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ABSTRACT Because insulators provide electrical insulation and mechanical support for electric transmis-
sion lines, these components are of paramount importance to safe and reliable operations of power systems.
However, insulators are often considered to be prone to different faults, e.g., bunch-drop, which demands a
novel solution for accurate fault detection and fault location. Current research efforts have primarily focused
on the bunch-drop fault of glass insulators, and the study of ceramic insulators has not been reported to date.
To this end, this paper proposes an algorithmic solution for the bunch-drop fault detection for both glass and
ceramic insulators based on spatial morphological features, which can be integrated into an unmanned aerial
vehicle-based inspection system. Color models can be established based on the unique color features of both
glass and ceramic insulators. Next, the target areas of the insulators can be identified according to the color
determination combined with the insulator’s spatial features. The target area is morphologically processed
to highlight the fault location, and the rules are established based on the spatial feature differences between
the insulators with and without faults. Consequently, the fault location can be accurately identified, and the
coordinates can be determined. The performance of the proposed solution is evaluated in comparison with
existing solutions. The numerical results demonstrate that the proposed solution can detect the bunch-drop
faults of insulators with a better than average detection rate. In addition, the performance is assessed and
validated in terms of robustness and real-time performance.

INDEX TERMS Bunch-drop, color determination, fault detection, insulator, morphology, spatial features.

I. INTRODUCTION
The insulator is one of the most important components for
electrical insulation and mechanical support in electric power
transmission lines. Insulators are subjected to large mechan-
ical tension and extremely high voltage with long time expo-
sure outdoors. The defects or faults of insulators can directly
lead to significant power loss and can even result in large-
scale power outages or blackouts. The insulators that are
adopted in transmission lines are primarily made of ceramic
and glass. The ceramic insulators are polycrystalline hetero-
geneous materials, and cracks can occur due to mechanical,
electrical and external forces. In the case of strikes due to
lightening, an electric arc forms a drainage channel in the
head ceramic parts, and the ceramic can burst, which causes a
bunch-drop accident. Glass insulators are considered to have
uniform texture and compact structure. Although the tensile

strength is improved by toughening, a bunch-drop can occur
due to overloading. In general, such an insulator fault can
be identified visually. However, an assessment method by
human visual inspection is inefficient and even not feasible in
practice for high-voltage transmission lines that span a large
geographical area because of the high error rate and long
assessment time. In recent years, the development direction
of line inspection has trended toward the use of unmanned
aerial vehicle (UVA) inspection. Through the processing and
analysis of the aerial images captured by theUAV, the faults in
the insulators can be efficiently detected and located [1]–[4].

In the literature, numerous studies have been conducted
to address the challenge of insulator fault detection, and a
collection of solutions is available. Wang and Yan [5] per-
formed rough segmentation of insulators in a laboratory space
to obtain two value images to represent the location and

35316
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2997-5840
https://orcid.org/0000-0002-0761-4692
https://orcid.org/0000-0003-2290-0598


Y. Zhai et al.: Insulator Fault Detection Based on Spatial Morphological Features of Aerial Images

range of the insulators. A mathematical model was developed
to calculate the ratio of the effective pixels in the insulator
area for bunch-drop fault detection. In [6]–[8], the identi-
fied insulator region was divided into blocks, and insulator
bunch-drop fault diagnosis could be conducted using a texture
feature quantity. This method performs well in bunch-drop
fault diagnosis for the overlapping insulator pieces, but the
performance degraded in the cases in which insulator pieces
were separated from each other, which could lead to a false
diagnosis result. In [9], the insulator region was divided into
a flake area based on the insulator string, and the center of
gravity of each insulator string was analyzed. The center
of gravity distance between the adjacent insulator pieces
could be calculated, and hence, the fault location could be
determined based on the difference in the center of gravity
distance. However, the performance of this solution can be
degraded by the background texture and light, and the system
might not be able to obtain the complete insulator area.
The studies in [10] and [11] adopted the maximum between-
cluster variance and the Adaboost classifier to locate the insu-
lator position and then calculate the relative distance of the
adjacent insulator piece for bunch-drop fault detection using
the insulator contour. This method is merely applicable to the
independent and unobstructed situation among adjacent insu-
lators in aerial images. In [12], the proposed solution adopted
the color determination method to segment the insulators and
locate the defective parts through an adaptive morphology.
However, such an approach cannot be applied to ceramic
insulators because the ceramic insulators can hardly be iden-
tified from the background. In [13] and [14], the sliding win-
dow algorithm was developed to match the gray histogram
of the template and the captured insulators. The insulator
defects can be identified and located based on the distance of
the histogram. The performance can be significantly affected
by the detection environment and the selection of templates.
The studies in [15] and [16] adopted advanced deep learning
algorithms (CNN and Faster-RCNN) to identify the location
of insulators. However, a large number of image samples and
computational time are generally required during the training
process, and the on-board GPU is needed to carry out the
task. The detection of insulator bunch-drop fault has not been
explicitly studied in these studies. Gao et al. [17] adopted a
deep learning based algorithm (VGG16) to identify insulators
from the complex background using pixel reconstruction.
However, the detection of insulator string fault was based
on conventional method of finding the center of mass, and
is limited to the glass insulators.

It can be observed that most existing studies have focused
on glass insulators, and it is firmly assumed that the insu-
lators are independent without obstacles. However, because
the shooting distance and angle of aerial images vary over
time during the UAV inspection, the insulator pieces in the
aerial images can be connected and overlapping. It should be
highlighted that the ceramic insulators dominate in electric
power transmission lines in many cases, and few studies are
available for fault detection of ceramic insulators.

Motivated by the existing solutions (e.g., [12], [18]), this
paper proposes an algorithmic solution for insulator fault
detection that is based on the spatial morphology features
of obtained UAV aerial insulator images while considering
the unique spatial and color features of glass insulators and
ceramic insulators. The basic idea behind the proposed algo-
rithmic solution is illustrated in Fig. 1 and summarized as
follows: the color model for image segmentation is estab-
lished based on the color features of glass and ceramic insu-
lators. The captured insulators with different angles can be
processed using the Hough Transform to detect the straight
lines, and the insulators can be located. Finally, the located
insulator is processed through morphological processing,
and the spatial features of the fault location are analyzed;
subsequently, the rules can be established. Based on these
rules, the fault location coordinates in the insulators can be
determined.

In summary, the main technical contributions made in this
work can be summarized as follows: (1) the proposed solution
can accurately identify and locate the bunch-drop faults based
on the spatial features of UAV aerial images of both glass and
ceramic insulators; and (2) the robustness and real-time per-
formance of the proposed solution is evaluated and validated.
The numerical result demonstrates that the proposed solution
outperforms the existing solutions.

The remainder of this paper is organized as follows:
Section II presents the insulator target detection process.
Section III presents the detection and location method of
the insulator bunch-drop fault in detail. Section IV reports
on a range of experiments that were performed and presents
the numerical results. Finally, the study’s conclusions are
presented in Section V.

II. INSULATOR TARGET DETECTION
A. COLOR DETERMINATION
The color histogram was first used for image feature extrac-
tion in [19] and is considered to be an efficient method
for describing the color features. The histogram can well
reflect the composition and distribution of the image col-
ors, i.e., the probability of the appearance of various colors.
In [20] and [21], the Lab color space or HIS color space was
used to distinguish the glass insulators based on the empirical
threshold. However, it should be noted that the segmentation
of insulators from the complex background can be hardly

FIGURE 1. Flowchart of the proposed fault detection method. (a) Overall
process of the algorithmic solution.
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FIGURE 1. (Continued.) Flowchart of the proposed fault detection method. (b) Detailed flowchart of the proposed algorithmic solution.
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achieved by the use of one threshold in practice. In addi-
tion, most of the solutions have merely focused on the glass
insulators, and little investigation has been made of ceramic
insulators. To accomplish this goal, this work exploits both
types of insulators (i.e., glass and ceramic), and obtains the
color distribution by sampling the RGB values of 100 glass
insulators and ceramic insulators, as shown in Fig. 2.

FIGURE 2. Histogram distribution of two material insulators in RGB color
space. (a) Distribution histogram of glass insulators in RGB color space.
(b) Distribution histogram of ceramic insulators in RGB color space.

Based on the unique distribution of glass insulators and
ceramic insulators in RGB color space, the insulator can be
effectively identified from the background by setting corre-
sponding thresholds for the R (red), G (green) and B (blue)
color components. The color distributions of the glass and
ceramic insulators are expressed in (1) and (2), respectively.

78 ≤ R ≤ 173
115 ≤ B ≤ 175
30 ≤ G− R ≤ 65

(1)


175 ≤ R ≤ 235
165 ≤ G ≤ 225
5 ≤ R− B ≤ 20

(2)

The pseudo-code of color determination process for glass
insulators is presented in Algorithm 1.

This color model can segment the insulator region from the
complex background. The segmentation results of the glass
and ceramic insulators are presented in Fig. 3.

B. NOISE FILTERING AND TILT CORRECTION
The insulator image can be segmented from the complex
background based on color features, but when there is noise,
it deteriorates the image quality for further analysis. In this
instance, the median filter [22] is adopted to filter the lone
noise while maintaining the edges of the images based
on a nonlinear signal processing technique. Simultaneously,

Algorithm 1: Color Determination of Glass Insulators
Input: image
Output: image_gray
1: R = image(:, :, 1),G = image(:, :, 2),
B = image(:, :, 3)

2: [m, n] = size(image)
3: image_gray = rgb2gray(image)
4: for i = 1 to m do
5: for j = 1 to n do
6: R = image(i, j, 1),G = image(i, j, 2),B =

image(i, j, 3)
7: bool1 = (78 ≤ R ≤ 173), bool2 = (115 ≤ B ≤

175),
8: bool3 = (30 ≤ G− R ≤ 65)
9: if bool1 and bool2 and bool3 then

10: imagegray(i, j) = 255
11: else
12: imagegray(i, j) = 0
13: end if
14: end for
15: end for

FIGURE 3. Results of color determination. (a) The segmentation results for
the glass insulator. (b) The segmentation results for the ceramic insulator.

it also calculates the connected domain of the filtered image,
removes the smaller part of the connected domain, and further
strengthens the target area. The results of the process are
presented in Fig. 4.

In reality, because the insulator images are often captured
with different angles during inspection, the Hough transfor-
mation [23] is adopted to detect the straight lines, as well as
to correct the images, thereby facilitating the follow-up oper-
ation, as shown in Fig. 5. The target image can be identified
using the line detection of the Hough transformation, and the
location of the longest line segment is obtained. In light of
the slope of the straight line, the angle of the insulator is
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FIGURE 4. Noise filtering process. (a) Original image. (b) Median filter.
(c) Removal of the smaller part of the connected domain.

FIGURE 5. Tilt correction. (a) Hough transformation detection of lines.
(b) Tilt correction. (c) Correction of original image.

FIGURE 6. Structure of the insulator.

determined, and then, the target image is rotated to perform a
tilt correction.

C. SPATIAL FEATURES OF INSULATORS
Fig. 6 illustrates the structure and components of the insula-
tor. The insulator is composed of a vertical arrangement along
the center axis and a number of insulator pieces that have the
same shape and color, which indicates consistency in the form
of space [18].

To clearly observe the insulator features, the reverse opera-
tion of the insulator image is conducted through a tilt correc-
tion. The pseudo-code of spatial feature analysis is presented
in Algorithm 2.

Fig. 7 shows the projection on the X axis and Y axis. Based
on the projection curves in the X/Y axis, the peak number nv
and valley numbermv can be determined as follows: The point
Pt that satisfies formula (3) is extracted as the peak point.
In this case, there can be multiple adjacent peak points in
the horizontal curve segment, and we extract the intermediate
point as the peak point. The number of peak points is counted

Algorithm 2: Spatial Features of Insulators in the Direction
of X Axis
Input: src
Output: figure
Require: Xdis,Xmax ,Xmin,Xmaxx ,Xminx ,Xm,Xi,

px = 0; qx = 0; tr = 1, tx = 1
1: src = im2bw(src, 0.5)
2: src =∼ src
3: [m, n] = size(src)
4: for i = 1 to n do
5: Xdis(1, i) = sum(src(:, i))
6: end for
7: for t = 5 to n− 6 do
8: if Xdis(1, t − 4 : t − 1) ≤ Xdis(1, t) ≤ Xdis(1, t + 4 :

t + 1)
9: then

10: tr = tr + 1,Xm(1, tr ) = t
11: if Xm(1, tr ) > Xm(1, tr − 1)+ 2 then
12: px = px + 1, Xmax(1, px) = Xdis(1, t),

Xmaxx(1, px) = t
13: end if
14: else
15: tx = tx + 1,Xi(1, tx) = t
16: if Xm(1, tr ) > Xm(1, tr − 1)+ 2 then
17: qx = qx + 1, Xmin(1, qx) = Xdis(1, t),

Xminx(1, qx) = t
18: end if
19: endif
20: end for
21: figure : plot(1 : n,Xdis), plot(Xmaxx ,Xmax),
22: plot(Xminx ,Xmin)

which is denoted as nv.

Pt ≥ {Pt−5,Pt−4, · · · ,Pt+1,Pt+2, · · · ,Pt+5} (3)

where t = 6, 7, · · · ,Gw − 5,Gw is the width of the insulator
target area, and Pt is the peak projection value.

Similarly, the pointQt that satisfies formula (4) is extracted
as the valley point. In the case in which there exist multi-
ple adjacent valley points in the horizontal curve segment,
the intermediate point is extracted as the valley point. The
number of valley points is counted and is denoted as mv.

Qt ≥ {Qt−5,Qt−4, · · · ,Qt+1,Qt+2, · · · ,Qt+5} (4)

where t = 6, 7, · · · ,Gw − 5,Gw is the width of the insulator
target area, and Qt is the valley projection value.

It can be observed from the projection curves that the
insulator projection curves exhibit obvious regular features.

The projection curves in the direction of the X axis are
mostly equal amplitude oscillations. Each peak corresponds
to an insulator piece, and the valley corresponds to the center
of the steel cap. The distance between the peak and val-
ley alternately appears which corresponds to the isometric
arrangement of the insulator pieces. In addition, the projec-
tion curve in the direction of the Y axis is a single peak curve
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FIGURE 7. Projection curves of insulators in the direction of X/Y axis. (a) Projection curves of normal insulator in the direction of X/Y axis. (b) Projection
curves of fault glass insulator in the direction of X/Y axis. (c) Projection curves of fault ceramic insulator in the direction of X/Y axis.

that has a certain width. In fact, the position of the wave peak
corresponds to the center axis of the insulator.

D. LOCATE INSULATORS
Based on the spatial features, the insulator can be located
using its projection curve through the following steps:

Step #1: the insulator position in the X axis must be deter-
mined first. It can be seen from the projection curve that the
position of the insulator in the X axis is the position of its
projection curve of the constant amplitude oscillation portion
in the X axis. Therefore, the difference in the projection value
of the adjacent position is obtained by formula (5), and when
it is larger than the set threshold, it is determined to be the
starting position. The difference in the projection value of the
adjacent position is obtained by the reverse formula (6), and
it exceeds the pre-defined threshold; it is considered to be the
termination position.

δxs = |Xdis(1, i+ 1)− Xdis(1, i)| (i = 1, · · · , n) (5)

δxe = |Xdis(1, j− 1)− Xdis(1, j)| (j = n, · · · , 1) (6)

where n is the horizontal size of the image; and Xdis is the
projection value of the image in the direction of the X axis.

Step #2: determination of the insulator position in the
Y axis, which is similar to step #1.

Step #3 determination of the insulator location in accor-
dance with the position coordinates obtained by steps
(1) and (2).

Finally, the experimental result clearly demonstrates the
accuracy of the insulator location, as presented in Fig. 8.

FIGURE 8. The results of locating the insulator. (a) Original images.
(b) Located images.

III. INSULATOR BUNCH-DROP DETECTION
AND LOCATION
For insulators, the spacing between adjacent insulator pieces
is equal. After a bunch-drop occurs, the width of the adjacent
insulator pieces will become significantly larger. A clear
gap in the insulator area can be observed by human visual
inspection. Upon determining the location of the insulators,
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the morphological algorithm [24] is adopted to highlight the
location of the missing piece, such that the fault position can
be detected and located through its spatial features.

A. MORPHOLOGICAL PROCESSING
Mathematical morphology is an efficient image analysis
method based on lattice and topology, which uses the fun-
damental morphological transformations, e.g., dilation and
erosion. A variety of functions can be conducted to eliminate
noise, separate independent image elements, and connect
adjacent elements in the image. To highlight the position
of the insulator bunch-drop, the morphological dilation is
adopted to narrow the gap between the normal insulator
pieces and to keep off the bunch-drop spacing. The processing
results using morphological dilation are illustrated in Fig. 9.

FIGURE 9. The result of morphological dilation processing. (a) Insulator
image. (b) Color determination. (c) Reverse operation. (d) Dilation
processing.

B. SPATIAL FEATURES OF INSULATOR BUNCH-DROP
The morphological dilation insulator image is spatially pro-
jected. Next, it can be seen that when the insulator bunch-
drop occurs, there is a significant difference in the projection
between normal insulators and fault insulators, as shown
in Fig. 10. Through examining the projection curves for
normal and fault insulators, it can be found that the distri-
bution of the peak and valley values of normal insulators is
relatively uniform in the X axis, while the valley values of
the fault insulators are obviously changed. In the Y direc-
tion, the projection curve of the normal insulators is smooth,
and the projection curve of the fault insulators has obvious
protrusions.

C. INSULATOR BUNCH-DROP DETECTION AND LOCATION
1) DETECTION
From the projection curve analysis of both normal insula-
tors and fault insulators, the following phenomenon can be
observed: upon the occurrence of a fault in an insulator,
the valley value of the X-axis projection curve will jump,
and the valley value (excluding the valley maximum) of the
Y-axis projection curve there will be a new mutation. There-
fore, the fault identification in an insulator can be conducted

FIGURE 10. Normal insulator and fault insulator projection comparison
image. (a) Normal insulator projection curve. (b) Fault insulator projection
curve.

through calculating the variance of the valley value in the
X-axis and the average of the valley value while excluding
the valley maximum value in the Y-axis. In the case in which
the variance X_min _std of the valley on the X-axis is larger
than that of a predefined threshold (thd1 = 10) and the differ-
ence Y_difference between the valley value and the minimum
valley value on the Y-axis is larger than a predefined threshold
(thd2 = 2), the insulator is considered to have a fault.

X_min _mean =
1
qx

qx∑
i=1

X_min(i)

X_min _std =
1
qx

qx∑
i=1

(X_min(i)− X_min _mean)

(7)
Y_min _mean =

1
qy

qy∑
j=1

Y_min(j)

Y_difference = |Y_min _mean− Ymin|

(8)

where qx is the number of valleys on the X-axis direction
projection curve; X_min(i) is the pixel value of the ith val-
ley on X-axis projection curve; qy is the number of valleys
on Y-axis projection curve (remove the valley maximum);
Y_min(j) is the pixel value of the jth valley on the Y-axis
direction projection curve; and Ymin is the valley minimum
on the Y-axis direction projection curve.

2) LOCATION
After the morphological dilation, the gap in the fault area is
highlighted when a bunch-drop fault occurs. Therefore, the
bunch-drop faults can be located by the spatial features in the
following steps:
(1) The X-axis coordinate determination of the bunch-drop

fault: Based on the fault’s X-axis direction projection,
the mutation position of the valley can be identified. All
of the valley values are sorted in the X-axis direction
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in descending order; the valley that corresponds to the
maximum value of the distance difference can be found
using (9), and the X-coordinate of the valley is used as
the X-axis coordinate;

X min _distence(i) = ‖X_min(i)− X_min(i− 1)‖

+‖X_min(i)− X_min(i+ 1)‖

(9)

where i represents the ith valley point;
(2) The Y-axis coordinate determination of the bunch-drop

fault. The process is similar to the determination of the
X-axis coordinate, and (10) is adopted.

Y min _distence(j) = ‖Y_min(j)− Y_min(j− 1)‖

+‖Y_min(j)− Y_min(j+ 1)‖

(10)

where j denotes the jth valley;
(3) Finally, the position of the bunch-drop fault is deter-

mined. Based on the obtained coordinates of the
X-axis and Y-axis, a square with a predefined threshold
(thd3 = 40) is used. The identified location is illus-
trated in Fig. 11.

FIGURE 11. Images of located insulator.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL RESULTS
The proposed solution is expected to detect and locate, in a
timely and accurate manner, the insulator bunch-drop fault
in the context of a complex background captured using an
UAV. This section extensively evaluates the proposed solu-
tion using collected aerial images based on a UAV inspec-
tion system of electric transmission lines in the field. The
effectiveness and performance of the insulator bunch-drop
fault detection is evaluated, and the analysis solution is
implemented and validated. The experimental environment
is established based on the Windows 7 operating system,
MATLABR2014a andMicrosoft Visual Studio 2010, and the

FIGURE 12. Experimental results. (a) Original image; (b) Tilt correction
image; (c) Located insulator image; (d) Morphological dilation image; and
(e) Located image of insulator with fault.

CPUmain frequency andmemory are 2.50 GHz and 4.00 GB,
respectively.

Fig. 12 presents a collection of experimental results,
including the original images, tilt correction image, located
insulator image, and morphological dilation image, as well
as the final located image of the insulator with the fault.
The result clearly confirms that the proposed solution can
efficiently identify and locate the insulators that have bunch-
drop faults.

B. ROBUSTNESS ANALYSIS
In this analysis, the robustness of the proposed solution is
exploited through a comparative study with the existing insu-
lator bunch-drop detection solutions.

1) FAULT FEATURES HAVE OCCLUSION
In reality, the captured aerial insulator images using a UAV
often have shadows between the insulator pieces. In this case,
the adjacent insulator pieces are stuck to each other, and
the boundary between the insulators becomes unclear. It is
difficult to judge the specificities of the individual insulator
pieces’ positions, which results in a higher false detection
rate. The robustness of the proposed solution in this work
is evaluated against the solutions presented in [8] and [14]
for the obtained aerial images with different shooting angles.
The experimental results are presented in Figs. 13 and 14.
It can be observed that the proposed algorithm can accurately
locate the bunch-drop faults in both cases and clearly indicate
that the proposed solution based on the spatial morphological
features has sufficient robustness.

FIGURE 13. Detection results of insulators without occlusions.
(a) Method [8]; (b) Method [14]; (c) Proposed method.
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FIGURE 14. Detection results of insulators with an occlusion.
(a) Method [8]; (b) Method [14]; (c) Proposed method.

2) DIFFERENT BACKGROUND AND SHOOTING DISTANCES
In addition, the performance of the proposed solution is
further evaluated based on the UAV captured images shot
with different backgrounds and distances. The experimental
results under the condition of a simple background and a com-
plex background are provided in Figs. 15 and 16, respectively.
It is demonstrated that the proposed solution can obtain robust
detection and diagnostic results using the captured images
from different shooting situations.

FIGURE 15. Experimental results under different backgrounds. (a) Aerial
image in a simple background; (b) Aerial image in a complex
background.

FIGURE 16. Experimental results of different shooting distances.
(a) Close-up shot image; (b) Long-range shot image.

3) INSULATORS OF DIFFERENT MATERIALS
Most of the available insulator bunch-drop fault detection
solutions are designed for glass insulators, and hence, they
cannot be directly adopted for ceramic insulators. In this
study, the proposed algorithmic solution can be applied
to both glass and ceramic insulators. The experimental
results for the fault detection of ceramic insulators are
shown in Fig. 17. These results demonstrate that the pro-
posed solution is efficient for fault detection in ceramic
insulators.

FIGURE 17. Bunch-drop fault detection in ceramic insulators.

TABLE 1. Comparison of the time consumption and detection rate of the
algorithms.

C. REAL TIME PERFORMANCE AND DETECTION RATE
Finally, the real-time performance and detection success rates
of the proposed solution are analyzed through the detec-
tion of 74 bunch-drop insulator images (glass samples: 42,
ceramic samples: 32), each of which contains one bunch-
drop fault. The efficiency the proposed solution is evaluated
through examining the average time consumed in the fault
detection process, as well as the bunch-drop fault detection
success rate. The performance of the proposed algorithmic
solution is evaluated in comparison with the solutions pro-
posed in [5] and [12], and the numerical results are pre-
sented in Table 1. It can be observed that the proposed
solution outperforms the solution in [5] with significantly
reduced average consumed time for the fault detection and
an improved detection success rate. It is also shown that
the proposed solution provides similar performance to the
solution proposed in [12], with a slightly longer average
detection time, but a better detection success rate. It should be
noted that the solutions in both [5] and [12] can only conduct
fault detection for glass insulators and are not applicable
for ceramic insulators. The proposed solution in this work
can be used for fault detection of both glass and ceramic
insulators, and the performance results for ceramic insulators
are provided in Table 1. The numerical result clearly confirms
the real-timeliness (0.667s on average) and accuracy (success
rate of 90.6%) of the proposed solution for fault detection of
ceramic insulators.

V. CONCLUSIONS AND FUTURE WORK
In this paper, a novel algorithmic solution for bunch-drop
fault detection and location determination for both glass
and ceramic insulators based on the spatial morphological
features is proposed. The proposed solution can efficiently
identify both glass and ceramic insulators fromUAV captured
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aerial images with complex background based on spatial
features. Afterward, the target area can be morphologically
processed to highlight the fault’s position. As a result, the
fault insulators can be identified and located based on the
spatial features. The performance of the proposed solution
is extensively evaluated for a range of scenarios. The experi-
mental results confirm its effectiveness and robustness as well
as its real-timeliness. The average fault detection success rate
in ceramic can reach over 91%, while the average fault detec-
tion success rate of glass can reach over 92%. As a result,
the proposed solution can be adopted in the inspection system
of large-scale infrastructures, e.g., high-voltage transmission
lines of power utilities.

The proposed solution is able to locate the ceramic insu-
lators and glass insulators, but the automatic differentiation
of insulator types is not implemented. Also, the size of the
fault area in insulators cannot be accurately obtained during
the fault detection process in the proposed solution. There-
fore, a number of research directions are considered worth
further research effort. Firstly, more advanced approach is
needed to efficiently distinguish different types of insulators
for fault detection and analysis. Secondly, as the performance
of insulator identification merely based on the color features
can significantly degrade in the presence of complex back-
ground, more advanced image segmentation algorithms and
tools need to be further studied. Finally, additional work is
needed for location and detection of multiple simultaneous
bunch-drop faults in insulators based on spatial features.
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