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ABSTRACT When executing a program or storing data in a medical Internet of Things (mIoT) system,
physical side-channels analysis, such as recent-timing, cold-reboot, and virtual-machine attacks, might
obtain partial information about internal sensitive medical data/states in memory that the attacker can
gain partial privacy information. Leakage-resilient cryptography has led to better implementation of many
cryptographic primitives that can be proven secure against attackers who can obtain limited sensitive
information about private keys, randomness, and other internal states, and therefore prevents from
breaking the security. In this paper, to tolerate the sensitive information leakage in mIoT, we first present a
leakage-resilient public-key encryption mechanism that is semantically secure against adaptively chosen-
ciphertext attacks in the presence of key leakage under standard decisional Diffie–Hellman assumption.
Our construction employs a special universal hashing in multiplicative group to provide an efficient strong
extractor, and a key derivation function to derive one or more symmetric keys from a single value. Also,
the plaintext space of the scheme is extended to the full domain field of group so as to provide a larger
space for the message. We emphasis that our scheme can be deployed in mIoT since the limited power and
energy budgets, the communication and computation cost, and the leakage attack are taken into account.
Using the first scheme as a building block, we also give a protocol construction to achieve the security
resilient to randomness leakage and key leakage. Our schemes feature with a shorter key size and a larger
plaintext space. Concretely, the private-key contains only four elements in the finite field, and the allowable
key-leakage rate is 25%, which provides a higher leakage rate than Naor Segev (leakage rate is 16.7%)
and its variants. It is worth highlighting of the construction resilient to both key leakage and randomness
leakage, simultaneously, and is flexible to deploy in easy-to-attack outdoor nodes such as in medical IoT
and smart grids, since in these nodes the private keys and randomness are either stored or generated in
outdoor privacy-aware environments.

INDEX TERMS Sensitive information leakage, key entropy, randomness leakage, leakage rate, medical
Internet of Things.

I. INTRODUCTION
In the practical applications in medical Internet of Things,
node data is highly sensitive and physical computational
devices in such system could leak side-channel informa-
tion such as private-key, randomness, or secret internal
state [12], [32]. Taking an executable computer pro-
gram or internal storage as an example, recent timing,
cold-reboot and virtual-machine attacks show that physical

side-channels might leak partial information about internal
states from CPU, data/instruct register and RAM (Random
Access Memory) when the program is running or has loaded
into the memory. As the nodes are exposed at outside and
the data in nodes are highly sensitive in medical Internet of
Things systems, they can much more vulnerable to hacking.
As yet another example, we may need to use a cryptosystem
within the context of a more complex protocol (for example,
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secure multi-party evaluation and outsourcing computation)
that might leak some sensitive information about private-
key or data. However, modern cryptosystem is mainly based
on the assumptions that users have secrets generated uni-
formly and ‘‘well-protected" from a perfect randomness (with
high entropy), and the private-key is perfectly hidden from
possible attackers [7], [33]. Even when the private-key is
not exposed, the randomness used in the encryption can be
leaked? The security reduction will be loose if the random-
ness is not fully randomized (i.e., pseudo-random genera-
tor (PRG) is controlled by virus) or the key loaded into the
memory is partially leaked (i.e., RAM or ROM is monitored
by worms), especially in medical IoTs.

To solve this problem, leakage-resilience cryptosys-
tems [1], [2], [9], [25], [30] were proposed to provide a
powerful tool and allow us to easily analyze the security
of cryptographic constructions in the presence of possi-
ble leakage sources such as side-channels, memories and
even performed procedures. Leakage-resilient cryptographic
primitives, whose schemes are proven secure against the
attackers who can obtain additional sensitive information
about private keys, randomness and internal states, can be
used to design secure protocols for practical applications
such as securely electronic voting, outsourced computing and
sensitive data analyzing in bigdata, etc.

A. MOTIVATION
The traditional security definitions for encryption techniques
are mainly concerned with data privacy in that a ciphertext
does not reveal the plaintext information. In the leakage
situation, for example in medical IoTs, we should consider a
stronger attack ability by observing behavior of the protocol
executions in the presence of potential leakage since the data
is very sensitive. In order to simulate a large class of potential
leakage in side-channel attacks from the view of an attacker,
we specify an efficiently computable leakage function f and
allow the attacker to learn the output of f applied to the
private-key and possibly other states in the security game.
Obviously, the stronger attack ability, the more complex of the
encryption system. Constructing efficient, secure and practi-
cal public-key encryption (PKE) is an emergent requirement
in the leakage-resilient cryptosystems.
Leakage rate ρ describes the allowable leakage amount

related to total key or internal states, i.e. ρ = `/|sk|, where `
is the allowable leakage amount and |sk| denotes the length
of a secret key sk . Leakage rate is a crucial and important
performance for a leakage-resilient system. How to improve
the leakage rate in a PKE system is emergent in designing
leakage-resilient secure applications. Furthermore, it is more
efficient when providing a larger plaintext space in a PKE
system, since the larger plaintext space the more possible data
in use.

B. OUR RESULT AND APPROACH
In this work, we construct a more efficient and practical
public-key encryption for medical IoTs in the presence of

sensitive key/randomness leakage, and provide the same
security guarantee with a leak-free model. In particular,
based on the known leakage-resilient PKEs in [22] and [25],
we improve the performance in private-key size and plaintext
space. We also extend our scheme to achieve the security
resilient to both key leakage and randomness leakage. The
private-key of our scheme is only 4 elements inFq that has the
same length with [22] and shorter than Naor-Segev scheme
with 6 elements [25], and the allowable leakage rate is at
most 25%, which has a higher leakage rate than Naor-Segev’s
scheme (with 16.7% leakage rate) and its variants [22].

There are several security models of leakage-resilience,
differing in what sensitive information can be available to
the attacker. Our scheme is called the bounded-leakage (a.k.a
memory leakage) model, in which the attacker can learn arbi-
trary information about the private-key/randomness, as long
as the total number of bits learned is limited by a bound
`. We formalize this security notion by giving the attacker
access to a leakage oracle that it can repeatedly and adap-
tively query this oracle to get the sensitive information. Also,
each query to the oracle is launched by a leakage function f
and the oracle responds with f (sk).

Like in [22], [25], and [29], we use a randomness extractor
to remedy the private-key leakage (reproduce a uniformly
distributed key) and give the security proof by virtue of hash
proof system technique (HPS) that has systematically stated
by Cramer and Shoup in CS-PKE scheme [8]. However,
CS-PKE is an ‘‘almost’’ leakage-resilient encryption which
needs a randomness extractor to remove so-called almost,
however this is a striking result as CCA security without ran-
dom oracle and could be achieved by only adding a few more
exponentiations to ElGamal encryption scheme. In CS-PKE,
a private-key has the form sk = (a1, a2, b1, b2) and the public
key corresponds to components (c, d), where c = ga11 g

a2
2 and

d = gb11 g
b2
2 , along with a target collision resistant function

TCR. A ciphertext has the form (gr1, g
r
2, SEk0 (m),MACk1 (·)),

where k0 and k1 are random, which guarantees that, in the
ciphertext ct , the plaintext component SEk0 (m) and authen-
tication component MACk1 (·) are randomized to against the
Chosen-Ciphertext Attack (IND-CCA).

Actually, if we employ this model in the leakage case, it can
not ensure the true randomness of authentication component
since MACk1 (·) = ua1+b1α1 ua2+b2α2 can be considered as a
function with input sk , and it may leak some information by
querying the leakage oracle (the information entropy of the
output of MAC is reduced). In our scheme, we employ two
universal hash functions as the strong extractor and provide
the proof framework in the hash proof system, in which
one is a 1-universal hash (v = crd rα) and the other is a
2-universal hash (e = m · ck0dk0s). Actually, universal hash
functions constitute good aveon-rage-case extractors retain-
ing nearly the same parameters as in the original leftover
hash lemma. Differing from introducing new randomness
(z1, z1) in [22] and [25], we divide the random component
v = crd rα into two parties k0|k1 by introducing a key
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derivation function (KDF): k0 is for encrypting the plaintext
and k1 is for authenticating the ciphertext. These two parties
have high entropy when the component v has high entropy,
and thus the authentication will reject all invalid ciphertexts.
Actually, in our construction, v has high entropy since it is
computed by a strong extractor from universal hashing, i.e.,
Hs1,s2,··· ,sn (m, h1, h2, · · · , hn) = m · hs11 h

s2
2 · · · h

sn
n .

In order to gain a larger plaintext space (independent to
the leakage parameter), like in [22], we employ a universal
hash function Hs1,s2,··· ,sn (m, h1, h2, · · · , hn) as an extrac-
tor, which has been analyzed and used to hash an identity
string into a group element. The plaintext space is in group
G (i.e., the size of a plaintext is log q) and the leakage is
bounded by ` ≤ log q − ω(log λ) which is independent
to the plaintext length, whereas in Naor-Segev’s construc-
tion ` ≤ log q − m − ω(log λ) where m is the plain-
text length. That is, our scheme provides a higher leakage
rate (25%) and larger plaintext space (each element is log q),
simultaneously.

C. RELATED WORK
Building cryptographic schemes secure even if the secrets
such as keys and randomness are partially leaked is a state-
of-the-art trend in secure systems, motivating partially from
side channel attacks. In 2009, inspired by the cold boot
attacks, Akavia et al. [2] first presented a so-called bounded-
leakage model and constructed a leakage-resilient Chosen-
Plaintext Attacks (IND-lrCPA) secure scheme under the
Learning-With-Error assumption, in which the allowable
leakage of a private-key is bounded by |sk|/polylog(sk).
Naor and Segev [25] presented two leakage-resilient con-
structions based on decisional Diffie-Hellman assumption to
against IND-lrCPA attacks and IND-lrCCA attacks respec-
tively, which employ 1-universal hash proof system [8].
They also indicated that, in general, a PKE scheme can
achieve the security against IND-lrCPA with the help of
randomness extractors and hash proof mechanism. For an
IND-lrCCA-secure scheme, they used the Naor-Yung
paradigm in [24] to prompt better leakage tolerance, but
the Naor-Yung paradigm is quite inefficient since it needs
the low efficient Non-Interactive Zero-Knowledge (NIZK).
To improve the efficiency, Naor and Segev also considered the
Cramer-Shoup scheme under (standard) DDH assumption [8]
in which the leakage rate is 1/4 − o(1) in non-adaptive
IND-lrCCA1 security and 1/6−o(1) in adaptive IND-lrCCA2
security. Baek et al. [3] proposed a variant KEM of Cramer-
Shoup scheme in [8] to provide a shorter ciphertext size
with the security of CCA2. Nguyen et al. [26] presented a
LR-PKE from 4-wise independent hash functions to achieve
constrainted CCA security (IND-lrCCCA), whose model is a
weak security than IND-lrCCA. Qin and Liu [29] presented a
leakage-resilient CCA-secure PKE with one-time lossy filter
in hash proof system framework. Nielsen et al. [27] gave the
connection between leakage tolerance and adaptive security
and showed that leakage tolerance is equivalent to a weaker
semi-adaptively security. Recently, Faonio and Venturi [14]

presented a public-Key cryptography resilient to bounded
leakage and tamper resilience simultaneously.

In Asiacrypt 2010, Dodis et al. [9] designed a mechanism
to support better leakage tolerance, but with a big trade-
off in efficiency since it relies on the k-Decisional Linear
assumption (k-DLIN) in pairing-based operator (i.e., finite
cyclic group with bilinear operation). Liu et al. [22] improved
the efficiency of Naor-Segev’s scheme in that the leakage
bound is independent of the plaintext space whereas the
performance is almost as efficient as the original Naor-Segev
scheme [25]. Zhang andMu [34] proposed a leakage-resilient
inner-product encryption that can tolerate at most 1/2 key
leakage, which is based on the somewhat inefficient bilinear
map in composite order. Kiltz and Pietrzak [18] constructed
an ElGamal encryption resilient to continual key leakage,
which uses two insulated sub-states (independent memory
devices) to store a secret key. Brakerski and Goldwasser [6]
proposed a leakage-resilient PKE under the subgroup indis-
tinguishability, which is a theoretical performance evaluation
in improving the leakage rate.

Bellare et al. [5] considered the case of leaking the
randomness that is sampled from a non-uniformly random
distribution. Namiki et al. [23] stated that a PKE against a pri-
ori randomness-leakage attack can be constructed from any
secure PKE but it is impossible for a posteriori randomness-
leakage attack. Recently, Hazay et al. [16] proposed leakage-
resilient secure transformations so as to construct a LR-PKE
scheme from any standard public-key encryption, and a
LR-PRF (Leakage-resilient ) scheme or LR-MAC scheme
from any one-way function etc, which impose on minimum
assumption to achieve the leakage resilience. These show the
independent significance of our work.

II. TECHNICAL PRELIMINARIES
A. TERMINOLOGY AND NOTATION
The set of all binary strings of length n bits is denoted as
{0, 1}n. We let λ denote the security parameter and ` denote
the leakage parameter (i.e., leakage bound). A probabilistic
polynomial-time algorithm, denoted by PPT, is an algorithm
whose running time is bounded by some polynomial in λ on
all inputs. For a random variable X , we use notation s← S
or x ∈ X to denote sampling x uniformly at random from X .
We say that X is samplable, if there exists a PPT algorithm
with output distribution identical (statistically close) to the
uniform distribution on X .

For two distributions X and Y , we let1(X ,Y ) denote their
statistical distance, i.e., 1(X ,Y ) def

=
1
2

∑
a∈X |Pr[X = a] −

Pr[Y = a]|. We denote X ≈s Y as X and Y are statistically
close if their statistical distance is negligible. A function is
negligible(denoted ε(λ)) if it is smaller than the inverse of
any polynomial, for all large enough value of λ. That is, for
every positive polynomial p(·), for all sufficiently large m ∈
N, ε(·) < 1/p(n). Obviously, 1− ε(·) is overwhelming, if ε(·)
is negligible.

We use Fq to denote the ring of integers modulo q. Let
G denote a group of prime order q, such that computing
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discrete logarithms in this group is infeasible. Let g1 and g2
denote independently chosen generators ofG, hence no party
can gain the discrete logarithm of g1 with respect to g2. We
can achieve selecting g1 and g2 by first choosing g1 ∈ G,
r ∈ Fq randomly and then computing g2 = gr1 and erasing
the randomness r .

B. INFORMATION ENTROPY AND STATISTICAL DISTANCE
Definition 1 (k-Source Random Variable): A k-source X

is said to be a random variable that taking values from {0, 1}n

for an integer n that satisfies Pr[X = x] ≤ 2−k .
Lemma 1 (Difference Lemma, see [22], [25]): LetX1,X2,

F be events defined over some probability distributions X ,
and X1 ∧ ¬F = X2 ∧ ¬F . Then Pr[X1]− Pr[X2] ≤ Pr[F].
Definition 2 (Min-Entropy): Themin-entropy of a random

variable X is

H∞(X )
def
= − log(max

x
Pr[X = x]) (1)

The min-entropy represents the probability that an attacker
has in guessing the outcome of X given no additional infor-
mation. Obviously, max

x
Pr[X = x] = 2−H∞(X ).

A distribution X is called k-source if it has min-entropy
H∞(X ) ≥ k . For a secret key sk , sk is fully randomness
(i.e., fully hidden) if k = |sk|, and sk is fully revealed if k = 0
which means that the key is totally leaked.

The average conditional min-entropy H̃∞(X |Z ) of X given
Z is represented the probability that an attacker has in guess-
ing the outcome of X given the outcome of a possibly corre-
lated Z . That is,
Definition 3 (Average Conditional Min-Entropy): The

average conditional min-entropy is defined by

H̃∞(X |Z )
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log(Ez←Z [2−H∞(X |Z=z)]) (2)
Lemma 2: Let X ,Y ,Z be random variables and Y takes 2r

possible values, then

H̃∞(X |(Y ,Z )) ≥ H̃∞((X ,Y )|Z )
≥ H̃∞(X |Z )− r

≥ H∞(X ,Z )− r (3)
Lemma 3: Let X ,Y be random variables, then

H̃∞(X |Y ) ≥ H∞(X ,Y )− log |Y | (4)
Corollary 1: For any map f over X , f : {0, 1}∗ → {0, 1}`

s.t. ` ≤ logX , then

H̃∞(X |f (X )) ≥ H∞(X )− ` (5)
Corollary 2: The probability distribution X has (k, ε)-

computational min-entropy k if there exists a distribution
Y with min-entropy k such that X and Y are (k, ε)-
computationally indistinguishable.

C. UNIVERSAL HASHING AND EXTRACTOR
An extractor EXT is a function to be applied to output from
a weakly random entropy source. Informally, an extractor is
defined as a function that takes as input a k-source variable

and a randomness (called seed), and outputs a nearly-uniform
bit string (the statistical distance between the extractor’s out-
put and a random string is very small). An extractor is strong
if concatenating the seed with the extractor’s output yields a
distribution that is still close to uniform.
Definition 4 (Strong Extractor): A function EXT : {0, 1}n
×SEED → {0, 1}m is called an average-case (k, ε)-
randomness strong extractor if for all pairs random variables
(X ,Z ) such that X is an n-bit string s.t. H̃∞(X |Z ) ≥ k ,

1((EXT(X , s), s,Z ); (U , s,Z )) ≤ ε (6)

where s is at random picked in seed space SEED and U is at
random chosen from {0, 1}m.
Note that EXT(X , s) is nearly random given s and Z when ε is
small enough. Intuitively, an extractor takes a weakly random
n-bit but k-entropic input and a short and uniformly random
seed, and produces an m-bit output that looks uniformly
random, even to someone who sees part (but not all) of the
source.

Dodis et al. [10], [11] proved that any extractor is in fact
an average-case strong extractor, for an appropriate setting of
the parameters.
Lemma 4 (see [11]): For any δ > 0, if EXT is a (worst-

case) (k− log(1/δ), ε)- extractor, then EXT is also an average-
case (k, ε + δ)-strong randomness extractor.
Definition 5 (Universal Hashing): A family of functions
{H : X → Y}k∈K is called universal hash if Pr

k←K
[Hk (x1) =

Hk (x2)] ≤ 1
|Y | for all distinct x1, x2 ∈ X .

Theorem 1: Let X be a random variable defined on X =
{0, 1}n with min-entropy H∞(X ) ≥ k , and H def

= {{0, 1}n →
{0, 1}k−2ε} be a universal2 class of hash function family. Let
X ← X be randomly chosen from X and h be randomly and
uniformly chosen from H. Then the distribution of (h; h(X ))
is 2−ε close to the uniform distribution in the trace distance,
i.e. application of a function randomly chosen from H is a
(k, 2−ε)-strong extractor.
Lemma 5 (Leftover Hash Lemma, see [4], [17]): Let H :
{h : X → Y} be a universal hash family and U be a uniform
distribution over field Y . Let f : X → Z be any function.
For any random variables X ∈ X and Z ∈ Z , the statistical
distance

1((h, h(X ), f (X )); (h,U , f (X ))) ≤ 1
2
√
γ (X ) · |Y | · |Z |

(7)

where γ (X ) def
= maxx Pr[X = x].

The above lemma means that if the right-hand side in
Eq. (7) is negligible, and thus h(X ) is almost random even
given h and the leakage f (X ).
Actually, the leftover hash lemma indicates that a family of

universal hash functions {Hk} can play the role of an average-
case (k, ε)-extractor EXT : X × K → Y with log |Y| ≤
l − 2 log(1/ε)+ 2, in which K plays the seed family.
Definition 6 (Decisional Diffie-Hellman Assumption

(DDH)): Let λ be the security parameter and G be a finite
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group of order q determined by λ. Define two distributions
D = (g1, g2, gr1, g

r
2) and R = (g1, g2, gr1, g

r ′
2 ) where

g1, g2 ∈ G, r, r ′ ∈ Fq and r 6= r ′. The Diffie-Hellman
assumption means that the advantage of any PPT attacker
A (or algorithm) is negligible in distinguishing these two
distributions, i.e.,∣∣∣Pr [A ((g1, g2, gr1, g

r
2)← D) = 1

]
− Pr

[
A ((g1, g2, gr1, g

r ′
2 )← R) = 1

]∣∣∣ ≤ ε(λ)
where ε(·) is a negligible function in parameter λ.
Actually, in the above definition, the elements in D form

a valid Diffie-Hellman tuple, and the elements in R do not.
Form the view of DDH assumption, it is computationally
infeasible to distinguish between a valid tuple and an invalid
one.

In cryptographic primitives, a key derivation func-
tion (namely KDF) derives one or more private keys from a
secret value using a pseudo-random function, which prevents
an attacker who obtains a derived key from learning useful
information about either the input secret value or any of
the other derived keys [19]. The KDF is specified by an
international standard filed in ISO-18033-2.

D. HASH PROOF SYSTEM
Definition 7: Let S and L ⊂ S be sets, where S is the set

of all ciphertexts and L is the set of all valid ciphertexts. Let
K be the set of private keys. A hash proof system (namely

HPS) HPS def
= (Key,P,V) is comprised of three algorithms:

• Key generation algorithm Key: On input a security
parameter λ, this algorithm outputs a public-key and
private-key pair (pk, sk).

• Encapsulation key algorithm P: On input a public key
pk , a valid ciphertext x ∈ L, and a witness w of the fact
that x ∈ L, this algorithm outputs an encapsulated key
k ∈ K.

• Decapsulation key algorithm V: On input a private-key
sk and a valid ciphertext x ∈ L, this algorithm outputs a
decapsulated key k .

The reader is referred to [8] for the detail about the hash
proof system. Let the probability space defined by selecting
sk from the set of keys, we give the definitions of 1-universal
HPS and 2-universal HPS as follows:
Definition 8 (1-Universal HPS): A hash proof system is

1-universal if ∀x ∈ S\L and k ∈ K, Pr[P(sk, x) = k] = 1
|K| .

Definition 9 (2-Universal HPS): A hash proof system is
2-universal if ∀x1, x2 ∈ S\L and k1, k2 ∈ K such that
x1 6∈ L ∪ {x2}, Pr[P(sk, x1) = k1|P(sk, x2) = k2] = 1

|K| .
Definition 10 (k-Entropic HPS): A hash proof system is

k-entropic if ∀x ∈ S\L : H̃∞(P(sk, x)|pk, x) ≥ k .

III. SYNTAX OF LEAKAGE-RESILIENT PKE IN THE
PRESENCE OF KEY LEAKAGE
We start by defining the syntax of PKE and the leakage-
resilient security requirement in the presence of key
leakage.

Definition 11: A public-key encryption scheme π is com-
prised of three regular PPT algorithms:
• Key generation algorithm Key: On input a security
parameter λ, the algorithm produces a pair (pk, sk) of
matching public and private keys.

• Encryption algorithm Enc: On input amessagem and a
public key pk , this algorithm produces a ciphertext ct of
m. Note that this algorithm may be probabilistic (involv-
ing random coins r ∈ Fp, and then denoted Encpk (m; r))

• Decryption algorithm Dec: On input a ciphertext ct
and the private-key sk , this algorithm outputs the plain-
text m if succeeds and output ⊥ otherwise.

Definition 12 (Perfect Correctness): Let ct ∈ C be a set of
valid ciphertexts of plaintext m ∈ M under a given public
key pk . For all correctly generated ciphertext: for all ct ←
Enc(pk;m) with m ∈M, then Pr[m← Dec(sk; ct)] = 1 for
every ct ∈ C.
We model the key leakage by providing the attacker

with access to a leakage oracle: the attacker submits any
polynomial-time computable function f (modeled as leakage
function) and receives f (sk), with only the constraint that
the sum of all the leakage is bounded by a predetermined
bound `. Also, we allow the attacker to gain the leakage w.r.t
the previous knowledge such as leakage, public-key and the
other obtainable and available states etc. More concretely,
the attacker can select different leakage function fj for the
j-query adaptively, with the restriction that

∑
j fj(sk) ≤ `.

Definition 13 (Key Leakage Oracle OLeak): A key leak-
age oracle OLeak is parameterized by a leakage parameter `
and a private-key sk . A query to the leakage oracle OLeak
is taken a function fj and a key sk as inputs, and the oracle
computes fj(sk). The oracle OLeak returns at most `-bit for
one key sk , and ignores all queries afterwards.

In the simulation of security proof, we can use a queue
to record all the leakage of queries that the attacker makes,
and sum the total leakage for each queried key to specify that
the leakage oracleOLeak is correctly executed (the leakage of
each key is no more than ` bits) like in Definition 13.
Definition 14 (Key-Leakage Attack Security Prior to

Chosen-Ciphertext):Apublic-key encryptionπ = (Key, Enc,
Dec) is said to be IND-lrCCA-secure in the presence of
`-bit key-leakage if for any probabilistic polynomial-time
algorithm A = (A1,A2) holds that

AdvIND-lrCCA
A (λ)

def
=

∣∣∣Pr[ExpIND-lrCCA
A (λ) = 0]− Pr[ExpIND-lrCCA

A (λ) = 1]
∣∣∣

is negligible in security parameter λ, i.e., AdvIND-lrCCA
A (λ) ≤

ε(λ), where the code-based presentation of the game
ExpIND-lrCCA

A is formally given as follows:

1. (pk, sk)← Key(λ)

2. (m0,m1, aux)← A
ODec(·),OLeak(·)
1 (pk)

s.t.|m0| = |m1|and |OLeak| ≤ `

3. b∗← {0, 1}
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4. ct∗← Encpk (mb∗ )

5. b← A
ODec(·)
2 (ct∗, aux)

6. return(b = b∗)
Actually, the experiment as above is an algorithm that,

when run on 1λ, given the adversary A that can have access
to the oracles ODec(·) and OLeak(·) to get some (helpful)
auxiliary information, eventually outputs either a zero or one.

IV. CONCRETE CONSTRUCTION OF
KEY-LEAKAGE RESILIENT PKE
Let λ be the security parameter, G be a cyclic group of
order q, and an injective key derivation function KDF: G →
{0, 1}2λ. Dodis et al. [13] provided an efficient design of key-
derivation function that taking an imperfect source as input
and outputs a uniformly distributed string with less entropy
waste, which can fit our scheme. Let (SYE(k;m), SYD(k; c))
be a CCA secure private-key encryption scheme under sym-
metric key k , in which m is a plaintext and c is a decryptable
ciphertext. The construction of key-leakage resilient PKE is
described as follows:

• Key(λ) The key generation algorithm creates the public-
key and private-key as follows:

K1. Taking the security parameter λ as input, generate a
cyclic group description T = (G, g, q), where g is a
generator of G and q (with length log q = λ) is the
order of G;

K2. At random select two generators g1, g2← G;
K3. At random select a1, a2, b1, b2← Fq;
K4. Calculate c = ga11 g

a2
2 and d = gb11 g

b2
2 ;

K5. Choose a target collision resistant function TCR : G2
×

Fq → Fq, and an injective key derivation function
KDF : G→ F2

q;
K6. Choose a private-key encryption E = (SYE(·), SYD(·));
K7. Set the private-key as sk = (a1, a2, b1, b2) ∈ F4

q;
K8. Publish the public-key pk = (T , g1, g2, c, d, TCR,

KDF, E);
• Encpk (m) Let m ∈ G be the plaintext. The encryption
algorithm proceeds the procedure as follows:

E1. Select r, s← Fq randomly;
E2. Calculate u1 = gr1 and u2 = gr2;
E3. Calculate α = TCR(u1, u2, s) and (k0|k1) ←

KDF(crd rα);
E4. Calculate e = m · (cd s)k0 ;
E5. Calculate w = SYE(k1; e);
E6. Output ct = (u1, u2, e,w, s) ∈ G4

× Fq.
• Decsk (ct) On input a ciphertext ct = (u1, u2, e,w, s)
and a private-key sk = (a1, a2, b1, b2), the decryption
algorithm does the follows:

D1. Calculate α = TCR(u1, u2, s);
D2. Calculate v = ua1+b1α1 ua2+b2α2 ;
D3. Calculate (k0|k1)← KDF(v);
D4. Verify w ?

= SYD(k1; e), return ⊥ if the test fails;
D5. Output m = e

ck0dk0s
.

Correctness. Suppose that sk = (a1, a2, b1, b2) is a valid
decryption key for a ciphertext ct = (u1, u2, e,w, s), then

v = ua1+b1α1 ua2+b2α2 = gra1+rb1α1 gra2+rb2α2

= (ga11 g
a2
2 )r (gb11 g

b2
2 )rα = crd rα (8)

Compared with [20] and [25], in our scheme, the plaintext
space is the finite group G instead of arbitrary binary string
{0, 1}∗, which is independent to the leakage parameter `.

V. SECURITY
A. PROOF IDEA
The security guarantees that the attacker must not guess the
plaintext mb from the ciphertext ct . Suppose that ct∗ =
(u∗1, u

∗

2, e
∗,w∗, s∗) be the challenge ciphertext in the IND-

lrCCA2 game, i.e., ct∗ = Encpk (mb) for randomly picked mb
(b ∈ {0, 1}) from the attacker’s challenge pair (m0,m1).

Note that a ciphertext ct is called a valid ciphertext if
(g1, g2, u1, u2) is a valid Diffie-Hellman tuple. Otherwise,
it is called invalid, that is, u1 = gr11 , u2 = gr22 and r1 6= r2.
Also, ct is called consistent if it succeeds in verification
equation in decryption algorithm, and is inconsistent if fails.
If a key can decrypt a ciphertext, the ciphertext should be
valid and consistent w.r.t the key.

Wewill use a series of games to prove the security, in which
each game is a slight modification of the previous one. In the
first game, the ciphertext is the actual challenge ciphertext
ct∗ = Encpk (mb). Obviously, in this case, r1 = r2 = r
and the ciphertext is valid and consistent for the challenge
ciphertext. Then, we convert the challenge ciphertext ct∗

into an invalid but consistent ciphertext by selecting r1 6=
r2. The attacker cannot detect this change because of the
Diffie-Hellman problem in Definition 6. More concretely,
(g1, g2, g

r1
1 , g

r1
2 ) ≈c (g1, g2, g

r1
1 , g

r2
2 ) for r1 6= r2.

In the view of attacker, the useful information about the
private-key sk come from fourfold:

1. the public key pk ,
2. the challenge ciphertext ct∗,
3. the leakage f (sk) from leakage oracle OLeak and,
4. possible decryption oracle ODec.

Actually, in case (iv) the attacker gains nomore private-key
information during querying a decryption oracle of a valid
ciphertext but for the message. In the next game, we convert
the challenge ciphertext into an inconsistent one, and prove
that, given (c, d, ct∗) and at most `-bit of a valid private-
key w.r.t the challenge ciphertext ct∗, the probability of an
invalid ciphertext passing through the verification is negli-
gible, which is derived from the average min-entropy of the
private-key by the strong extractor and the collision resilience
of TCR.

In the challenge ciphertext, the component e∗ is for
ephemeral key extraction to mask the plaintext, w∗ is for the
consistency verification. In the above game, we show that the
attacker cannot decrypt the challenge ciphertext after giving
some leakage (cannot pass through the consistency check).
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TABLE 1. Indistinguishable games for security proofs.

At the final game, we consider whether the plaintext com-
ponent e∗ reveals the plaintext or not. Actually, e∗/mb =
ck0dk0s, which is also an output of strong extractor, i.e.,
EXT((ck0 , dk0 ); s). k0 and k1 can model as randomness if v has
high entropy. k0|k1 is generated by a key derivation function
and has high entropy, since v = crd rα is computed by a strong
extractor (universal hash).

B. SECURITY PROOF
We define a series of games ant their functionalities
in Table 1. The first game Game0 is our actual construction,
which is well-formed to one that has private-key sk . In the last
game Game6, all components of the challenge ciphertext ct∗

are formed an invalid and inconsistent ciphertext with respect
to the private-key sk . That is, in the view of the attacker, this
ciphertext is randomized. Obviously, if these games are com-
putationally indistinguishable, we can prove that the attacker
has negligible probability advantage in attacking our scheme.
We have the following theorem:
Theorem 2: Let λ be the security parameter for a finite

group G of order q, i.e., q = 2λ, and ` be the allowable leak-
age for the private-key. Let TCR be a target collision-resistant
hash function. If the decisional Diffie-Hellman problem inG
is hard and E is semantic secure, our scheme is (λ, `, ε)-IND-
lrCCA secure public key encryption, such that

` ≤ log q− ω(log λ) ≤
1
4
|sk|

ε ≤ AdvDDH
A1

(λ)+ AdvTCR
A2

(λ)+ 2`−λ + 2

`− λ

2
−1

+
Q · 2`−λ

1− Q/2λ

(9)

where Q is the number of decryption queries that the attacker
makes, AdvDDH

A1
(·) and AdvTCR

A2
(·) denote the advantage that

the attacker breaks the DDH assumption and target collision
resistant function, respectively.

Proof: Let Xi denote the event of Game i. We deploy
the adversary A as a sub-algorithm to solve DDH problem
if A can successfully break our scheme with non-negligible
advantage ε.

The Game0 models the IND-lrCCA experiment in Defini-
tion 14. We let the components in challenge ciphertext to
label with character ∗. That is, ct∗ = (u∗1, u

∗

2, e
∗,w∗, s∗) =

Encpk (mb), in which the intermediate values are specified
by r∗, α∗, v∗, k∗0 and k∗1 . In the view of the attacker, these
intermediate variables are fully hidden.

In Game1, knowing the private-key sk = (a1, a2, b1, b2),
the challenger replaces the component v∗ by

(u∗1)
a1+b1α∗ (u∗2)

a2+b2α∗

where u∗1 = gr
∗

1 , u∗2 = gr
∗

2 and α∗ = TCR(u∗1, u
∗

2, s
∗)

for randomly selected r∗, s∗ ∈ Fq. As this game does
not change the value of v∗ (note that v∗ = (cdα

∗

)r
∗

=

(u∗1)
a1+b1α∗ (u∗2)

a2+b2α∗ ), then Pr[X0] = Pr[X1].
The Game2 is the same as Game1 except replacing (u∗1, u

∗

2)

with (g
r∗1
1 , g

r∗2
2 ) for randomly selected distinct r∗1 , r

∗

2 ∈ Fq.
We show that Pr[X2] − Pr[X1] is negligible under the deci-
sional Diffie-Hellman assumption, since (g1, g2, gr

∗

1 , g
r∗
2 )≈c

(g1, g2, g
r∗1
1 , g

r∗2
2 ). That is, |Pr[X2]− Pr[X1]| ≤ AdvDDH

A (λ).
In Game3, the response of decryption oracle will reject

all queries such that (i) queried decryption ciphertext ct =
(u1, u2, e∗,w∗, s) 6= ct∗; (ii) TCR(u1, u2, s) = α∗. The
probability of |Pr[X3] − Pr[X2]| is close to the hash col-
lision occurring of TCR. Let XD be the event that Game3
rejects a decryption query. According toDifference Lemma 1,
|Pr[X3]− Pr[X2] ≤ Pr[XD]| ≤ AdvTCR

A (λ).
In Game4, the response of decryption oracle will reject the

query if ct 6= ct∗ and α = TCR(u1, u2, s) 6= α∗. We show
that Pr[X4] − Pr[X3] is negligible by proving this type of
ciphertext is rejected with overwhelming probability like in
Game3. For the view of the attacker, the possible informa-
tion about the system status is derived from the following
aspects:

1. public key (q, g1, g2, c, d);
2. challenge plaintext (m0,m1);
3. challenge ciphertext ct∗ = (u∗1, u

∗

2, e
∗, w∗, s∗);

4. k0 and k1 from the challenge ciphertext ct∗;
5. queried `-bit leakage from leakage oracle OLeak;
6. information from decryption oracle ODec.
We now discuss the components that contain the sensitive

information of private-key sk = (a1, a2, b1, b2). In the public
key pk , g1 and g2 are not involved in any secret value in
private key sk (their distribution are independent), and the
elements c = ga11 g

a2
2 and d = gb11 g

b2
2 implicitly conceal

the private-key values. For the same reason, we can see
that only components e∗ and w∗ in challenge ciphertext ct∗

implicitly contain the information of secret key sk , and the
access to leakage oracle explicitly reveals the sensitive `-bit
private-key. Note that in Game4 ct∗ is changed as ct∗ =
(u1, u2, e∗,w∗, s) where u1 6= u∗1, u2 6= u∗2 and s 6= s∗.
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H̃∞
(
(a1, a2, b1, b2) | c, d, ct∗,mb,m1−b, `- bit leakage

)
= H̃∞

(
(a1, a2, b1, b2) | c, d, ct∗,mb, `-leakage

)
m1−b leaks no information about the key

= H̃∞
(
(a1, a2, b1, b2)|c, d, u∗1, u

∗

2,w
∗, s∗, e∗/mb, `-bit leakage

)
= H̃∞

(
(a1, a2, b1, b2)|c, d,w∗, e∗/mb, `-bit leakage

)
u∗1, u

∗

2 and s
∗ are independent to the key

≥ H̃∞
(
(a1, a2, b1, b2)|c, d,w∗, e∗/mb

)
− ` Lemma 2, Corollary 1

≥ H̃∞
(
(a1, a2, b1, b2)|c, d, e∗/mb

)
− ` SYE/SYD decided by key k0

≥ H̃∞
(
(a1, a2, b1, b2)|e∗/mb

)
− 2 log q− ` c and d lose of entropy at most 2 log q

≥ 3 log q− 2 log q− ` e∗/m loses of entropy at most log q

= log q− ` (11)

However, replaced elements u1, u2 and s do not involved in
the private key sk , then at this point the query to decryption
oracle does not gain any useful information for the private-
key sk .
Let XE be the event that the decryption oracle outputs

reject, then Pr[X4 ∧ ¬XE ] = Pr[X3 ∧ ¬XE ]. By Lemma 1,
|Pr[X4] − Pr[X3]| ≤ Pr[XE ]. We now give the probability
that XE occurs.
Assume that A obtains `-bit leakage about the private-

key from f (sk). Given f (sk) and the tuple (c, d), the entropy
of v∗ is at least log q − ` (i.e., v∗ is the output of universal
hash and acts as an output of strong extractor), and thus the
entropy of k0 and k1 are also log q−` because of the property
of KDF (i.e., (k0|k1) ← KDF(v∗), and KDF is an injective
function). The entropy of k0 and k1 are log q−` initially, then
the probability of finding a tuple (K0,j,K1,j) ∈ F2

q satisfying
K0,j = k0 and K1,j = k1 for j-th search is Pr[K0,j =

k0,K1,j = k1] ≤ 2−(log (q+1−j)−`)
=

2`
q+1−j . That is,

seeing `-bit private-key and the test of KDF, the probability of
finding correct symmetric key in E (i.e., produce a consistent
challenge ciphertext and pass the verification in decryption
algorithm) is

AdvKDF
A = Pr[K0,j = k0,K1,j = k1] ≤ 2`

q+1−j (10)

Without leakage, the entropy of sk is at least 2 log q (the
entropy of sk is 4 log q since sk has four elements in Fq but
the public-key c and d leak less than 2 log q according to
Lemma 3). At this point, the reminder entropy of private-key
(a1, a2, b1, b2) conditioned by public-key, challenge cipher-
text and the leakage is analyzed in Eq. 11, as shown at the top
if this page.

That is, gaining the knowledge from the public key
pk , the challenge ciphertext ct∗ and the `-bit private-key,
the probability of an attacker guessing the private-key sk is
at most 2`/q.

We now continue to consider the decryption query for an
invalid ciphertext (i.e., (g1, g2, u1, u2) not a valid DDH tuple)
for ct 6= ct∗ and α 6= α∗. Suppose that A queries an invalid
ciphertext ct = (u1, u2, e,w, s) with u1 = gr11 and u2 = gr22 .

Assume that g2 = gγ1 and let v = ua1+b1α1 ua2+b2α2 , then
logg1 c
logg1 d
logg1 v

∗

logg1 v

 =

1 0 γ 0
0 1 0 γ

r∗1 r∗1α
∗ r∗2 γ r∗2 γα

∗

r1 r1α r2γ r2γα


︸ ︷︷ ︸

M

×


a1
b1
a2
b2

 (12)

In Eq.12, det(M ) = γ 2(r∗2 − r∗1 )(r2 − r1)(α∗ − α) 6= 0
since r∗2 6= r∗1 , r2 6= r1 and α∗ 6= α. This means that
v is random from the attacker’s point of view. As for a
further comment, the attacker cannot produce a new v with
the linear combination in exponent of c, d and v∗. Let Q be
the number of decryption queries that the attacker makes,
according to Eq.10, the j-th invalid ciphertext is accepted by
the distinguisher with probability at most 2`

q−j+1 . The bound

of probability of Pr[XE ] with Q decryption queries is 2`
q/Q−1 .

Thus,

|Pr[X4]− Pr[X3]| ≤ AdvKDF
A +

2`
q/Q−1 =

2`
q +

2`
q/Q−1

In Game5, all queried invalid ciphertexts are rejected by the
decryption oracle (like the end of Game4), but the encrypted
plaintext component e∗ is replaced by a random element in
G. Note that after this change all the components in the
challenge ciphertext are random except the seed s. However,
the seed is public and does not influence the security. Like in
Game4, the decryption oracle cannot help the attacker gain
more information about the private-key. We only consider
the public key pk , the leakage and the related components
(e∗,w∗) in the challenge ciphertext ct∗.
We now show that e∗/mb provides a (2 log q − `, δ)-

extractor with µ = (u∗1)
a1 (u∗2)

a2 and ν = (u∗1)
b1 (u∗2)

b2

as inputs in universal hashing defined in 5 and sampled
in Section II-C. Given (c, d,w∗, `-leakage), the conditional
min-entropy H̃∞(a1, a2, b1, b2) is calculated as follows:

H̃∞
(
µ, ν|c, d,w∗, `-bit leakage

)
= H̃∞

(
(u∗1)

a1 (u∗2)
a2 , (u∗1)

b1 (u∗2)
b2 |c, d,w∗, `-bit leakage

)
= H̃∞

(
(a1, a2, b1, b2)|c, d,w∗, `-bit leakage

)
injection from (a1, a2, b1, b2) to c and d
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≥ H̃∞
(
(a1, a2, b1, b2)|c, d,w∗

)
− `

Lemma 2, Corollary 1
≥ 2 log q− ` (13)

Define a universal hash Hs(µ, ν) = µ · νs as a (2 log q, δ)-
extractor, we have

w∗

mb
= Hs(µ, ν) = Hs((u∗1)

a1 (u∗2)
a2 , (u∗1)

b1 (u∗2)
b2 )

= (u∗1)
a1 (u∗2)

a2 ((u∗1)
b1 (u∗2)

b2 )s

= (u∗1)
a1+b1s(u∗2)

a2+b2s (14)

By the leftover hash lemma in Lemma 5, the statistical dis-
tance between w∗ and a uniformly distributed randomness
U ∈ G is

1(w∗,U ) ≤
1
2

√
q ·

2`

q2
=

√
2`/q
2
=

√
2`−2

q
(15)

As U is randomly selected from G, and thus b is
information-theoretically hidden from w∗/mb. That is,
Pr[X5] = 1/2 to output b = 0 or b = 1. At the same time,
Pr[X5] − Pr[X4] ≤ δ =

√
2`−2/q. Note that λ is the system

security parameter. When setting q = 2λ is large enough and
thus λ� `, i.e.,

δ =

√
2`−2/q = 2

`−λ−2
2 ≈ 0 (16)

Taken from Game0 to Game5 into account, we obtain that
the scheme is leakage-resilient secure under the bound ` ≤
log q− ω(log λ) with negligible advantage

ε ≤ AdvDDH
A1

(λ)+ AdvTCR
A2

(λ)+
2`

q
+

2`

q/Q− 1
+

√
2`−2/q

= AdvDDH
A1

(λ)+ AdvTCR
A2

(λ)+ 2`−λ +
Q · 2`

2λ − Q
+ 2

`−λ−2
2

= AdvDDH
A1

(λ)+ AdvTCR
A2

(λ)+ 2`−λ + 2
`−λ−2

2 +
Q · 2`−λ

1− Q/2λ

(17)

in security parameter λ ∈ F+ and order q = 2λ.

VI. EXTENSION, PERFORMANCE AND DISCUSSION
A. ACHIEVING RANDOMNESS-LEAKAGE RESILIENCE
In the encryption, the randomness is possibly sampled from
a non-uniformly random distribution [31] or the randomness
is partially leaked. Yu et al. [31] considered the leakage-
resilient PRG assuming a non-adaptive leakage function and
a small public memory. Bellare et al. [5] discussed a con-
dition that the random string in the encryption is leaked but
an entropically guaranteed distribution for the randomness.
In this section, we construct a public-key encryption scheme
even if the randomness used in the encryption algorithm is
leaked, as long as the key leakage. The leakage function g
of randomness is arbitrary with the restriction that the output
length is bounded by a predetermined parameter.

In the encryption algorithm in Section IV, the used ran-
domness r is selected in Fq and s is chosen from the seed field

of SEED. However, the randomness s acts as the seed in the
strong extractor and is also public in the ciphertext, thus the
leakage of s will not degrade the security. We only consider
the leakage of randomness r .

We provide a construction of public-key encryption
resilient to both key leakage and randomness leakage. Dif-
fering to the key leakage prior to the chosen-ciphertext,
we consider the randomness leakage occurs that is prior to the
public-key generation, which is a weak randomness leakage.
The weak randomness leakage is possible in practical appli-
cations such as smart grids and wireless sensor networks. For
example, in the statefull encryption in smart grids, the nodes
store lots of early generated randomness, and a randomness is
randomly selected from the randomness list to create the key
and perform the encryption. As the randomness are stored
in the nodes, they are facing lots of threats such as being
monitored and leaked.

Let π = (Key, Enc,Dec) be the key-leakage resilient PKE
proposed in Section IV, and ÊXT : {0, 1}log q × SEED →
{0, 1}log q be an average-case randomness extractor. Actually,
this extractor can be constructed by a universal hash defined
in Section IV.We give the public-key encryption construction
π̂ = (K̂ey, Ênc, D̂ec) resilient to both key leakage and ran-
domness leakage, which uses π as a building block. Note that
it is straightforward to transform any key-leakage resilient
PKE into the scheme resilient to both weak-randomness leak-
age and key leakage.

• K̂ey: At first call Key(1λ) to generate (pk, sk), and at
random select t ∈ Fq. Output the public key p̂k = (pk, t)
and the private-key ŝk = sk .

• Êncpk (m): At random select r ∈ Fq, and output the
ciphertext ĉt = Encpk (m; ÊXT(r; t)).

• D̂ecsk (ct): Output Decsk (ĉt).
Theorem 3: Let π = (Key, Enc,Dec) be a (λ, `1, ε1)-

IND-lrCCA secure PKE, and ÊXT be an average-case (log q−
`2, ε2)-strong extractor. Then the public-key encryption
π̂ = (K̂ey, Ênc, D̂ec) is (λ, `1, `2, ε1 + ε2)-IND-lrCCA
secure resilient to `1-bit key-leakage and `2-bit weak
randomness-leakage.

B. PERFORMANCE
In this section, we give the performance analysis compared
with CS-PKE in [8], NS-PKE in [25], DHL-PKE in [9],
LWZ-PKE in [22], LWZ-PKE [22], KNP-PKE in [20], which
is listed in Table 2 and Table 3.
The leakage rate is defined as the ratio of allowable leak-

age amount to the length of private-key or randomness,
i.e., ρ = `

|sk| . In our construction π , the leakage bound is

` = log q− ω(log λ) (18)

and the private key has 4 elements in Fq, then the leakage rate
of private-key is

ρπ =
log q− ω(log λ)

4 log q
= 1/4− o(1) (19)
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TABLE 2. Leakage-resilient security.

TABLE 3. Performance of leakage resilience.

The leakage rate of private-key is also ρπ̂ ,key = 1/4 −
o(1). The leakage rate of randomness is determined by the
performance of extractor ÊXT. If we use an average-case
(log q − `2, ε2)-strong extractor, then the leakage rate of
randomness is ρπ̂ ,rand = `2/ log q. We can obtain 1 − o(1)
randomness leakage rate by choosing a universal hash like in
π in Section IV.

CS-PKE is an efficient CCA2-secure encryption using the
hash proof system, but it does not support the key leakage.
Naor and Segev [25] improved the CS-PKE scheme to toler-
ate at most 1/4 size of the key under IND-lrCCA1 and 1/6
size of the key under IND-lrCCA2 be leaked respectively,
however, the schemes are somewhat inefficient since the
plaintext length m is dependent to the leakage bound, i.e.,
`+m ≤ log q−ω(log λ). LWZ-PKE is an improved version
of CS-PKE such that the plaintext space is independent of
the amount of the leakage bound, in which the plaintext
space is defined in group G. Our π and π̂ schemes have
the same plaintext space with LWZ-PKE, which use a uni-
versal hashing technique as a strong randomness extractor,
which hashes multiple group elements into a single element

in G. DHL-PKE [9] can achieve 1 − o(1) leakage rate,
which provides a better possible leakage tolerance. However,
the key/ciphertext sizes and computation efficiency are the
worst than the other schemes and the security assumption is
based on the k-DLIN in bilinear pairing. The performance
comparison is listed in Table 3.

Regarding the key size, our schemes and KNP-PKE are
more efficient than the other schemes, because they need only
4 elements so as to reduce about 1/3 bit-length of key than
NS-PKE and LWZ-PKE. It is noticed that our π̂ is secure
against chosen-ciphertext attacks under both key leakage and
randomness leakage, simultaneously.

C. DISCUSSION
Our scheme π considers that the leakage occurs before the
challenge ciphertext is generated, that is, the attacker could
only ask for leakage on the private-key before it sees the chal-
lenge ciphertext. Otherwise, given the challenge ciphertext,
the attacker can device a leakage function that encodes the
ciphertext and then leaks to its exactly the one bit that we try
to hide during the encryption procedure. To solve this prob-
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lem, we can use the entropy-bounded leakage [15] to describe
the key-leakage function f and randomness-leakage function
g, and leave the plaintext still has some min-entropy even
the attacker obtains the leakage after seeing the challenge
ciphertext.

In the entropy-bounded leakage, the attacker can learn a
noisy version of all of the (bounded) memory, in which we
restrict the amount of entropy-loss caused by the leakage
rather than restricting its length. This is a more general
scenario than the bounded leakage. The leakage is not
of bounded length, but it is guaranteed that the private-
key/randomness are still unpredictable given the leakage,
which models a realistic leakage model in the applications.
That is, the attacker can learn any random variable � (the
leakage) for which the conditional information of private-
key/randomness and � given the public-key is at most `.
More concretely, the attacker can learn any random variable
� for which H̃∞(sk|pk) − H̃∞(sk|pk, �) ≤ `. Other-
wise, we consider that the private-key/randomness are fully
revealed to the attacker.

VII. CONCLUSION
In this work, we proposed two efficient public-key encryp-
tion schemes resilient to bounded key and/or randomness
leakage, in which the private keys are shorter than several
known constructions and the plaintext spaces are indepen-
dent of neither the leakage bound nor the imposed (strong)
extractor. Our first scheme was proven to be secure against
chosen-ciphertext attacks resilient to key leakage, in which
the private-key is involved in both ciphertext consistent veri-
fication and the randomness distillation. We employed a spe-
cial kind of universal hash to play the 1-universal/2-universal
extractors, and prove the security from hash proof system
technique.We note that the proposed balance the computation
cost, communication overhead and the security and it can be
deployed in medical IoTs.

The second scheme was constructed using the first scheme
as building blocks, and it achieves the security resilient
to both key leakage and randomness leakage, simultane-
ously. Our schemes enjoy a higher relative leakage rate
(i.e., 25% − o(1)) and a larger plaintext space (i.e., encode
the message with log q-bit in G) in the presence of sensitive
key/randomness leakage.
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