
Received May 6, 2018, accepted June 6, 2018, date of publication June 11, 2018, date of current version July 6, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2846251

Dynamic Bayesian Network-Based Approach
by Integrating Sensor Deployment for
Machining Process Monitoring
KANG HE 1,2, ZHUANZHE ZHAO3,2, MINPING JIA2, AND CONGHU LIU 4
1Mine Machinery and Electronic Engineering Research Center, Suzhou University, Suzhou 234000, China
2School of Mechanical Engineering, Southeast University, Nanjing 211189, China
3School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China
4Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author: Zhuanzhe Zhao (zhuanzhe727@ahpu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51075070, in part by the Natural
Science Foundation of Anhui Province under Grant 1808085ME127 and Grant 1708085ME104, in part by the Key Project of Natural
Science Foundation of Universities of Anhui Province under Grant KJ2016A803 and Grant KJ2017A439, and in part by the Suzhou
University Professor (Ph.D.) Scientific Research Foundation under Grant 2016JB09.

ABSTRACT Many condition monitoring systems based on artificial intelligence process models for
machining process monitoring have been developed intensively. However, given that machining processes
are very complex (i.e., nonlinear and nonstationary), there is still no clear methodology to acquire machining
monitoring systems allowing machining processes to be optimized, predicted, or controlled. In this paper,
the coupled hiddenMarkovmodel, based on dynamic Bayesian networks, is proposed tomonitor amachining
process by using multi-directional data fusion and to analyze the effect of the sensor layout on the monitoring
accuracy. The features extracted by a singular spectrum and wavelet analysis constitute the input information
to the system. The technique is tested and validated successfully by using two scenarios: tool wear condition
monitoring (initial wear, gradual wear, or accelerated wear) for the milling process and surface roughness
accuracy grade prediction (accuracy grade 9, accuracy grade 8, or accuracy grade 7) for the turning process.
In the first case, the maximum recognition rate obtained by the single-sensor placement for tool wear is
83%, whereas in the case of the three-sensor placement, the model recognition rate is 89%. In the second
application for turning, the maximum recognition rate obtained by the single-sensor and the double-sensor
placements for surface roughness accuracy prediction is 77% and 85%, respectively. In the case of the
three-sensor placement, the model recognition rate is 89%. The proposed approach can also be integrated
into the diagnosis architecture for condition monitoring in other complex machining systems.

INDEX TERMS Condition monitoring, dynamic Bayesian network, coupled hidden Markov model, sensor
deployment, machining process.

I. INTRODUCTION
Machining process monitoring (MPM) is crucial for reduc-
ing cost, ensuring greater product variability, and improving
manufacturing productivity and reliability [1]. An efficient
condition monitoring scheme is capable of providing
warnings for dimension tolerance (i.e., surface rough-
ness deterioration) and predicting machine parts failure
(i.e., tool breakage) at the early stages. Therefore, MPM is
the measurement and estimation of certain key process vari-
ables [1]. Given the advantage of direct measurement, some
critical process variables are gauged directly [2]. However,
many process variables cannot be directly measured because

of the complexity of the machining processes (i.e., nonlinear,
nonstationary, etc.), Moreover, the high cost of the measure-
ment devices and their sophisticated designs do make them
unsuitable for real-time industrial applications [3]. Therefore,
the strategy has to be developed on the basis of indirect
measures and evaluations.

The development of sensors and sensing techniques has
made it possible to monitor and control the machining pro-
cess. Research issues related to the monitoring of machin-
ing systems are mainly based on artificial intelligence (AI)
process models. As a data-based process monitoring [4],
AI has become a key technology in process industries.
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Comparedwith the other existing learning algorithms [5]–[7],
the strategy of AI process models has higher accuracy, use-
fulness and versatile for surface roughness prediction and
tool condition monitoring. Furthermore, as a data mining and
analytics approach [8], several status signals (the device itself
and the process signals) are proposed to be considered as
the model input. Thus the strategy of multi-sensor fusion
was introduced to achieve an ideal and reliable prediction.
However, little information is available in the literatures about
how to perform this task [9], [10]. As a sensor fusion model,
an artificial neural network (ANN) has been a popular means
for machining process monitoring [11]. ANN with seven
inputs, including the tool insert grade, theworkpiecematerial,
the cutting force, and the vibration acceleration, are used
to predict the surface roughness in turning [12]. Literature
demonstrates that, with the same fusion data input, ANN
provides better results than multiple regression [13]. The pre-
diction accuracy of ANN is affected by the network architec-
ture and the activation functions. However, thus far, no exact
solution has been obtained [14]. Although ANN has been
widely used for its learning and adaptive capacity in MPM,
adequate training sets are needed in the modeling and the
convergence generally takes a long time.Moreover, the fixed-
length input sequence makes it impossible to determine the
optimal length required to improve the recognition rate and
shorten the training time [8], [15]. Given the randomness and
uncertainties in the machining process, compared with ANN,
stochastic approaches, such as the Bayesian network (BN),
have proven to be effective and accurate in modeling both
dynamic and static signals [16]. Some literatures demonstrate
the superiority of Bayesian networks over ANNs on the effi-
cacy of surface roughness prediction in high-speed machin-
ing [17]. Furthermore, the capacity of coping with missing
values as well as multi-source data fusion stands it out among
other traditional techniques for monitoring large-scale plant-
wide processes [18], [19]. However, as a multi-sensor fusion
model, BN has been less widely used. TABLE 1 summarizes
these sensor fusion systems applied in machining process
monitoring.

Apart from the multi-sensor fusion model, sensor signal
feature selection is still a critical component. Signals applied
inMPM are generally cutting-force signals, vibration signals,
current or power signals, and acoustic emission signals. The
application of these signal features was discussed in the
time domain, frequency domain, and wavelet domain by
Abellan-Nebot [48]. A detained statistical analysis of 35 rele-
vant papers revealed that most of the features are mainly con-
centrated in the time domain, more common in the case of the
mean, followed by the frequency domain, more common in
the case of the single harmonic. Notably, in the wavelet
domain, fewer features are extracted. The descriptors are
shown in FIGURE 1. In addition to the limitations related to
the feature selection, most of the existing monitoring systems
are application-specific; i.e., they focus on either tool condi-
tion monitoring (TCM) or dimensional accuracy prediction,
but not on both.

Whether BN or ANN has to be used as a fusion model
needs to be determined to use a multi-sensor system. Sensors
and sensing technologies constitute the fundamental basis
for MPM in that the performance of a supervising system
critically depends on the accuracy and efficiency of sensor
measurements in the case of faulty symptoms. The capa-
bility of sensor measurements in the case of faulty signa-
tures, using force sensors, vibration sensors, or AE sensors,
is subject to the influence of the measuring points [48]. The
multi-sensor strategy was widely adopted in many previous
studies [12], [16], [46], [48]. However, no further study has
been conducted to analyze the effect of the sensor deployment
on themonitoring system’s capability. Althoughmany studies
have shown that the sensitivity of information obtained by
sensors in different directions is different to the process vari-
ables [49]–[51], the effect of multi-directional data coupling
on the key process variables remains to be further studied.

From the above literature review, we identified that when
developing a system for MPM, the current literature lacks
sufficient consideration of the following issues related to
feature selection and modeling:

(1) As can be seen from TABLE 1, with respect to a multi-
sensor fusion model, the application of BN in the field of
machining process monitoring has been very limited. There-
fore, BN-based machining process monitoring needs to be
further explored.

FIGURE 1. Feature descriptors applied in MPM.

(2) As can be seen from FIGURE 1, most of the features
used in the previous studies are mainly concentrated in the
time domain and the frequency domain. While in the wavelet
domain, fewer features are extracted. A previous study by Zhu
et al. [52] showed that the wavelet-based feature extraction
method is a powerful tool for TCM.

(3) Because the status information picked up by sensors in
different measurement locations is significantly different to
the process variables, it is necessary to analyze the effect of
the sensor layout on the system capacity for MPM. However,
this has been rarely studied thus far.

(4) Most of the existing monitoring systems are
application-specific, either for a tool wear diagnosis or for
a dimensional accuracy prediction. The application of the
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TABLE 1. Sensor fusion systems applied in machining processes.

feature extraction and multi-sensor fusion model to different
machining systems needs to be explored further.

In the present study, we considered these four issues as
the research questions, which will be solved in the following
sections.

II. FEATURE DESCRIPTION AND GENERATION
Tool-tip vibration displacements in three directions were
observed during the turning process. Taking into account the
cutting-plane strain, an orthogonal cutting simulation was
performed to reveal the microscopic tool-tip displacement
state based on Deform-3D. Assume that the tool was made of
elastomers; then, by setting the tool boundary displacement
conditions, a WC-based tool was adopted to cut the die steel
H13(cutting speed Vc = 120 m/min, feed f = 0.05 mm/r,
depth of cut ap = 0.1 mm). The deformation displacement
of the tool tip is shown in FIGURE 2. The maximum dis-
placement of the tool tip in the tangential direction (y),
radial direction (x), and axial direction (z) was 1.73 mm,
0.145 mm, and 0.162 mm, respectively. Three enlarged views
on the right side show the effect of the tool-tip vibration
displacement on the workpiece surface topography. Along
the tangential direction (y) (above), the tool-tip vibration
displacement (εy) affected by the elastic recovery damping
of the workpiece [53] led to the changes in ε′x in the radial
direction (x), which affected the depth of the cut in the turning
process. Along the radial direction (x) and the axial direc-
tion (z), it essentially changed the intersection of the two adja-
cent corner radii mapped on the workpiece surface. When the

axial direction (z) was considered an example, the point p
was the intersection of the ideal profile (without any tool-
tip vibration) shown by the solid lines, wherein the mean
line was oo’. The actual profile drawn with broken lines
deviated from the ideal profile with the maximum value of
ε (εx and εz), which led from the point p to the position p′.
The overlap affected the calculation of the mean line, i.e., the
ratio of h0+/h0 changed to h1+/h1−, which led to the change
in the surface roughness. The same was observed in the case
of the radial direction (x). Thus, the tool-tip vibration in
three directions had a direct effect on the surface roughness.
Therefore, the vibrational data fusion in three directions more
fully reflected the dynamic changes in the surface roughness.

Different from single-point turning, milling was mainly
involved in the multi-tooth continuous cutting. During the
milling process, the cutting forces and torques were peri-
odic. This was attributed to the cutter geometry, the geo-
metric angles installed, and the operation itself [54]. During
one rotation of a milling cutter, each tooth entered, moved
through, and then, exited the workpiece. Each of these cutters
was affected by the cutter wear and change in the cutting
force. FIGURE 3 shows the tool wear and force situation of
a single blade during the milling process. According to the
residual stress analysis, the cutting force F was the resul-
tant force of the radial force Fy and the normal force Fn.
The radial force Fy was mainly affected by the shear force
and the friction between the tool flank and the workpiece.
When the chip thickness was constant, the flank wear VB
was the main influence on Fy. When the tool flank wore
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FIGURE 2. Effect of tool-tip vibration on the workpiece surface
topography.

down, the small facet (relief angle α′ = 0◦) was formed
on the flank surface. As the flank wear increased gradually,
the small facet increased, in turn increasing the contact area
between the tool flank and the workpiece. Thus, the radial
forces Fy increased. The normal force Fn was determined
using not only the friction between the rake face and the
chip but also the effect of the flank face and the workpiece-
generated extrusion. Zhao et al. [55] studied the effect of
some parameters, such as the flank face’s normal stress σ ,
tool hardness HB, tool clearance α, chip width Wd , cutting
speed Vc, and tool flank wear VB, on the basis of the normal
force Fn and formulated the following equation:

VB = K ·

(
2Vc · t

W 2
d · HB · tgα

) 1
3

·
3
√
Fn (1)

where K is a coefficient determined experimentally. As can
be seen from Eq. (1), with the other parameters unaltered
(e.g., cutting length L = Vc · t), the normal force Fn will
be affected by the tool flank wear VB. As can also be seen
from Fig. 3, the resultant force and the normal force can be

FIGURE 3. Schematic illustration of milling process.

expressed as follows:

Fx = Fn · sin κr (2)

Fz = Fn · cos κr (3)

where κr is the tool’s main angle. Thus, the tool’s flank wear
VB was reflected by the triaxial force (Fx ,Fy, and Fz) to some
degree. Therefore, the data fusion of the triaxial force for
TCM was relatively advantageous.

Feature generation was achieved using the singular spec-
trum analysis (SSA) [56] and the wavelet multi-resolution
analysis (WMA). Let {yt |t = 0, 1, · · · ,N − 1} be a time
series of length N , let L be the length of the sliding window,
and set K = N − L + 1. The trajectory matrix H =

(H1,H2, · · · ,HK ), where Hj = (yj−1, yj, · · · , yj+L−2)T ∈
RL and j = 1, 2, · · · ,K are the L-lagged vectors.
Let S = H ×HT; the matrix H is then subjected to a singular
value decomposition and can be expressed as H =

∑d
i=1 Ei,

where Ei are the rank-one elementary matrices and d is the
number of non-zero eigenvalues of S. Let the j-th principal
component be pj; the pji =

∑L+i−2
k=i−1 ψku

j
k−i+2. Let 9 ={{

ψ
j
i | 1 ≤ i ≤ N , 1 ≤ j ≤ L

}}
be a reconstruction set of a

time series; therefore, the entries of ψ can be estimated as
follows:

ψ
j
i−1 =

1
L

∑i

m=1
ujmp

j
i−m+1 (4)

9 corresponded to the different principal components and
features bands. However, these spectral components were
not completely independent in that SSA was based on the
singular value decomposition of H rather than the spectrum
segmentation [56]. To further decompose the time series 9,
the MRA of the wavelet was adopted. Let {Vj, j ∈ Z} be
a closed subspace of L2(R); then, Wj was the complement
space between Vj and Vj−1, and thus, V0 = VM ⊕

⋃M
j=1Wj.

Therefore, 9 can be an orthogonal decomposition by a db4
wavelet using five-layer wavelet decomposition, expressed as
follows:

ψk (t) =
∑M

i=−∞

∑+∞

−∞
ai,jφi,j (t)+

∑+∞

j=−∞
bi,jϕi,j (t)(5)

where M is the decomposition level, ai,j are the wavelet
coefficients, and bi,j are the ith layer scale decomposition
coefficients. The feature ER used for the supervising machin-
ing process was denoted as follows:

ER =
‖AR‖2∑

R
(
‖AR‖2 + ‖BR‖2

) (6)

where ||·|| denotes the norm, R ∈ {x, y, z} is the tool vibration
direction, AR = {ai,j}, and BR = {di,j}, where 1 ≤ i,
j ≤ M .

III. MACHINING PROCESS MONITORING USING DBN
As an extension of Bayes nets (BNs), DBN is a power-
ful sequence data simulation tool, typically used to model
probability distributions over semi-infinite collections of ran-
dom variables, Z1,Z2, · · · ,Zp. Assume that the observation
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ot =
(
o1t , o

2
t , · · · , o

L
t
)
∈ O⊗L and its corresponding hidden

state qt =
(
q1t , q

2
t , · · · , q

L
t
)
∈ Q⊗L was a Markov chain.

In HMM, Zt = {ot, qt}, and its state space consisted of a
single random variable qt(L = 1), but a DBN represented the
hidden state in terms of a set of random variables qt(L > 1).
The major benefit of HMM represented by DBN was that a
DBNhad amore general graph structure form andwas used to
express more complex topology than HMM. Further, the flex-
ible algorithms of the DBN were adopted to quicken the
rate of reasoning.

As can be seen from the analysis of the tool vibra-
tion during the turning process and the cutting force in
the milling process mentioned above, the multi-directional
data were a more comprehensive description of the sur-
face morphology formation and the tool wear progressive
course [53]. As the single-state sequence structure limited
its ability to model multi-directional data, HMM was not
suitable for multi-directional data fusion. Therefore, a DBN
model-coupled hidden Markov model (CHMM) was pro-
posed for use as a multi-directional data fusion model for
MPM. An example of a CHMM_r represented by a DBN is
shown in FIGURE 4. As discussed earlier, assume that ot was
the observation at time t, ot =

(
o1t , o

2
t , · · · , o

L
t
)
∈ O⊗L , and

qt was the hidden state at time t, qt =
(
q1t , q

2
t , · · · , q

L
t
)
∈

Q⊗L , where 1 ≤ t ≤ T ; then, a CHMM with L chains was
characterized using the following elements:

FIGURE 4. CHMM_r represented by a DBN.

(1) Initial state distribution π , where π =
{
π li

}
={

P
(
ql1 = S li

)}
,
∑N

i=1 π
l
i = 1, 1 ≤ l ≤ L, 1 ≤ i ≤ N , N

is the number of hidden variables of each chain.
(2) Observation symbol probability distribution in

state j, B =

{
blj (m)

}
, where B =

{
blj (m)

}
={

P
(
olt = vlm|q

l
t = S lj

)}
,
∑M

i=1 b
l
j (m) = 1, 1 ≤ l ≤ L, 1 ≤

j ≤ N , 1 ≤ m ≤ M .
(3) State transition probability distribution A, where

A =
{
alij
}
=

{
P
(
ql
′

t+1 = S l
′

j |q
l
t = S li

)}
,
∑L

j=1 a
l
ij = 1, 1 ≤

l, l,≤ L, 1 ≤ i, j ≤ N .

For the sake of convenience, a CHMM can be represented
by using a compact notation as follows: λ = (π , A, B).
On the basis of the forward and backward variables of
HMM, the forward operator α and the backward opera-
tor β of the CHMM can be defined as follows: αt (i) =
P
(
o1, o2,· · ·, ot , q1t = S1i , q

2
t = S2i ,· · ·, q

L
t = SLi |λ

)
, βt (i) =

P
(
ot+1, ot+2, · · · , oT |q1t = S1i , q

2
t = S2i , · · · , q

L
t = SLi | λ

)
,

where i =
(
i1, i2, · · · , iL

)
, oτ =

(
o1τ , o

2
τ , · · · , o

L
τ

)
, 1 ≤

τ ≤ T . The recursive procedure for estimating α and β
can be stated as follows:

αt (i) =


∏L

l=1
π`i b

`
i

(
o`1
)
, t = 1∑il

i′=i1

[
αt−1

(
i′
)
ai′ ,i

∏L

l=1
b`i
(
o`t
)]
,

t = 2, 3, · · · ,T

(7)

βt (i) =


1, t = T∑il

i′=i1

[
ai,i′

∏L

l=1
b`i′
(
o`t+1

)
βt+1

(
i′
)]
,

t = T − 1,T − 2, · · · , 1

(8)

The CHMM parameter learning was implemented using
the EM algorithm. That is, it had to maximize. 2

(
λ, λ̂

)
=

E
∣∣∣logP (O,Q|λ̂)∣∣∣O, λ|. Because the current state depended

only on the previous state, we obtained the following:

2
(
λ, λ̂

)
=

∑
q∈Q

P (O,Q|λ) log
(
P
(
O,Q|λ̂

))

=

∑
q∈Q

P (O,Q|λ) logπ lq1 +
∑
q∈Q

T∑
t=2

P (O,Q|λ) log alqt−1,qt

+

∑
q∈Q

T∑
t=1

P (O,Q|λ) log
(
blqt (ot)

)
(9)

Obviously, Eq. (9) consists of three terms, which can be
used to train different CHMMparameters. By using the Gibbs
inequality [57], we obtained the final update formula as
follows:

π̂ li =
α1 (i) β1 (i)∑N
j=1 α1 (j) β1 (j)

, 1 ≤ l ≤ L (10)

b̂lj (m) =

∑T−1
t=1

∑N
i=1 ξ

l
t (i, j) |ot=vm∑T

t=1

N∑
i=1
ξ lt (i, j)

, 1 ≤ m ≤ M (11)

âli,j =

∑T−1
t=1 ξ

l
t (i, j)∑T−1

t=1
∑N

j=1 ξ
l
t (i, j)

, 1 ≤ i, j ≤ N (12)

where ξ lt (i, j) is the probability of being in state S li at
time t , and in state S l

′

j , at time t + 1, ξ lt (i, j) =

P
(
qlt = S li , q

l′
t+1 = S l

′

j |O, λ
)
, 1 ≤ l, l ′ ≤ L.
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On the basis of the accuracy grade of Ra defined by
GB/T1031-2009 and the tool wear progressive change, both
surface roughness prediction and tool condition monitoring
could be converted into a pattern classification problem.
As DBN training is not suitable for a single-state model,
for the monitoring of the machining process, the following
criterion was used:
Definition: Consider an observation sequence O =

{O(1),O(2), · · · ,O(k), · · · ,O(K)
}, where O(k), 1 ≤ k ≤ K ,

is the k th observation sequence. Assume LP to be the logarith-
mic probability of the observation sequence O(k) correspond-
ing to the state Sj. As the training sets of each state overlapped
with each other, which was analogous to the penetration
among the states, the state infiltration rate (SIR) was defined
as follows:

SIR (k, j) =
LPj (k)∑N
i=1 |LPi (k)|

, 1 ≤ k ≤ K , 1 ≤ j ≤ N .

(13)

where. LPj (k) =
∑

Q
(
logP

(
O(k),Q|λj

))
, 1 ≤

i ≤ m, 1 ≤ j ≤ N Then, the state that the k th

observation sequence belonged to was given by. j∗k =
arg max1≤j≤N {SIR (k, j)} , 1 ≤ k ≤ K .

In general, either random or uniform initial estimates of
the {πi, aij} are adequate for obtaining useful re-estimates in
almost all cases. However, for {bj(ot )}, good initial estimates
were helpful only in the discrete symbol case. Firstly, {bj(ot )}
was randomly initialized; then, the optimal state sequence
was determined by using the Viterbi algorithm. Therefore,
{bj(ot )} was calculated as follows:

b̂j (k) =

Expected number of times in state j
and observing symbolvk
Expected number of times in state j

(14)

As mentioned earlier, because of the non-stationary signals
and the diversity of the training samples, the strategy that all
the training samples be involved in modeling was not the best
choice. Therefore, a second-order feature selection method
based on the shuffled frog leaping algorithm (SFLA) [58] was
developed. The entire procedure was as follows:

(1) In the feasible space RD, determine the number of
samples p used for building a single model. The entire col-
lection of the states generated F frogs to form the initial
population U ⊂ RD.

(2) Assuming that the ith frog was Ui =
{
U i
r,k

}D
k=1
∈

U , 1 ≤ r ≤ p, based on the Fisher linear discriminant
analysis [59], the feature selection was performed by com-
paring the class spacing between the samples. Denoting the
mathematical expectation of the r th sample of the ith frog as
E
{
U i
r,k

}
, the r th sample of the jth frog as E

{
U j
r,k

}
, i 6= j,

and the main diagonal elements of the covariance matrix of
the ith and the jth frogs as Cr , we defined the fitness function

as follows:

f (i, j)

=

∑N
i=1

[
E
{
U i
r,k

}
− E

{
U j
r,k

}] [
E
{
U i
r,k

}
− E

{
U j
r,k

}]T
∑p

r=1 Cr
(15)

Where 1 ≤ i ≤ M , 1 ≤ j ≤ N . The fitness value of the frog
pair {Ui,Uj} could be calculated according to Eq. (15).

(3) Set j + 1 → j; step (2) was executed repeatedly
until j > N . Sort the f values in the order of decreasing
performance value: f (Ui) =

{
f 1i , f

2
i , · · · , f

j
i , · · · , f

N
i

}
.

(4) Set i + 1 → i, the step (2) and step (3) are exe-
cuted repeatedly until i > M . Sort the f in order of decreasing
performance value. fF =

{
f (U1) , f (U2) , · · · , f (Ui) , · · · ,

f (UM )
}
.

(5) Uk was the feature set selected, where. k =

arg max l≤i≤M {f (Ui)}.
Condition monitoring in a machining process is concerned

chieflywith sensor selection, feature selection/extraction, and
the selection of an appropriate classificationmodel. The basic
framework of condition monitoring in a machining process is
illustrated in FIGURE 5.

IV. CASE STUDY
To illustrate the proposed condition monitoring approach in
the machining process, two case studies, one for tool wear
condition monitoring in high-speed milling and the other for
surface roughness accuracy grade prediction in the turning
process, were developed.

A. APPLICATION TO TOOL CONDITION MONITORING
IN HIGH-SPEED MILLING
1) MATERIAL AND EQUIPMENT
The tool condition monitoring method presented in the pre-
vious section was tested on the ‘‘prognostic data challenge
2010’’ database [60]. A high-speed CNC machine (Röders
Tech RFM760) with three-flute cutters and a spindle speed
of up to 42000 rpm was selected for the experiment. The
workpiece material was stainless steel (HRC52). The cutting
parameters were as follows: the spindle speed of the cutter
was 10400rpm, the feed rate was 1555 mm/min, the y depth
of the cut (radial) was 0.125mm, and the z depth of the
cut (axial) was 0.2 mm. The data were recorded using a
dynamometer, accelerometer, and an acoustic sensor during
the cut process, and the amount of wear was measured after
each cut. The data were acquired at 50 kHz/channel. Given
the advantage of the cutting force that best describes the tool
wear progress [40], [42], the cutting force was used in this
study. FIGURE 6 illustrates the test bed. A Kistler quartz
three-component dynamometer was mounted between the
workpiece and the machining table to measure the cutting
forces. For simulation purposes (learning and online wear
estimation), 78 samples were selected from Cutters 1 and 6
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FIGURE 5. Framework of machining process monitoring.

TABLE 2. Extraction features and tool wear value.

FIGURE 6. TCM in high-speed milling [60].

at regular intervals (Cutter 1 for learning and Cutter 6 for
testing).

We took the average of the three-flute flankwear valuesVB,
VB = 1/3(VB1 + VB2 + VB3) as the final flank wear value.
The flank wear progressive change was approximated by
using a B-spline curve and the tool states (initial wear state:
IS ≤ 90 µm; gradual wear state: 90 µm < GS ≤ 123 µm;
accelerated wear state: AS > 123 µm) were determined by
using the crossover points of the second-order derivative of

FIGURE 7. Tool wear fitted by B-spline interpolation.

the fitted flank wear curve (FIGURE 7). The feature ER was
extracted and then encoded using a 5 × 5 codebook based
on SOM. TABLE 2 shows the features extracted and the
corresponding tool wear values.

Based on the analysis of the tool degradation curves, three
wear stages were defined to classify the different features in
the different wear stages. FIGURE 8 shows the number of
cuts in Cutter 1 and Cutter 6 for the three tool wear stages.
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FIGURE 8. Wear conditions for Cutter 1 and Cutter 6.

For example, for Cutter 1, the features from the first 15 cuts
belonged to IS; then, the next 40 cuts were classified in GS,
and the last 23 cuts in AS. For the HMM, both the initial
state probability vector π and the state transition probability
matrixAwere randomly initialized, and the observation sym-
bol probability matrix Bwas estimated according to Eq. (14).
For example, the π and A of the HMM were initialized as
follows:

π =


0.0320
0.0227
0.2236
0.3282
0.3935

,

A =


0.0599 0.0747 0.2774 0.2076 0.3805
0.2530 0.3533 0.1170 0.0373 0.2395
0.1765 0.1170 0.2459 0.0861 0.3745
0.0054 0.2380 0.3103 0.4112 0.0352
0.1862 0.0897 0.4053 0.0825 0.2398


For the CHMM_r , π and A were randomly initialized. For

the B parameters, each chain of CHMM_r was initialized
individually by using Eq. (14), and then, the results of each
chain were regarded as the initial value of B. The structural
parameters of eachmodel are selected, as shown in TABLE 3.

TABLE 3. Model structure parameters.

To avoid the sample skew, in base IS, the samples of
Cutter 1 were divided into five training sets denoted as IS,GS,
GS, AS, and AS. Obviously, if GS was chosen for λGS learn-
ing, the samples of GS in the vicinity of the border between
IS and GS was misjudged as IS. Therefore, the selection GS
for λGS learning was inappropriate. The same was true for the
selection of AS. Therefore, IS, GS, and AS were adopted for
training HMM and CHMM_r .

2) RESULTS AND DISCUSSION
To simulate an online monitoring process, SIR calculated
with CHMM_r was plotted with respect to the test samples
of Cutter 6. FIGURES 9∼11 show the test results. One can
see in FIGURE 10 that the misjudged samples are mainly
concentrated in the vicinity of the border between IS and GS.
To quantify the system monitoring accuracy, the recognition
rate is defined as follows:

CR

=
Correctly classified samples

Correctly classified samples+Misclassified samples
×100% (16)

FIGURE 9. SIR for IS samples.

FIGURE 10. SIR for GS samples.

TABLE 4 shows the results obtained using the HMM
and CHMM_r approaches. We found that the recognition
rate changed considerably when we used data from a single
direction, which were 50%, 75%, and 83% using the sen-
sor in the z, x, and y direction, respectively. The possible

VOLUME 6, 2018 33369



K. He et al.: DBN-Based Approach by Integrating Sensor Deployment for MPM

FIGURE 11. SIR for AS samples.

TABLE 4. Classification results of tool wear states.

reasons were as follows: The cutting force signals in the
three directions might be seen as the output responses of a
multi-input system in thex, y, and z directions. As the cutting
directions of the piezoelectric material (e.g., quartz crystal)
in the triaxial force sensor were different, the sensitivity of
the piezoelectric material being subjected to the force was
not the same in each direction. Moreover, FIGURE 3 shows
that when the chip thickness was constant, the radial force Fy
was mainly affected by the tool’s flank wear VB. Therefore,
Fy was more sensitive to the tool’s flank wear [37]. Further,
Eqs. (2) and (3) show that the feed force Fx and the axial
force Fz were mainly determined by the normal force Fn.
With the progress of the tool’s flank wear, the main angle
κr increases, which made the feed force Fx more sensitive
to the tool’s flank wear than the axial force Fz. Finally,
we also found that the recognition accuracy was obviously
improved by integrating data from three sensors in different
directions via CHMM_r . The reason for this could be the
fact that each chain in the CHMM_r was used to describe
the statistical properties of the data acquired by a sensor in
a single direction, and then, the three chains were combined
on basis of the conditional probability of the coupling states
in the three directions. Therefore, the tool wear state could
be more comprehensively described by fusing the data of the
sensors in the three directions, which enabled CHMM_r to
preserve the advantages of HMMs.

B. APPLICATION TO SURFACE ROUGHNESS
ACCURACY GRADE PREDICTION
1) MATERIAL AND EQUIPMENT
The turning tests were conducted using a lathe CK6140 under
dry conditions at the Engineering Training Center, Southeast

University, Nanjing, China. The cutting tool used was a
Japan Sumitomo BNC160, and a workpiece with multi-
ple materials and hardness scales was adopted. In view
of the advantages of the cutting vibration for the surface
quality monitoring [3], [4], three acceleration sensors PCB
608A11 were placed close to the tool tip to measure the
cutting vibrations. The signals of the three accelerometers
were acquired and processed by means of a 24-bit multi-
channel A/D analysis test system TST5915, which was con-
nected to a laptop running the MATLAB 7.8 software. The
sampling rate was fs = 20 kHz. The experimental setup is
shown in FIGURE 12.

FIGURE 12. CNC turning machine testbed.

According to the accuracy grade of the arithmetic mean
deviation (Ra) defined by GB/T1031-2009, the surface
roughness Ra obtained in the experiment was divided into
three levels: accuracy grade 9(G9), G9 ≤ Ra0.4; accuracy
grade 8(G8),Ra0.4<G8≤Ra0.8, and accuracy grade 7(G7),
Ra0.8 < G7 ≤ Ra1.6. To extract the robust and efficient
features and analyze the effect of the sensor layout on the
accuracy of the system, the feature ER was extracted from
the vibration signal picked up by sensors s1, s2, and s3, and
then, was encoded using a 4 × 4 codebook based on SOM.
To further optimize the feature, the second-order feature
selection method discussed above was adopted for the feature
selection. TABLE 5 shows the cutting parameters, feature
selected, code, and the corresponding surface roughness.

By using the encoding obtained from SOM, the observa-
tion symbol probability distribution is estimated based on the
Baum-Welch algorithm. According to experience, the struc-
tural parameters of each model are selected, as shown in
TABLE 6.

For the HMM, both the initial state probability vector π
and the state transition probability matrix A were uniformly
initialized, and the observation symbol probability matrix B
was estimated according to Eq. (14). For example, the π and
A of the HMM were uniformly initialized as follows:

π =


1
3
1
3
1
3

, A =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


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TABLE 5. Experimental parameters and results obtained.

when training two or three chains coupled to CHMM_w or
CHMM_r , π and A were uniformly initialized. For the B
parameters, each chain of CHMMwas initialized individually

by the method conducted in HMM, and then, the ini-
tial results of each chain were regarded as the initial
value of B.
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TABLE 6. Model structure parameters.

2) RESULTS AND DISCUSSION
Based on the features selected, the data in TABLE 5
(rows 1 to 22) were used as the training sets for model build-
ing. The EM algorithm discussed above was used for λG9,
λG8, and λG7 learning. To analyze the effect of the senor lay-
out on the accuracy of the model, the data picked up by a sin-
gle sensor in one direction, two sensors in two directions, and
three sensors in three directions were adopted to train HMM,
CHMM_w, and CHMM_r , respectively. Then, the data in
TABLE 5 (rows 23 to 48) were used for the model testing.
The corresponding results are shown in FIGURES 13∼15.
As shown in FIGURE 15, the data coupling of the s1, s2,
and s3 sensors more comprehensively reflected the effect of
tool vibration on the surface topography, and thus, we con-
cluded that CHMM_rcould identify the Ra accuracy grade in
the turning process accurately.

FIGURE 13. SIR of HMM using the s2 sensor.

To quantify the effect of sensor deployment on the accuracy
of the system, the results defined by Eq. (16) are summarized
in TABLE 7. When a single sensor was used, for example,
{s1}, {s2}, or {s3}, the recognition rate of the HMMs was
relatively low. As a result of the analysis discussed above,

FIGURE 14. SIR of CHMM_w using the s1 and s3 sensors.

FIGURE 15. SIR of CHMM_r using the s1, s2, and s3 sensors.

TABLE 7. Identified results using different sensor layouts.

the vibration signal in a single direction could not provide
the complete information of surface topography, and there-
fore, the CHMM_w with the data fusion of two sensors
preserved the advantages of the HMMs. However, for the
sensor layout {s2, s3}, the recognition rate using CHMM_w
was lower than that obtained using HMMs. The reason for
this difference was as follows: Sensors s2 and s3, respectively,
picked up the tool vibration signals in the tangential (y) and
radial (x) directions, as shown in FIGURE 2. During the
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turning process, the change in the depth of cut (x) was largely
dependent on the offset of the tool vibration in the tangential
direction, in which the change in the amplitude altered the
depth of cut [39]. Moreover, the depth of cut was affected by
the effect of the workpiece on the tool tip along the radial
direction. Both of these factors led to changes in the depth
of cut. However, these two vibration effects on the cutting
depth were not fully synchronized (e.g., the effect occurred
only when there was a contact). Therefore, the data fusion
of sensors s2 and s3 was bound to cause more interference,
which led to the lower recognition rate using CHMM_w
than that obtained using HMMs. Compared with HMMs and
CHMM_w, CHMM_r took advantage of the surface topog-
raphy information fully described by sensors {s1, s2, s3},
resulting in a more accurate prediction.

V. CONCLUSION
In the aircraft and automotive industries, the successful appli-
cation of manufacturing process automation hinges primarily
on the effectiveness of the process monitoring. This paper
discussed the monitoring of a machining process by using
multi-directional data fusion based on DBNs and analyzed
the effect of the sensor layout on the monitoring accuracy.
The empirical study had the following outcomes:

(1) The tool wear process or the formation of the work-
piece surface topography had considerable uncertainty and
randomness. Therefore, the stochastic model-DBN-based
approach, CHMM proposed in this paper, could be well used
for supervising the machining process. This approach was
tested and validated successfully in the tool wear and surface
roughness prediction cases. For the tool wear case, CHMM_r
detected correctly the tool wear state (i.e., IS, GS, or AS)
with a success rate of 89%. Further, in the surface roughness
accuracy prediction tests, the success rate obtained during
testing was 89%. Which further broadening and making up
for the inadequacy of BN in the field of condition monitoring
in machining process

(2) The feature extraction strategy, based on the singular
spectrum and wavelet analysis, could be well used to extract
the features required for the monitoring of a machining pro-
cess. The two case studies, i.e., tool wear in a high-speed
milling process and surface roughness prediction under the
multiple materials and hardness scale conditions in the turn-
ing process, showed that this feature extraction method had
some versatility in feature extraction for supervising the
machining process. Which provides a new tool and strategy
for feature extraction in wavelet domain.

(3) In the monitoring of a machining process, sensor
deployment had a significant effect on the monitoring pre-
cision. In the high-speed milling case, when a unidirectional
sensor Sz (z dir.), Sy (y dir.), or Sx (x dir.) was selected, the tool
wear state recognition rate calculated using HMMs was 50%,
75%, and 83%, respectively. In contrast, when the triaxial
sensors were selected, the tool wear state recognition rate
obtained using CHMM_r was 89%. In the case of turning
the workpiece with multiple materials and hardness scales,

when we selected a single sensor s1 (axial), s3 (radial), or s2
(tangential) for the arrangement, the recognition rate of the
Ra accuracy grade prediction using HMMs was 73%, 73%,
and 77%, respectively. When two sensors {s2, s3}, {s2, s1},
or {s1, s3} were deployed, the recognition rate of obtained
using CHMM_w was 58%, 81%, and 85%, respectively.
In contrast, in the three-sensor layout, the recognition rate
obtained using CHMM_r was 89%. Therefore, different sen-
sor arrangements can be selected tomeet a variety of accuracy
requirements for the monitoring of a machining process.

The DBN-based methodology proposed for machining
process monitoring still has its limitations. With the increase
in number of sensing points, sensing data acquisition and
feature selection are laborious and susceptible to human error.
Moreover, fewer sensing points make it impossible to effec-
tively optimize the sensor network based on the DBN-based
fusion results. Future work will investigate the automatic
data acquisition and feature selection techniques, as well
as the multi-sensor optimization placement strategy using
DBN-based state recognition method.
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