
ity of demand to conduct prediction. Generally, time series
analysis techniques like Auto-Regressive Integrated Mov-
ing Average (ARIMA) model are used in these approaches.
Specifically, Moreira-Matias et al. [4]–[6] applied ARIMA
model to predict the demand for taxis at each taxi stand;
Li et al. [7] used ARIMA model to predict the demand for
taxis at taxi hotspots; Jiang et al. [8] designed an ARIMA-
based prediction method to predict the spatio-temporal varia-
tion of demand at taxi hotspots. In addition, some researchers
also applied Time-Varying Poisson Process [9] to predict the
demand for taxis.

2) CLUSTERING-BASED APPROACHES [10]–[12]
Approaches in this category aim to identify hotspots of
demand (i.e., the regions or places with much more demand
than other regions or places) based on the historical pas-
senger pick-up events. To this end, Liu et al. [10] designed
a density-based clustering algorithm to find hotspots of
demand. To speed up the efficiency of clustering, they pro-
jected all data points to a density image and perform clus-
tering on the derived density image instead of the raw data.
Chang et al. [11] further considered the contexts of time (e.g.,
morning, noon and afternoon), weather (e.g., raining or not)
and location. First, they select the historical orders with
the same contexts of the prediction. The selected orders
are then clustered based on their locations to identify taxi
hotspots. Finally, the generated clusters (i.e., hotspots) are
mapped to the road segments to get the semantic mean-
ings. Zhang et al. [12] proposed a demand hotspots predic-
tion framework based on spatio-temporal clustering to pro-
vide recommendations for taxi drivers. Concretely, they first
extract historical pick-up events from GPS trajectories of
drivers and divide the extracted pick-up events into 24 time
slots (i.e., 24 hours). An adaptive DBSCAN clustering is then
conducted on the pick-up events within each time slot to
identify the hotspots for that time slot. The identified hotspots
are then recommended to drivers according to their locations
and the time.

3) ADVANCED MODEL-BASED APPROACHES [13]–[18]
In addition to time series-based approaches and clustering-
based approaches, there are also some other approaches
for predicting demand using advanced models, e.g.,
probabilistic model-based approach [13], [14], neural
networks-based approach [15], and queueing theory-based
approach [16]. Moreover, some studies have also been
conducted to discover the patterns of demand in trans-
port services. For example, Bischoff et al. [17] investigated
the recurrent patterns of demand in Berlin; Lee et al. [18]

studied the patterns of taxi pick-ups in Jeju, South
Korea.

B. ESTIMATION OF UNMET DEMAND
In addition to demand prediction, there are also some studies
relevant to unmet demand which usually refers to the orders
that are not served by drivers. However, these studies focus
on analyzing the degree of unmet demand rather than predict
unmet demand directly because it is difficult to collect all
passengers’ information in traditional taxi services. With the
observation that a large number of available taxis indicate a
small unmet demand, Afian et al. [19] estimated the unmet
demand in a region by computing the number of available
taxis. Similarly, Shao et al. [20] estimated the level of unmet
demand by considering how fast an available taxi is occupied
after entering a region. Moreover, some researchers studied
the relationship between demand and supply by using statis-
tical analysis [21], [22].

C. REMARKS
Our work is different from the studies discussed above in
three folds. First, existing studies usually focus on demand
prediction while we also predict some other KPIs beyond
demand, e.g., unmet demand, unmet rate, cancel demand,
cancel rate, and average response time. In practice, it is com-
paratively easy to predict demand due to its high regularity
(cf. Figure 2). However, some KPIs are not as regular as
demand, which makes existing techniques for demand pre-
diction inapplicable. Second, existing studies usually focus
on the traditional taxi services in which drivers cruise along
the roads to search for potential passengers. Differently,
we predict KPIs for on-demand transport services in which
passengers and taxis operate via online platforms and do not
need to see each other.Third, existing studies tend to conduct
prediction only based on the historical records of the target
KPI (e.g., demand) itself while ignoring other factors. How-
ever, KPIs are usually contributed by factors from multiple
domains and these factors are indispensable for predicting
KPIs accurately.

III. PROBLEM STATEMENT
A. KEY PERFORMANCE INDICATORS
In practice, there are many Key Performance Indica-
tors (KPIs) for evaluating the status of a service from different
views. Specifically, in on-demand transport services, impor-
tant KPIs include demand, unmet demand, unmet rate, can-
celled demand, cancel rate and average response time. These
KPIs collectively reflect the relationship between demand
and supply, the quality of services, and the behaviors of
passengers and drivers. The definitions of these KPIs are
elaborated as below.

1) DEMAND
Given a region Ri and time slot Tj (e.g., from 9am to 10am),
we denote all the orders issued in Ri within Tj by Oi,j.
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Accordingly, the demand is denoted by |Oi,j|, where | ∗ |
computes the cardinality of set ∗.

2) UNMET DEMAND AND UNMET RATE
Among all the issued orders Oi,j (i.e., demand), those orders
that are not accepted by any drivers are regarded as unmet
orders and denoted by Oui,j. Therefore, the unmet demand is
|Oui,j| and the corresponding unmet rate ρui,j is computed by

ρui,j =
|Oui,j|

|Oi,j|
. (1)

3) CANCELLED DEMAND AND CANCEL RATE
Cancelled demand refers to the orders Oci,j that are cancelled
by drivers or passengers due to various reasons. Cancelled
demand |Oci,j| is an important KPI for analyzing the behav-
iors of drivers and passengers. With cancelled demand |Oci,j|,
the corresponding cancel rate ρci,j is computed by

ρci,j =
|Oci,j|

|Oi,j − Oui,j|
. (2)

where Oi,j−Oui,j computes to those orders that have been
accepted by drivers.

4) AVERAGE RESPONSE TIME
The response time of order o refers to the time costed for the
order to be accepted by drivers. The average response time
tavg of all accepted orders is computed by

tavg =

∑
o∈Oi,j−Oui,j

to

|Oi,j − Oui,j|
. (3)

where to is the response time of order o.

B. KPI PREDICTION PROBLEM
In this work, we take an on-demand transport service platform
in HongKong as an example to present our idea for predicting
the frequently used KPIs in on-demand transport services.
As illustrated by Figure 3, We partition Hong Kong into
140 small regions according to its administration division.

FIGURE 3. The 140 partitions of Hong Kong, where the dense part
corresponds to the urban area and the marginal big regions correspond
to remote areas.

Specifically, given the historical data from multiple
sources/domains, we aim to predict the KPIs like demand,

unmet demand, unmet rate, cancelled demand, cancel rate
and average response time, for each region in the next time
slot (e.g., next hour). Here, the multi-source historical data
includes both long-term data and short-term data that will be
discussed in Section III-C.

C. DATASETS
Figure 4 illustrates the involved datasets collected from mul-
tiple domains, e.g., order data from logistics domain, road
network and trajectories from transportation domain, and
weather from meteorology domain. These datasets will be
used for extracting distinguishable features to predict KPIs.
The order data spans consecutive 61 days (two months
in 2016) and contains around one million orders. The weather
data and trajectory data of drivers for the same period are also
collected. Since the region data, road network data and POI
data are static, we use the same one for all 61 days.

FIGURE 4. Datasets from multiple domains to predict KPIs of on-demand
transport services.

The details of these datasets will be discussed in
Section IV.

IV. UNIFIED PREDICTION FRAMEWORK
A. OVERVIEW OF FRAMEWORK
Figure 5 presents the proposed unified prediction framework
that fuses data from multiple sources to achieve effective KPI
prediction.First, distinguishable features (e.g., historical KPI
features, static urban features and dynamic urban features)
are extracted from different datasets. Second, since the traffic
feature (extracted from driver trajectories) in dynamic urban
features is sparse due to the lack of trajectory data, we intro-
duce a traffic inference model to address this sparsity issue
based on both static and dynamic urban features. Finally, all
the extracted features (including KPI features, static urban
features, dynamic urban features and inferred traffic feature)
and weather feature are fused together to train KPI prediction
models. The trained models are then employed to predict
KPIs in the next time slot.

All the components of the unified prediction framework
will be detailed in the subsequent subsections.

B. EXTRACTING KPI FEATURES
Intuitively, KPIs have certain degrees of temporal regularity,
i.e., recurrence/periodicity. For example, the KPIs at the same
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FIGURE 5. Unified framework for predicting KPIs in on-demand transport
services.

hour of different days could be similar in high probability.
Many existing approaches (e.g., Time-Varying Poisson Pro-
cess [9]) for demand prediction are based on this observation.
Meanwhile, the KPIs of adjacent time slots have a high
similarity and dependency.

Therefore, for each type of KPI, we compute its historical
features from the following two aspects:
• Long-term KPI feature: Considering that the same
time slots of different days have similar KPIs in high
probability, we compute the average value of all theKPIs
for each time slot across the whole historical period,
i.e., 61 days in this work.

• Short-term KPI feature: Considering the similarity
and dependency of the KPIs of adjacent time slots,
we compute the values of each KPI in previous three
time slots. For example, we will consider the KPIs of
hours 7, 8, and 9 if we predict the KPI of hour 10.
Actually, we evaluated other numbers of time slots
and found that three time slots are enough to capture
the short-term dynamics and temporal dependency of
KPIs.

In this work, the length of each time slot is set to 60 min-
utes, i.e., one hour for one time slot. However, the proposed
framework can be applied to various lengths of time slot
without any modifications.

C. EXTRACTING STATIC URBAN FEATURES
KPIs in on-demand transport services are highly dependent
on the urban context features like traffic and the distribution
of roads. In general, different urban contexts often lead to
different demand and supply. For example, the number of
orders in the commercial business district is usually larger
than that in some remote areas. To capture such urban con-
texts, we extract both static and dynamic urban features from
POI (Point of Interest) data, road network data and trajectory
data, where dynamic urban features will be discussed in the
next subsection (Section IV-D).

The static urban features, including POI features and road
network features, are extracted from two datasets, i.e., POI
data and road network data.

1) POI FEATURES
There are many types of POIs, e.g., shops, banks, schools and
restaurants, in each region. Figure 6(a) shows the distribution
of POIs in Hong Kong. Intuitively, the distribution of POIs
can describe the functions of regions to some extent. For
example, a commercial area is supposed to have many banks
and shopping sites. Figure 7 plots the proportion of the top-
15 types of POIs. In this work, we consider the top-10 types
of POIs since they already cover around 80% of all the POIs.
Therefore, for each region, we compute the total number of
POIs and the number of POIs in each type of the ten selected
types as the POI features, i.e., 11 features in total.

FIGURE 6. The distributions of POIs and road network in Hong Kong.
(a) Distribution of POIs. (b) Road network.

FIGURE 7. The proportion of the top-15 types of POIs among all POIs.

2) ROAD NETWORK FEATURES
In addition to POIs, the topology structure of road network
is also related to the urban context of one region. Figure 6(b)
illustrates the road network of Hong Kong. This road network
is extracted from the open source map OpenStreeMap4 and
has a total length of around 1,500 km. There are five major
types of roads, i.e., motor way, trunk road, primary road,
secondary road and tertiary road, on this road network. For
each region, we compute the total length of roads and the
length of each type of road as the road network features,
i.e., 6 features in total.

4https://www.openstreetmap.org/
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D. EXTRACTING DYNAMIC URBAN FEATURES
TheKPIs of on-demand transport services are also affected by
a variety of dynamic urban factors, e.g., the traffic, the dis-
tribution of drivers and the weather. These factors tremen-
dously affect the demand and supply, and the behaviors of
passengers and drivers. To consider these factors, we extract
dynamic urban features from different datasets, where traffic
and the distribution of drivers are extracted from drivers’ GPS
trajectories while weather is extracted from the weather data
on Weather Underground.5

1) TRAFFIC FEATURE
To obtain the real-time traffic, we compute traffic based on
the GPS trajectories of drivers. In the example of on-demand
transport service in this work, we have around thousands
of regular drivers who report their locations continuously.
As illustrated by Figure 8, most sampling time intervals
between two location samples within 60 seconds, which pro-
vides us abundant information about the traffic.

FIGURE 8. The distribution of sampling time intervals among all drivers.

The GPS trajectory Tr of each driver is consisted of a
sequence of GPS points, i.e.,

Tr = (p1, p2, . . . , pn) (4)

where each GPS point pi=(li, ti, si) (i = 1, · · · , n) contains
the spatial location li (i.e., longitude and latitude), the times-
tamp ti, and the status si (i.e., idle or busy) of the correspond-
ing driver. Given two consecutive GPS points pi and pi+1,
the average speed vi between them is computed by

vi =
dist(li, li+1)
ti+1 − ti

(5)

where dist(li, li+1) computes the spatial distance between
locations li and li+1, and ti+1−ti computes the time difference
between ti+1 and ti. With Eq. (5) and the GPS trajectories of
all drivers, we can obtain a set of speed samples Vi,j for each
region Ri within the specific time period Tj. For region Ri,
we compute its average speed v̄ and speed deviation σv to
describe its traffic condition, i.e.,

v̄ =

∑
v∈Vi,j v

|Vi,j|
, σv =

√∑
v∈Vi,j (v− v̄)

2

|Vi,j|

In some cases, one region may have seldom driver trajec-
tories due to the limited number of drivers and the periodic-
ity of drivers’ working hours. We thus cannot compute the

5https://www.wunderground.com/

corresponding traffic. To solve this sparsity issue, we apply
context-aware matrix factorization [23] to infer the traffic.
The basic idea of context-aware matrix factorization is to fac-
torize the spare matrix of traffic and the matrix of static urban
features (i.e., the POI features and road network features)
together. Therefore, the missing traffic values (v̄ and σv) of
a region are inferred by considering not only the traffic in
its neighbor regions but also the traffic in the similar regions
w.r.t. the static urban features.

2) DRIVER DISTRIBUTION FEATURE
The distribution of drivers has a direct impact on some KPIs.
For example, if the number of drivers is much smaller than
that of orders in a region R, the unmet demand and average
response time there will be very large. Given a time slot,
we can compute the number of drivers in each region R based
on the GPS trajectories of drivers. In addition, to capture the
status of the drivers in R, we also compute the idle ratio of
each driver d in R within the given time slot T . Assuming
that the GPS trajectory of driver d in region R within time
slot T is Trd=(p1, p2, · · · , pn), the corresponding idle ratio
Id of driver d is

Id =

∑
pi,pj∈Trd∧j=i+1∧pi.s=idle∧pj.s=idle (tj − ti)∑n−1

i=1 (ti+1 − ti)
(6)

Considering that the staying times of drivers in a region could
be different, we use weighted average idle ratio to represent
the status of drivers in a region. Concretely, assuming that
all the drivers appear in region R within time slot T are D,
the weighted average idle ratio Ī is computed by

Ī =

∑
d∈D wd · Id∑
d∈D wd

(7)

where weight parameter wd is computed by

wd =

∑n−1
i=1 (ti+1 − ti)
|T |

(8)

Intuitively, weight parameter wd computes the ratio of time
slot T that driver d is in region R. Accordingly, the weighted
deviation σI of idle ratio is computed by

σI =

√∑
d∈D (wd )2(Id − Ī )2∑

d∈D wd
(9)

3) WEATHER FEATURE
In general, weather plays an important role in affecting
the KPIs of on-demand transport services. For example,
when the weather is bad, more people tend to take cars to
avoid an inconvenient trip to the nearby bus stations or sub-
way stations. Therefore, in the proposed unified framework,
we also take into consideration the factor of weather. The
weather data is downloaded from Weather Underground
which updates weather information every half hour. Roughly,
we group all weather conditions into three categories, i.e.,
good weather (clear, haze, partly cloudy, mostly cloudy and
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scattered clouds), bad weather (light rain, rain, light rain
showers and light thunderstorms), and very bad weather (rain
showers, heavy rain showers and thunderstorms). Therefore,
a weather feature with three values (i.e., 0: good weather, 1:
bad weather, and 2: very bad weather) is computed.

E. PREDICTION MODEL TRAINING
Table 2 summarizes all the extracted features that will be
used for predicting KPIs in on-demand transport services.
In addition to the three categories of features discussed above,
we also consider some other features including the region
size, the time slot of the day, the day of the week, and whether
the day is a public holiday.

TABLE 2. Summary for the extracted features.

With the extracted features, we employ Least Absolute
Shrinkage and Selection Operator (Lasso) and Gradient
Boosting Regressor (GBR) to train the prediction models.
In general, Lasso performs better than other linear regression
models because it can conduct feature selection during the
training process. GBR also usually performs better than other
ensemble models such as Random Forest Regression Model
because it introduces boosting to improve the prediction per-
formance. The two models (i.e., Lasso and GBR) are briefly
introduced as below.

1) LASSO
Lasso [24] is a widely used linear regression model that
enhances the prediction performance by conducting both
variable selection and regularization. Given feature matrix X
and label vector y, the objective function of Lasso is

min
w

1
2n
||Xw− y||22 + β||w||1 (10)

where n is number of samples in feature matrix X ; || ∗ ||22
and || ∗ ||1 computes the l2-norm and l1-norm, respectively;
and parameter β is the weight parameter for regularization
item ||w||1.

2) GBR
Gradient Boosting Regressor is an ensemble model that com-
bines a set of weak predictionmodels to improve the accuracy
of prediction. Concretely, GBR builds an additive model in
a stage-wise fashion. Initially, a regression tree F0 is fit on
the training samples X and the corresponding residual is

F0(X )−y. A new regression tree F1 is then fit on the negative
gradient of loss function 1

2 ||F0(X )− y||
2
2. After repeating this

fit operation M , a hyper-parameter, times, we can obtain a
satisfactory prediction model.

In addition, we also compare our solution with Time-
Varying Poisson Model [9] which is widely used for predict-
ing demand in transport services, especially for the demand
in traditional taxi services.

3) TRAIN AND TEST DATA
For each type of KPI, we have an order dataset of two months
that contains 24∗61∗140 = 204, 960 samples in total, where
24, 61 and 140 correspond to the number of time slots (i.e.,
hours) in a single day, the number of days within two months,
and the number of regions in Hong Kong. Each sample has all
the features in Table 2 and has the corresponding KPI value in
the next time slot as its label.We use the first 47 days (157,920
samples) for training while the last 14 days (47,040 samples)
for testing.

4) TIME-DEPENDENT TRAINING
KPIs in on-demand transport services are dynamically chang-
ing over time. It is therefore difficult to train an efficient
model for the whole day because the super-parameters in
prediction models could be quite different for different time
periods. To deal with this issue, we divide the time slots of a
whole data into four groups with respect to the specific KPI.
Concretely, for each type of KPI, we sort all the time slots
according to the KPI value in descending order and select the
first 25% time slots as data group G1, the second 25% as data
group G2, the third 25% as data group G3, and the last 25%
as data group G4. Then, we train a model and tune super-
parameters separately for each data group, thus solving the
issue of time-dependence.

5) FEATURE SELECTION
To reduce the complexity of trained models, we also conduct
feature selection by using Lasso which is widely used for
feature selection. For example, Figure 9 presents the top-
10 most important features for predicting demand in data
group G1, where the red vertical line corresponds to the
optimal parameter β in Lasso. The features with weights
obviously larger than zero around β are selected. Feature
selection is also conducted on each group of data samples for
other KPIs.

6) SUPER-PARAMETER TUNING
Among the three models (Time-varying Poisson, Lasso and
Gradient Boosting Regressor), Time-varying Poisson does
not have any super-parameters; Lasso has a weight parameter
β for the item of regularization; Gradient Boosting Regres-
sor has two major super-parameters, the number of estima-
tors/iterations and the minimum number of samples in leaf
nodes. For each type KPI, all these parameters are tuned using
grid search for each group of data samples.
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FIGURE 9. Feature selection for demand prediction in data group
G1 using Lasso, where the meanings of top-10 most important features
are the average demand in history, the demand in the previous time slot,
the average cancelled demand in history, the average unmet demand in
history, the demand in the past second time slot, day of the week,
whether the day is a holiday, the number of restaurants, weather
condition, and the unmet demand in the past second time slot,
respectively.

V. EXPERIMENTAL EVALUATION
A. EVALUATION METRICS
Both mean absolute error (MAE) and symmetric mean abso-
lute percentage error (SMAPE) are introduced as metrics to
evaluate the performance of the proposed solution, where
MAE is used for quantifying the absolute error while SMAPE
is used for computing the percentage error. The meanings of
MAE and SMAPE are briefly discussed as below.

B. MEAN ABSOLUTE ERROR (MAE)

MAE =
1
N

N∑
i=1

|xi − x̂i| (11)

where x̂i is the predicted value of real value xi, and N is the
number of evaluated samples.

C. SYMMETRIC MEAN ABSOLUTE PERCENTAGE ERROR
(SMAPE)

SMAPE =
1
N

N∑
i=1

|ui − ûi|
|ui| + |ûi|

(12)

According to Eq. (12), SMAPE is between 0 and 1.

D. EXPERIMENTAL RESULTS
Table 3 presents the experimental results while using Time-
varying Poisson (TVP), Lasso and Gradient Boosting Regres-
sor (GBR), whereMAE-S and SMAPE-S indicate that feature
selection is conducted before training themodel (inapplicable
for TVP). In addition, the best results are highlighted in bold.

According to Table 3, GBR achieves the best performance
in predicting all types of KPIs. TVP and Lasso have the
similar performance in most cases except for some KPIs of
high regularity. For example, TVP has a better performance
in predicting demand than Lasso because demand is quite
regular (cf. Figure 2). In addition, as suggested by Table 3,

TABLE 3. Experimental results for predicting KPIs of on-demand
transport services, where ∗ indicates inapplicability.

GBR achieves comparable performance after feature selec-
tion while the training time could be reduced greatly due to
the smaller number of features. Lasso has the similar behavior
as well.

As a case study, Figure 10 plots the predicted demand in
a specific region using different methods, where the blue
dashed line corresponds to the real demand and the orange
solid line represents the predicted demand. According to the
plots, the curve generated by Gradient Booting Regressor fits
the real demand curve best.

FIGURE 10. A case study for predicting the demand of a selected region
using different prediction models.

E. ROBUSTNESS EVALUATION
To demonstrate the robustness of our solution, we also con-
duct prediction for two particular days, one public hol-
iday (Day A in Figure 11) and one day with typhoon
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FIGURE 11. The daily demand in Hong Kong.

TABLE 4. Experimental results on Day A, a public holiday, where ∗

indicates inapplicability.

TABLE 5. Experimental results on Day B, a day with bad weather, where ∗

indicates inapplicability.

(Day B in Figure 11). According to Figure 11, the demands
on the two selected days are greatly different than usual.

Tables 4 and 5 show the results of prediction when using
Time-varying Poisson model and GBR model. Since GBR
performs better than Lasso, we thus omit the results of Lasso
to save space. According to the two tables, GBR still achieves
good prediction for different KPIs and performs much better
than Time-varying Poisson model. Therefore, our solution
has good robustness to predict KPIs in various scenarios.

VI. CONCLUSION
In this work, we propose a unified framework to predict
multiple KPIs for on-demand transport services. The pro-
posed framework not only considers the temporal regularity
of KPIs, but also adapts well to the dynamic changes of
urban contexts. More importantly, it fuses data from multiple
domains to obtain comprehensive knowledge about the KPIs,
thus achieving a satisfactory performance in the prediction.

However, our framework still has some limits. First, it can-
not adapt quickly to predict some outliers of KPIs if there
are no similar historical cases. For example, when a serious
traffic accident happens in some region, the KPIs there will

be seriously affected. If three are no similar traffic accidents
happened in history, it will be difficult to achieve accurate
prediction for KPIs in this case. Second, the proposed frame-
work only reports the KPIs in the next time slot, and do not
provide solutions or operation recommendations to avoid bad
KPIs.

As for the future work, considering the limits of our frame-
work, it would be of high importance to detect the outliers
of KPIs since they seriously affect the service quality of
on-demand services yet are difficult to predict using the
general prediction models. Another promising study is to
devise effective solutions to improve the KPIs of on-demand
services, e.g., behavior analysis for drivers and passengers,
passenger-driver relationship analysis, dynamic pricing, and
intelligent dispatching.
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