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ABSTRACT In real-time problems, the possibilities of having a precise mathematical model describing
the dynamics of the nonlinear system are scarce. Besides, the measurements invariably are tainted with
noise which makes the problem of estimating the actual states of the system more difficult. The most
common way of solving this issue involves the application of the Kalman Filter (KF) or the Extended
Kalman Filter (EKF), for linear and nonlinear systems, respectively; although in both cases, the estimation
heavily relies on linear techniques. In a different way, the James-Stein Filter provides a robust approach to
estimate linear and nonlinear systems under parametric uncertainties of the mathematical model. In this brief
note, a slightly different James-Stein State Estimator (JSSE), named Modified James-Stein State Estimator
(JSSE-M), is presented as an alternative to filtering the states of nonlinear systems within a control scheme.
The main contribution of this paper is the comparison of performance between KF, EKF, JSSE, and JSSE-M
when they are used on a relatively complex nonlinear systemwhich is extremely dependent on its parameters,
namely the quadrotor. In this sense, some interesting comparisons focused on both, the effectiveness and
processing time are provided.

INDEX TERMS Control systems, nonlinear systems, stochastic systems, state estimation, filtering.

I. INTRODUCTION
Estimation of heart rate [1], of brain activity [2], as well as
the behavior of financial markets [3], andmany other real-life
dynamics are very difficult to achieve due to the lack of
accurate mathematical models and because of the presence of
noise in the measurements also. When the linear or nonlinear
model is available, the problem of estimating the states in
the presence of additive Gaussian noise can be solved satis-
factorily by the Kalman Filter (KF) or by the Extended
Kalman Filter (EKF), respectively [4]. However, the perfor-
mance, of the KF and EKF algorithms, decreases as the
approximation of the corresponding model is reduced, which
is generally due to parametric uncertainties. Fortunately,
there are works aimed to overcome this problem. Among
them, the reader can refer to [5] where linear systems in
discrete-time with uncertainties are considered, both in the
state matrix and in the output matrix. On this basis, a linear

filter is developed to maintain the variance of the estima-
tion error within a certain limit for all admissible uncertain-
ties. In [6], a version of the Kalman Filter is presented to
estimate the state of descriptive systems with uncertainties,
based on the convergence of robust Riccati equations. In [7],
the Extended Kalman Filter (EKF), the Unscented Kalman
Filter (UKF), the Gauss-Hermite Quadrature Filter (GHF)
and the Quadrature Kalman Filter (QKF) are compared
during the estimation of chaotic systems. In [8], a combina-
tion of the Kalman filter and Takagi-Sugeno fuzzy modeling
is used to obtain an efficient state estimator for nonlinear
systems, at least within the fuzzy approximation region.More
recently, in [9] an Unscented Kalman Filter is used to protect
user privacy in cloud environments.

On the other hand, in [10] there is an alternative to the
Kalman filter called James-Stein State Estimator (JSSE). This
algorithm allows estimating the states of linear and nonlinear
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systems, even in the presence of parametric uncertainties in
the mathematical model. Unfortunately, the Mean Squared
Error (MSE) of the JSSE grows as the standard deviation of
the measurement noise increases. To deal with such a disad-
vantage, in next section a simple modification to the JSSE
is proposed in order to provide the algorithm with a more
controlled estimation process, while the computational cost
remains almost the same. In the following, such a filter will
be named Modified James-Stein State Estimator (JSSE-M).

Thus, in present work, the KF, the EKF the JSSE, and
the JSSE-M are used to estimate the state of a sufficiently
complex nonlinear system with parametric uncertainties
and comparisons on effectiveness and processing time are
provided.

As in [10], the following notation is considered: (x)+ =
max(0, x), N (µ,62) denotes a normal distribution with
mean µ, standard deviation 6 and variance 62, tr(�) is the
trace of matrix� and λmax(�) is the greatest eigenvalue of �.

The rest of the work is organized as follows. In section II,
the estimators considered in this analysis are briefly
described; namely, KF, EKF, JSSE, and JSSE-M, where the
latter is the one proposed as a new alternative to filter the
states of nonlinear systems. In section III, the nonlinear
system regarded as the benchmark is presented. The results
are given in section IV. Finally, in sectionV some conclusions
are drawn.

II. STATE ESTIMATORS
A. KALMAN FILTER (KF)
The Kalman filter consists of a set of recursive equations
allowing to compute an optimal estimator of states of a linear
system on the basis the least squares method [4]. Consider the
system

xk+1 = Akxk + Bkuk + 0kξk , (1)

yk = Ckxk +5kηk , (2)

where k is the discrete-time, xk ∈ Rn is the state vector,
uk ∈ Rm is the input vector, yk ∈ Rp is the output vector,
ξk ∈ Rq is the dynamic noise with zero mean and variance
Qk ∈ Rq×q, and ηk ∈ R` is the measurement noise with
zero mean and variance Rk ∈ R`×`. Besides, Ak ∈ Rn×n,
Bk ∈ Rn×m, Ck ∈ Rp×n, 0k ∈ Rn×q, and 5k ∈ Rp×` are
known matrices. Thus, the Kalman filter (KF) is described
by the following equations:

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1, (3)

Pk|k−1 = Ak−1Pk−1|k−1ATk−1 + 0k−1Qk−10
T
k−1, (4)

Gk = Pk|k−1CT
k

(
CkPk|k−1CT

k + Rk
)−1

, (5)

x̂k|k = x̂k|k−1 + Gk (yk − Ck x̂k|k−1), (6)

Pk|k = (In×n − GkCk)Pk|k−1, (7)

where x̂k−1|k−1 is the estimation for the state xk−1 at iteration
k−1, x̂k|k−1 is the prediction for state xk at iteration k and x̂k|k
is the corrected estimation for state xk at iteration k . In the
same way, Pk−1|k−1 is the estimation for the error variance at

iteration k − 1, Pk|k−1 is the prediction for error variance at
iteration k and Pk|k is the corrected estimation for the error
variance at iteration k . Both estimations, x̂k|k and Pk|k are
corrected through Gk , which is known as the Kalman gain.

B. EXTENDED KALMAN FILTER (EKF)
The natural extension of the Kalman filter for nonlinear
systems consists of linearizing the nonlinear system at each
iteration and applying equations (3)-(7) on such a lineariza-
tion. To illustrate the abovementioned, consider the nonlinear
system

xk+1 = f (xk , uk )+M (xk )ξk , (8)

yk = h(xk )+ N (xk )ηk , (9)

with xk , yk , ξk , and ηk defined as before. Thus, the Extended
Kalman filter (EKF) is defined by the following equations:

x̂k|k−1 = f (x̂k−1|k−1, uk−1), (10)

Pk|k−1 = JfkPk−1|k−1Jf Tk

+M (x̂k−1|k−1)Qk−1M (x̂k−1|k−1)T , (11)

Gk = Pk|k−1JhTk
(
JhkPk|k−1JhTk + Rk

)−1
, (12)

x̂k|k = x̂k|k−1 + Gk (yk − Jhk x̂k|k−1), (13)

Pk|k = (In×n − GkJhk)Pk|k−1, (14)

with

Jfk =
(

∂f
∂ x̂k−1|k−1

(x̂k−1|k−1)
)
, (15)

and

Jhk =
(

∂h
∂ x̂k−1|k−1

(x̂k−1|k−1)
)
. (16)

A thorough derivation of both, the KF and the EKF can be
found in [4].

C. JAMES-STEIN STATE ESTIMATOR (JSSE)
The James-Stein state estimator (JSSE) was proposed in [10]
and it is the result of iteratively applying the James-Stein
estimator given in [11]. By considering a random vector X
of dimension s, which has a multivariate normal distribution
with mean µ ∈ Rs and covariance equal to the identity of
dimension s×s, i.e., X ∼ N (µ, Is×s), in [11], James and Stein
showed that if the dimension s of X is greater than 2, then the
estimator for µwith the Least Mean Squared Error (MSE) is:

µJS =

(
1−

s− 2
‖X‖2

)
X . (17)

This estimator is known as the James-Stein filter (JS) and
in [10] it was taken into account as the foundation to produce
an algorithm that allows estimating the state vector of linear
and nonlinear systems, even in the presence of parametric
uncertainties in the models.
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To do this, the authors in [10] considered the following
system

xk+1 = Akxk + Bkuk + 0kξk , (18)

yk = Ckxk +5kηk , (19)

where k is the discrete-time, xk ∈ Rn is the state vector,
uk ∈ Rm is the input vector, yk ∈ Rp is the output vector.
With ξk ∈ Rq and ηk ∈ Rp as random vectors satisfying:
ξk ∼ N (0,Qk ) and ηk ∼ N (0, r2 Ip×p); and with Ak ∈ Rn×n,
Bk ∈ Rn×m, 0k ∈ Rn×q, Ck ∈ Rp×n and 5k ∈ Rp×p

as known matrices. Under these assumptions, the JSSE was
defined as follows:

x̂JSk|k−1 = x̂JSk−1|k−1 + (1− r2 · αk )+

× (x̂MLk − x̂
JS
k−1|k−1), (20)

x̂JSk|k = Ak x̂JSk|k−1 + Bkuk−1|k−1. (21)

With

αk =
(min{(n− 2), 2(n∗ − 2)})+∥∥∥5−1k Ck

(
x̂MLk − x̂

JS
k−1|k−1

)∥∥∥2 , (22)

n∗ =
tr
{(
CT
k

(
5k5

T
k

)−1
Ck
)−1}

λmax

{(
CT
k

(
5k5

T
k

)−1
Ck
)−1} , (23)

x̂MLk =

(
CT
k

(
5k5

T
k

)−1
Ck

)−1
CT
k

(
5k5

T
k

)−1
yk . (24)

D. MODIFIED JAMES-STEIN STATE ESTIMATOR (JSSE-M)
From a number of applications of the JSSE, it has been
observed that the mean of the estimations provided by the
JSSE is very close to the actual value. However, the MSE
increases as the standard deviation of the measurement noise
grows. For that reason, a slightly different algorithm of the
JSSE with a more controlled correction of its estimation is
proposed.

The main idea behind such a correction is to produce esti-
mations nearer to the mean because it has been proven in [11]
that such a mean is very close to the actual value. So, in this
paper, an exponential correction is included in (20) while the
rest of the algorithm remains intact, i.e., expression (20) is
substituted by:

x̂JSk|k−1 = x̂JSk−1|k−1 +
(1− r2 · αk )+ · (x̂MLk − x̂

JS
k−1|k−1)

exp
(
γ

r2

) ,

(25)

where r2 is the variance of the measurement noise, and γ is
a tuning parameter, which affects the performance of the
JSSE-M. In this work, it is suggested to choose γ such that
the exponential term takes large values for ‘‘small’’ values
of r and that the exponential term takes values close to one
when the measurement noise is ‘‘large.’’

Considering that the system will be stabilized by a
controller, then the rationale behind this proposal is that,
when themeasurement noise is ‘‘small’’ the stability provided
by the controller helps to tolerate big changes in the estima-
tion of the JSSE-M. On the other hand, when the measure-
ment noise is ‘‘large,’’ the exponential term must be close
to one in order to avoid more disturbances within the
closed-loop system. In the former, the performance of the
JSSE-M is very different from the performance of the JSSE,
while in the latter, the performance of the JSSE-M tends to
the performance of the JSSE.

III. THE BENCHMARK MODEL
In order to test the efficacy and efficiency of the afore
mentioned state estimators, consider the problem of stabi-
lizing the quadrotor depicted in Fig. 1, whose dynamics are
approximated by the following equations [12]:

ẋ(t) = f (x(t), u(t)), (26)

y(t) = h(x(t)), (27)

FIGURE 1. Schematics of the quadrotor.

where t is the continuous time,

x(t) = [x1(t) . . . x12(t)]T , u(t) = [u1(t) . . . u4(t)]T ,

f (x, u) =



x2,
(sin(x11) sin(x7)+cos(x11) sin(x9)

cos(x7))
β1

m
, x4,

(− cos(x11) sin(x7)+sin(x11) sin(x9)

cos(x7))
β1

m
, x6,

−g+ (cos(x9) cos(x7)
β1
m ,

x8,

x10x12
Iyy − Izz
Ixx

−
Jtp
Ixx

x10�+
lβ2
Ixx
,

x10,

x8x12
Izz − Ixx
Iyy

+
Jtp
Iyy
x8�+

lβ3
Iyy
,

x12,

x8x10
Ixx − Iyy
Izz

+
β4

Izz



, (28)
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with

β1 = b(u21 + u
2
2 + u

2
3 + u

2
4),

β2 = b(u24 + u
2
3 − u

2
1 − u

2
2),

β3 = b(u22 + u
2
3 − u

2
1 − u

2
4),

β4 = d(u21 + u
2
3 − u

2
2 − u

2
4),

� = u1 − u2 + u3 − u4, (29)

and

h(x) = Cx, with C = I12×12, (30)

where for the sake of space, x∗ ≡ x∗(t) and u∗ ≡ u∗(t)
for adequate values of ‘‘*,’’ and where the effective control
inputs u1, u2, u3, and u4 are the frequency of rotors 1, 2, 3,
and 4 respectively (given in radians per second). The state
variables, x1, x3, and x5 are in meters and they represent the
linear displacements along the earth fixed axes Xe, Ye, and Ze,
respectively. While x7, x9, and x11 are in radians and they
describe the angular displacements around the body axes Xb,
Yb, and Zb, respectively. The rest of the state variables are
the corresponding velocities, which can be easily inferred
from (26)-(30).

The parameters considered are: b = 54.2× 10−6N · s2 as
the thrust factor, d = 1.1× 10−6N ·m · s2 as the drag factor,
l = 0.24m as the distance from the center of the quadrotor to
the center of the rotors,m = 1kg as the mass of the quadrotor,
g = 9.81 m

s2
as the acceleration of gravity, Jtp = 104×10−6N ·

m · s2 as the total moment of inertia for the rotors, and Ixx =
8.1× 10−3N · m · s2, Iyy = 8.1× 10−3N · m · s2, and Izz =
14.2 × 10−3N · m · s2, as the moments of inertia respect to
axes x, y and z, respectively. With this parameters, the rotors’
frequency needed to maintain the quadrotor in hover position
is uo1 = uo2 = uo3 = uo4 = 212.718305490559 rads .

At this point, a discrete-time approximation for sys-
tem (26)-(27) can be obtained by means of the Euler
discretization method [4]. Considering the expression for the
first-order derivative as:

ẋ(t) = lim
1t→0

x(t +1t)− x(t)
1t

, (31)

which can be approximated by

ẋ(t) ≈
x(t + T )− x(t)

T
, (32)

for sufficiently small T , with T as the sampling time, results:

x(t + T ) ≈ x(t)+ T ẋ(t). (33)

Thus, according to the Euler discretization method,
the discrete-time approximation for (26)-(27) is

xk+1 = xk + Tf (xk , uk ), (34)

yk = h(xk ), (35)

with f (·, ·) as in (28). Therefore, the discrete-time model
given by equations (34)-(35) will be used to benchmark the
aforementioned estimation approaches with T = 1

40 s.

In order to simulate the dynamic uncertainties and
measurement noise, the following model is considered:

xk+1 = fd (xk , uk )+ q0kξk , (36)

yk = hd (xk )+5kηk , (37)

where fd (xk , uk ) = xk + Tf (xk , uk ), 0k = I12×12,
hd (xk ) = xk , 5k = I12×12, ξk ∼ N (0,Qk ) and ηk ∼
N (0, r2 Ip×p), with q as the standard deviation of the dynamic
noise and r as the standard deviation of the measurement
noise, i.e., Qk = q20k and Rk = r25k .

IV. STATE ESTIMATION
Because the KF is a linear estimator, a linear approximation
of the nonlinear system is needed. From equations (34)-(35),
the linear approximation for the dynamics of the quadrotor
at rest, in horizontal position and with a constant altitude d̂ ,
i.e., at operation point xo = [0, 0, 0, 0, d̂, 0, 0, 0, 0, 0, 0, 0]T

is given by equations

xk+1 = Axk + Buk , (38)

yk = Cxk , (39)

with A and B in (40) and (41), respectively, as shown at the
bottom of the next page, and

C = I12×12. (42)

EKF, JSSE, and JSSE-M do not require special prepro-
cessing, because they can be applied on the nonlinear
system (34)-(35) in a straightforward way. In the following,
the desired altitude of the quadrotor is 30 meters,
i.e., d̂ = 30m. The stability control for the nonlinear
systems (36)-(37) is designed on the basis of the linear
model (38)-(39) as a feedback controller of the form:

uk = −F(xk − xo)+ uo, (43)

which is obtained by means of the Robust Pole Placement
approach given in [13], and where uo = [uo1 uo2 uo3 uo4]T ,
with uo1, uo2, uo3, and uo4 as above. Because (38)-(39) is
a discrete-time linear system, the set of desired eigenvalues
considered during the pole placement method is:

λ = [0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92

0.93 0.94 0.95],

and the corresponding control gain F turns out to be:

F =



−25.0 411.0 −8.9 399.0
−4.3 333.0 13.0 311.0
−311.0 −20.0 −322.0 −32.0
−277.0 −22.0 −299.0 −37.0
199.0 200.0 199.0 200.0
93.0 95.0 93.0 95.0
711.0 59.0 766.0 122.0
56.0 2.9 67.0 14.0
28.0 844.0 97.0 766.0
3.4 71.0 15.0 58.0
177.0 −188.0 177.0 −188.0
74.0 −76.0 74.0 −76.0



(44)
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Thus, the numerical simulations are obtained using equa-
tions (36)-(37), with r = 0.1, q = 0.001 and γ = 0.15
where the initial conditions are taken at random within a
neighborhood of xo. In those simulations, the estimated states
provided by KF, EKF, JSSE, and JSSE-M are used in (43)
correspondingly. The results are given below.

However, from Figs. 2 and 3, it is not easy to deter-
mine which estimator provides a better performance. For that
reason, the Mean Squared Error (MSE) is considered:

MSE =
1
N
6N
i=1

(
xo − x̂i

)2
, (45)

where xo is the operation point defined above, x̂i is the state
estimation at instant i and N is the total number of samples.
In this case, N = 2000 because T = 1

40 s and the simulation
time is t = 50s. As before, the initial conditions are taken at
random within a neighborhood of xo.
It is important mentioning that the results given

in Fig. 4 and Table 1 were obtained as the average after
running 100 simulations for each estimator on an Intel

FIGURE 2. First six states of the quadrotor.

Core i7-4720HQ 2.6GHz CPU with 8Gb of RAM running
Matlab c© r2016b.
From Fig. 4 and Table 1, it can be readily observed that

the JSSE-M is a good choice to estimate the states of the

A =



1
1
40

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
981
4000

0 0 0

0 0 1
1
40

0 0 0 0 0 0 0 0

0 0 0 1 0 0 −
981
4000

0 0 0 0 0

0 0 0 0 1
1
40

0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1
1
40

0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1
1
40

0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1
1
40

0 0 0 0 0 0 0 0 0 0 0 1



, (40)

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

5.76 · 10−4 5.76 · 10−4 5.76 · 10−4 5.76 · 10−4

0 0 0 0
−0.0171 −0.0171 0.0171 0.0171

0 0 0 0
−0.0171 0.0171 0.0171 −0.0171

0 0 0 0
8.24 · 10−4 −8.24 · 10−4 8.24 · 10−4 −8.24 · 10−4



,

(41)
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FIGURE 3. Last six states of the quadrotor.

FIGURE 4. MSE for different values of r .

TABLE 1. Processing time for KF, EKF, JSSE, and JSSE-M in seconds.

quadrotor for purposes of controlling such a system. Notice
that the measurement noise affects the behavior of the system
because the state estimators require of the measurements
to estimate the ‘‘actual’’ states and such an estimation is
included in the feedback controller. Therefore, poor estima-
tions may cause instabilities in the closed-loop system.

V. CONCLUSION
In this brief note, an alternative to estimate the states of a
dynamical nonlinear system has been presented. It can be
seen, that at least for the system considered, the JSSE-M can
be used as a good choice to filter the states during a control
scheme. It can also be concluded that the KF and the EKF

present a very good performance when the nonlinear system
has a linear or quasi-linear behavior, but their results degrade
conforms the measurement noise provokes more complex
behavior. Besides, notice that the JSSE is only suggested to be
used when the measurement noise is ‘‘small.’’ It is important
mentioning that any other type of controller can be used;
however, this work was intended to evaluate the estimators
instead of the controllers.
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