
Received April 25, 2018, accepted May 29, 2018, date of publication June 11, 2018, date of current version July 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2846236

Controllers in SDN: A Review Report
MANISH PALIWAL , DEEPTI SHRIMANKAR, AND OMPRAKASH TEMBHURNE
Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India

Corresponding author: Manish Paliwal (paliwalmanish1@gmail.com)

ABSTRACT Software-defined networking (SDN) is a networking scenario which changes the traditional
network architecture by bringing all control functionalities to a single location and making centralized
decisions. Controllers are the brain of SDN architecture, which perform the control decision tasks while
routing the packets. Centralized decision capability for routing enhances the network performance. Through
this paper, we presented a review report on various available SDN controllers. Along with the SDN
introduction, we discuss the prior work in the field. The review states how the centralized decision
capability of the controller changes the network architecture with network flexibility and programmability.
We also discuss the two categories of the controller along with some popular available controller. For each
controller, we discuss the architectural overview, design aspects, and so on.We also evaluate the performance
characteristics by using various metrics, such as throughput, response time, and so on. This paper points to
the major state-of-the-art controllers used in industry and academia. Our review work covers major popular
controllers used in SDN paradigm.

INDEX TERMS OpenFlow, software defined networks (SDN), topology abstraction, pending raw-packet
threshold (PRT), model-driven service abstraction layer (MD-SAL).

I. INTRODUCTION
The networking scenario in today’s world is growing rapidly.
Day by day the IP network is getting large and complicated.
However, the large IP network allows strong connectivity
among the users all over the world but at the same time
presents the challenges of management of networks. When
we talk about the functionality of the IP network, router
plays an important role in it. The routing algorithms running
inside the router perform the necessary functioning to route
the network packets towards appropriate destinations. The
advantage of router functioning comes from the fact that
how efficiently it forward the packets. The routing algorithms
inside the router constitute the control plane of the router,
which sometimes called the brain of the router. The forward-
ing devices (Switch, Routers etc.) well connected to each
other by the physical media, constitute the data plane of the
network [1].

The current IP/MPLS networks are designed in such a
way that the control plane and data plane are tightly bundled
together which make the overall architecture complicated.
This design also leads to the problem of up gradation in
control logic to meet the future demands of users. It also
makes the network management very hard. Specifically, if we
talk about the routing algorithms of architecture, they are
completely organized in a distributed fashion. Each router

makes an independent routing decision irrespective of others
for building a path selection decision. The tight integration
of control and data plane makes the management of the
system hard. Often the network administrator has to deal with
the network through vendor-specific low-level commands to
perform certain changes. On the other side, the complicated
routing algorithm makes the overall cost of the system high.
The cost represents not only the purchasing cost of the system
but also the operational cost and management cost [2].

Software Defined Networking (SDN) is a new emerging
paradigm which allows breaking of integration of planes.
The concept of SDN was first introduced in June 2009 at
Stanford University, US which was the result of work around
OpenFlow technology started in 2008. The control logic of
routing devices placed in a centralized controller with the
hope that we can have a single point of control. In contrast
to this, data plane consists of routers which are connected
together in some topological fashion and perform the for-
warding of data packets based on the decision taken by the
central controller. Controller and theData plane communicate
through the protocol (specifically Open Flow [3]). With the
introduction of the OpenFlow, the major advantages come in
the fact of simpler modification in the network, global knowl-
edge of network architecture. SDN allows simple high-level
policies to modify the network as the device level dependency

36256
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-5756-4881


M. Paliwal et al.: Controllers in SDN: A Review Report

FIGURE 1. Prerunners of SDN at timescale.

is eliminated to some extent. Now the network administrator
can operate the different vendor-specific devices from a sin-
gle software console. The controller is designed in such a way
that it can view the whole network globally. This controller
design helps a lot to introduce a new functionality or program
as it just needs to be placed in the centralized controller [3].

From the start of the SDN, many industrial communi-
ties worked around the Open source standardization of the
technique and they came with some solution like Open-
Daylight, OpenStack etc. In March 2011 IT & Networking
giants like Cisco, Facebook, Google, Verizon, and Microsoft
etc. collaborated with each other to form a working group
on the widespread and open source adoption of the SDN
architecture. The working group called as Open Networking
Foundation (ONF). Each member of ONF is responsible for
a specific activity for the promotion of SDN. For example,
Architecture & Framework group deals with the architectural
aspects of the SDN and defining the various components of it.
Configuration & Management group deals with Operation,
Administration, andManagement of OpenFlowProtocols [3].

There are several review articles available in the litera-
ture which address design issues and key challenges in the
different field of SDN. Sood et al. [4] reviewed for chal-
lenges and opportunities Software-defined wireless network-
ing in IoT. Kobo et al. [5] addressed the challenges and design
requirement for SD-WSN. Review work on various DDoS
attacks on SDN controller carried out by Zubaydi et al. [6].
Neghabi et al. [7] stated various load balancing approaches
in SDN through their article. Kreutz et al. [8] presented a
comprehensive survey on overall design aspects along with
challenges and opportunities in SDN. While working with
SDN architecture, it is a major point of concern that which
controller should be selected for deployment. Every con-
troller has its own pros and cons along with its working
domain. This paper is motivated by this need of controller
selection. This article is different in a certain way as instead of
briefly discussing and describing the overall architecture and
design aspects of SDN it specifically focuses on the control
plane aspects. It brings the all controller design aspects at
a single point so that network administrator can select right
controller as per the requirements of his SDN.

We organized our survey into 6 different sections.
In section 1 Introduction, we start with the formal introduc-
tion of the technology along with the major areas where this
technology has major effects. Section 2 discusses the histor-
ical background of the SDN. Section 3 introduces the basic
building blocks of SDN architecture. Section 4 describes the
main idea of the article by presenting the different controller

strategies along with their suitable classification. The per-
formance analysis is carried out in section 5. Finally, we
conclude our review in section 6 by giving a summary of the
article.

II. PRERUNNERS OF SDN
The idea of breaking the control and data plane is not
introduced the first time rather it is the result of several
efforts made of separation of planes like Network Control
Point [9], ForCES [10], Ethane [11], Active Networking [1]
etc. Fig. 1 illustrates the evolution of different technologies
that lead to the development of SDN at the time scale starting
from 1995 to 2015. ActiveNetworkingwas the first attempt in
this direction as they suggested that network element should
have the capability to perform computation and modification
of packet. Programmable Switch and capsules are the two
distinct approaches suggested by the active networks. How-
ever, it doesn’t provide a clear picture of separation. Soon
NCP came into light which defined clean separation image.
It was initially meant for telephone network and introduced
by AT&T networks. The idea suggested by NCP leads to
several innovations in the field.

ForCES was another major effort introduced in 2003.
ForCES separated the control logic of individual data plane
devices and made them available at the centralized location.
However, this centralization was not complete one which we
supposed to have because each control element interacted
with their corresponding data plane element. So we can call it
as partial centralization. In ForCES architecture, Forwarding
Element typically implemented in hardware and responsible
for filtering and forwarding approaches. On the other hand,
Control Element works with the coordination between indi-
vidual devices in the network for communicating the forward-
ing and Routing Information of all devices. Fig. 2 illustrates

FIGURE 2. ForCES architecture.

VOLUME 6, 2018 36257



M. Paliwal et al.: Controllers in SDN: A Review Report

the architecture of ForCES. The Router Blade of the under-
lying forwarding devices interacts with the corresponding
Control Blade module through the Switch Fabric Backplane.

Ethane [11] was also one of initiative in this direction.
It was introduced in a paper entitled as Rethinking Enterprise
Network Control in 2007. Some of the features supported
by Ethane were binding between packets and their origin,
centralization of registration and topology management.
In Ethane architecture we call controller as Ethane Controller.
Fig. 3 illustrates the Ethane architecture. In the architecture,
all the network elements are directly connected to the Ethane
Controller. The Ethane controller links to other modules like
Registration, Policies, and Binding etc. Registration module
makes an enrollment for the new network element. Policies
define the filtering criteria upon which the network traffic
should be monitored and forwarded. Network Topology
module prepares an annotated graph of network elements
along with the link characteristics. The module can range
from simple to complex which carries the additional network
information.

FIGURE 3. Ethane architecture.

OpenFlow [3] provides a set of protocols for effective
communication between the control plane and data plane.
It is supported by open source community. It first made its
appearance in 2008 by Martin Casado at Stanford University.
The appearance of OpenFlow was one of the main factors
which gave birth to Software Defined Networking. Open
Flow provides an open source platform for Research Com-
munity. It consists of a rich set of protocol specifications at
the controller and switching element side.

III. ARCHITECTURAL ELEMENTS OF SDN
We divide the elements of SDN based on their corresponding
plane. Fig. 4 gives a brief idea about the SDN element distri-
bution. This section introduces each element along with their
importance in SDN architecture.

A. INFRASTRUCTURE
The infrastructures at data plane consist of networking ele-
ment i.e. routers, switches etc. which form the data plane.
These devices perform the data forwarding based on the

FIGURE 4. Architectural overview of SDN.

control decision. The control logic is the driving force behind
these devices. The difference lies in the fact that the con-
trol logic is not distributed among these devices rather it
is available at the centralized server. In today’s scenario,
we have a wide range of networking devices with OpenFlow
supports like Open Vswitch [2], [12] from open source com-
munity, ofsoftswitch13 [13] from Ericsson, pica8 3920 [14]
from pica8, contrail-vrouter [15] from juniper networks,
RackSwitch [16] from IBM etc. On the other hand,
Control plane consists of the server or cluster of the server
(Distributed SDN) which performs the task of the controller.
The controller usually termed as network brain because all
the logic functionality implemented in it. The controller
performs various tasks like building flow entries inside the
routing devices, keeping track of packet information (flow
statistics) etc.

The flow entries stored in a table (called as Flow table)
can be considered similar to the Routing table in traditional
networking architecture. Flow table consists of three portions
matching rules, Action and Counter. Matching rules are the
set of different fields of TCP/IP header portions like MAC
address, Source IP, Destination IP, VLAN ID etc. A specific
value of these fields for a packet constitutes a flow. Second
field Action comprises of operation which has to be per-
formed on the packet for processing. A typical action can be
anything e.g. forward packet to the specified port, drop the
packet, send to normal processing pipeline etc. The default
action for each packet is forward to the controller. It means if
the router doesn’t contain the entry for the particular flow then
it passes the packet towards controller for further processing.
Once this packet gets process by the controller, it gets sent
back to that router along with the flow entries. Now the router

36258 VOLUME 6, 2018



M. Paliwal et al.: Controllers in SDN: A Review Report

processes the packet according to that particular flow entry.
The last field Statistic stores various counting information
like how many packets get pass from the specific port, how
many packets for a destination address get process etc. This
information can be grouped based on per flow, per table, per
port basis [13], [15].

B. SOUTHBOUND INTERFACE
The southbound interface provides a means of communica-
tion between the controller and switching devices. It installs
the appropriate flow rules in the switch forwarding table
decided by the controller. OpenFlow is the most widely
deployed southbound standard from open source community.
OpenFlow provides various information for the Controller.
It generates the event-based messages in case of port or link
changes. The protocol also generates a flow based statistic
for the forwarding device and passes it to the controller.
Packet IN message sends in the case when a router doesn’t
know how to handle the new incoming packet. However, this
is not the only choice for the southbound interface. Other
interfaces include Open vSwitch Database (OVSDB) [17],
ForCES [10], OpFlex [18] etc.

OVSDB is a southbound API designed to provide addi-
tional management capabilities like networking functions.
With OVSDB we can create the virtual switch instances, set
the interfaces and connect them to the switches. We can also
provide the Quality of Service (QoS) policy for the interfaces.
OpFlex southbound API contrasts to the OpenFlow API to
some extent. OpFlex allows forwarding devices to deal with
some of the management functionality. Initially, it abstracts
the policies from the underlined plane and decides which
functionality to be placed where.

C. NETWORK OPERATING SYSTEM
Network Operating System is the brain of the SDN,
implemented in the controller. The NOS should provide
the basic functionalities similar to a basic operating sys-
tem. These functionalities include execution of the program,
management of input/output operation, provide security and
protection mechanism etc. Beside this, a network operat-
ing system provides networking functionalities like topology
related function, shortest path forwarding etc. In contrast to
the traditional IP network, the NOS in SDN is implemented
in a logically centralized way. Based on the architecture and
design aspects we can define two categories of NOS which
are centralized and distributed. Some of the controller avail-
able in SDN domain are Onix [19], PANE [20], Fleet [21],
ONOS [22], Meridian [23] etc.

D. NORTHBOUND INTERFACE
The northbound interface provides connectivity between the
controller and the network applications running in manage-
ment plane. As we already discussed that southbound inter-
face has OpenFlow as open source protocol, northbound lacks
such type of protocol standards. However with the advance-
ment of technology now we have a wide range of northbound

API support like ad-hoc API’s, RESTful APIs etc. Soon we
hope for the common standard for northbound API as SDN
is growing day by day. The selection of northbound interface
depends on the programming language used in application
development. NOSIX [24] was the first approach towards
the northbound interface implementation which was indepen-
dent of programming language and controller aspects. The
emergence of common northbound API is a critical task as
the requirement of each networking application can vary. For
example, a security application can have requirement differ-
ent from the routing applications. The Northbound interface
working group fromONF community are working already on
the common standardization of northbound API.

E. NETWORKING APPLICATIONS
Network applications available at management layer are
responsible for implementing the control logic, which pro-
vides an appropriate command to be installed in the data
plane. The network applications are broadly divided into
five categories, which are Traffic Engineering, mobility and
wireless, measurement and monitoring, security and depend-
ability and data center networking. Various types of network-
ing applications can be implemented at management level
e.g. load balancing, traffic optimization, QoS Enforcement,
Predict application workloads, Fine-grained access control
etc [20].

IV. CONTROLLER CATEGORIES
Software Defined networking makes use of two types of
controllers which are Centralized and Distributed. Fig 5
describes the classification of the various controllers into two
categories.

A. CENTRALIZED CONTROLLER
Centralized Controllers implement all control plane logic at
a single location. In such controller, the single server takes
care of all control plane activities. The main benefit of such
controller is simplicity and management as they provide a
single point of control. However, they suffer from scalability
issue because each server has limited capacity to deal with
data plane devices.

1) BEACON
Beacon [25] is one of the most popular open source central-
ized controller in SDN. It was designed on Java platform
by Stanford University and Big Switch Network in 2010.
We are not claiming that it was first and only available
open source controller because NOX [26] was originally
introduced as open source in 2008. However, initially, it was
available for the single threaded environment. But soon it
came up with multithreading solution named NOX-MT [27]
in 2011. Beacon got so much popularity because of its
importance in the research community. There are three main
objectives of Beacon development - provide developer side
productivity, achieve high performance and increase runtime
capability to stop and start application. From programming

VOLUME 6, 2018 36259



M. Paliwal et al.: Controllers in SDN: A Review Report

FIGURE 5. Controller classification.

language perspective C#, Java and Python were selected for
beacon implementation. Lack of official support for different
operating system platform eliminated C# as a choice for
implementation. Similarly, python was eliminated because of
the lack of true multi-threading support. So they only left
with java which provides effective memory management and
proper segmentation fault and memory leaks handling.

From developer productivity point of view, Beacon pro-
vides a rich set of libraries for application development. For
example, for routing purpose, they provide IRoutingEngine
interface which is helpful for designing different routing
modules. Shortest path routing [28] is one of the well-known
examples of routing module which can be implemented
through this interface. For network topology, it provides
ITopology interface which contains a set of operation to
retrieve information related to link discovery, link registra-
tion/deregistration. To get the benefit of OpenFlow protocol,
it uses OpenFlowJ API which is the Java-based implemen-
tation of OpenFlow 1.0 specification. So beacon can inter-
act with the OpenFlow switches through IBeaconProvider
interface. Code reusability is an important property of object-
oriented languages. Beacon achieves this through a library
called Spring. Through this, it can create multiple instances
of an object and bind them together into a single entity.
Beacon also provides other facilities like Device Manage-
ment, web application development etc. through various
available interfaces.

To deal with the runtime modularity feature, beacon pro-
vides Open Services Gateway initiative (OSGi) specifica-
tions [29]. Like OSGi specification, Equinox provides facility
to create a new instance of the application at runtime. Now not
only you can start and stop existing application at runtime but
also create a completely new application. One more specifi-
cation is OSGi service registry which allows new services to
register themselves so that user can pick any service from the
pool based on their requirement.

Performance is a major challenge in any networking
design. From controller perspective, we define the perfor-
mance based on two parameters - time required to process
a single request and the number of input packet request
it can handle in per unit time. Proper event handling can
lead to effective performance in any architecture. In Beacon,
they have provided a pipelining of messages. A shared
queue is implemented which contains the packets from all
switching elements. Any worker threads in the controller
can pick available message request and execute it. For that
purpose, IOFMessageListener should register with IBeacon-
Provider [25].

2) ROSEMARY
Sometimes it happens that network application interferes
with the controller program and allows it to malfunction.
Rosemary [30] offers the feature of controller resiliency in
which third-party applications can perform interference. It is
possible that they perform maliciously themselves but can-
not harm the controller functioning. In Rosemary, the NOS
is designed in such a way that it provides some sort of
security corresponding to OpenFlow applications. It also
makes a sandbox like structure around each application. The
NOS architecture specially designed as Micro-NOS architec-
ture [31]. The three design pillars of this architecture are-

i) Schedule each network application separately in differ-
ent address space other than the controller.

ii) Implement a resource monitoring system so that we can
track the resource consumption pattern of each application to
find out its behavior.

iii) Introduce a permission structure for each micro NOS
instance so that we can allow constraints for each instance
regarding libraries, resources etc.

During the design of Rosemary, two important issues
were robustness and security. Researchers found that network
application doesn’t support the robustness property because

36260 VOLUME 6, 2018



M. Paliwal et al.: Controllers in SDN: A Review Report

they work in the same privilege zone in which network OS
applications are running. Also, it lacks resource manage-
ment facility as each application can demand any number of
resources for task executions. It was monolithic type archi-
tecture. These two factors allow enforcement of separate
process context for network applications. From a security
point of view, they found that network applications don’t
need any authentication procedure for initialization of task
execution. Access control mechanisms did not adapt properly
so resource access could be done in an unsolicited way. These
two factors allowNOS to incorporate security paradigm in the
design architecture [31].

Based on these issues the design, of rosemary separates
the network application’s context from the controller context.
They made a compartment for each shared module of NOS
applications. Each time when an application needs resources
it first contacts the NOS kernel. NOS kernel performs some
scheduling activity like fair share scheduling to grant the
resources to the application [30].

While performing the tasks, NOS should ensure that it
should create a clear view of network application e.g. shared
resources, functions, libraries etc. The abstraction should be
minimal so that it can achieve maximum performance. The
design also ensures that proper balancing should be there
between robustness and performance. Sometimes it happens
that enforcement of too many constraints leads to latency
overhead and the system cannot accept a large number of
requests. The NOS takes care of this by implementing the
light weighted architecture.

3) MAESTRO
The main factor for the design of any system is high per-
formance with parallelism. Consider the case of Datacenter
network design [32]. Datacenter network should be capable
of acceptingmultiple requests at the same time. It should have
proper scheduling strategies [33] to schedule the requests
from multiple users. Design should also be inspired by the
fault tolerance [34] issues so that it can continue work even
in the case of partial failure.

The same issues are important while designing any con-
troller. Maestro [35] deals with these issues. It is a java based
multithreaded controller from Rice University. It explores
additional throughput optimization technique to achievemax-
imum performance with exploiting parallelism. If we observe
the basic working of any controller then we find that first
packet is sent to the controller each time. After perform-
ing a security check, the controller carries path calculation
and push appropriate flow entries in the data plane. This
scenario performs well when a number of packet request
are small. But in case of datacenter like a scenario where
around 10 million requests arrive per second, it is not a good
choice.

To deal with this, Maestro introduces the concept of batch-
ing. Multiple requests are grouped in a single batch from
users. Once a thread is free it can pick any available pending
request from the batch and start executing it. The availability

of threads depends upon the number of cores. Maestro allows
multiple flow requests execution by different worker threads.
Through this, we can achieve the parallelism which is first
design issue in maestro design. There are some design con-
siderations in threads. First, how we can divide the available
requests among the threads? One solution is to distribute the
requests fairly among the available cores/threads by intro-
ducing a dedicated task queue for each thread. However,
there can be a drawback of this as the idle thread cannot
take care of requests for other threads. Also, demand for
each request can be different with varying number of CPU
cycles. The second issue in design is core binding. Many
times it happens that when we move the actively running
code from one CPU to another CPU, the complete processing
fails if both cores don’t share a common cache. In such
case, manual synchronization is needed of core states and
cache to continue execution in a new environment. It is called
core binding which is an overhead for the system. Alternate
solution for this is to perform all execution of one task at
single core irrespective of execution time. Thread binding
is also a solution in which the thread first checks its own
dedicated task queue for execution. Once it is empty then it
accesses shared queue to pick any available pending request.
Each queue should specify some threshold while growing too
large in size. In Maestro there is provision for task priority.
Different tasks have different priorities e.g. output stage has
the highest priority and input stage has low priority process.
The reason for assigning lowest priority to input stage is that
they are shared in the raw packet task queue. Tasks, which are
in flow process stage, possess medium priority.

Maestro introduces threshold to raw packet task queue
which is called Pending Raw-Packet Threshold (PRT) [35].
PRT has importance in deciding the pending task quantity in
the queue. When the tasks in the pending queue have more
number of requests then the PRT, the incoming tasks are
paused to maintain the queue size. Similarly, if the numbers
of tasks are small then input requests are resumed. Now the
question is how to decide the size of PRT. The PRT should
have enough size so that raw packet task queue cannot be
completely empty.

Maestro also provides a rich set of interfaces and libraries.
Discovery is one of application, which continuously sends
probing messages to switches, to find the status of the newly
joined switch. When the discovery routine finds the return
LLDP probing message, then it can decide that from where it
is getting the message so that it can determine the topology of
the system. IntradomainRoutingapplication allows update in
routing table once the topology gets changed. Authentication
application takes care of security check constructs. Once it
passed then the RouteFlow application can determine the
appropriate path for the request. How does one ensure that the
RouteFlow application is using correct routing table during
the update procedure? For this, maestro allows execution of
path selection of current request through older routing table to
maintain the consistency in the result. Once the update takes
place it will apply for upcoming requests [35].

VOLUME 6, 2018 36261



M. Paliwal et al.: Controllers in SDN: A Review Report

4) NOX-MT
Throughout the development of SDN architecture, the main
concern was about the controller performance. Two main
questions of interest are-

i) How fast the controller processes input data path request?
ii) What is the capacity of the controller i.e. how many

requests it can handle efficiently?
SDN community got various suggestions from researchers

about this. Kandula et al. [36] presented a cluster of about
1500 servers which faces 100k flow request per second.
Benson et al. [37] denoted that a network having 100 switches
can experience 10M flow requests per second in the worst
case.

NOX [27] was originally introduced as single threaded
open source control platform to study the performance char-
acteristics of SDN architecture. Later a multithreaded version
of NOX was introduced as NOX-MT [27] which uses I/O
batching for optimization purpose. During the packet for-
warding, NOX performs a mapping between a MAC-switch
tuple and port number for each switch and store them into a
hash table data structure. The read operation only needs to go
through the hash table. A new source MAC address requires
an update in the hash table. The numbers of new source MAC
addresses events are restricted by the total number of hosts
and switches in the network. They are directly proportional
to the product of a number of hosts and number of switches.

The result obtained from NOX-MT shows improvement in
the performance by a factor of 33 in comparison to NOX.
Although, NOX-MT shows a significant improvement in
performance but still did not address some of the difficulties
of NOX e.g. heavy use of Dynamic memory allocation,
redundancy in multiple copies for each request etc.

5) MERIDIAN
Meridian controller was originally designed for the applica-
bility of SDN architecture in a cloud environment. The idea
was to build a service level network that can support features
like policy abstraction, high connectivity in the cloud. SDN
fits perfectly to the cloud architecture either in Infrastructure
as a Service (IaaS) or Platform as a Service (PaaS).

The Meridian cloud network architecture, which is SDN
architecture for cloud networking, is mainly organized as
three different layers. The first layer is Abstracted API layer
responsible for exposing the required abstracted details for
the network model. For example, Topology abstraction is one
kind of functioning in which abstracted view of the topology
of underlying network is presented to the networking applica-
tions. The level of abstraction can differ from application to
application. Cloud orchestrator requires a detailed and com-
plete topology information as it needs to decide that where the
virtual machine should be placed. On the other hand, Control
application requires topology along with different path infor-
mation for controlling the networking devices. Second layer
NetworkOrchestration layer collaborates with the abstraction
layer to convert the logical command into their corresponding

actions. Orchestration layer has an additional responsibility
to generate the network services e.g. routing action, shortest
path computation etc. It does proper coordination with other
layers so that application requests can be mapped success-
fully to the underlying physical devices. NetworkDriver layer
is the lowest layer of the model which serves as an interface
between the controller and various networking tools. The
layer consists of plugins or drivers which allow devices to
work accordingly to the command issued [23].

Meridian was originally based on the design of Flood-
light controller. Floodlight is a java based controller which
supports various network service e.g. path discovery, link
level information discovery etc. Certain modules are added
in the design of Floodlight to achieve then required goal of
Meridian controller. Meridian service model organizes the
whole system in five different parts. First, endpoints are the
basic network entities. For a Virtual machine, we can consider
it as a virtual interface. Endpoints are combined together
to form a group which possesses some common properties.
Services are provided as the functionalities e.g. new routing
module, traffic filtering module etc. Two or more groups
can be combined together along with required services and
termed as a segment. Formally it is defined as three tuples set
{g1, g2, ser} where g1 and g2 are the two groups and the ser is
the required services. Finally, all these subnets linked together
to form a virtual network. In virtual networks different ser-
vices can be placed on the different subnets and a connectivity
link is provided between them. A typical example of all these
elements is Web services model. In this model, servers are
placed at tier 1 subnets which are called web server. Tier 2
subnet contains the application which interacts with the web
server to use the services. Finally, there is application subnet
link to the database subnet which is presented on tier 3 [23].

6) OPENDAYLIGHT
The opendaylight project started with the concept of model-
driven software engineering (MDSE) approach. Its architec-
ture is inspired by the Beacon and makes use of Open Service
Gateway Interface (OSGi). MDSE consists of a framework
which defines the models and relationships among them.
The different models communicate with each other by data
modelling language. These models are platform independent
to support the different business policy needs. NETCONF and
RESTCONF are used as a model-driven network manage-
ment protocol. The basic operations supported by NETCONF
are Create, Retrieve, Update and Delete. Besides this, it also
supports Remote Procedure Call (RPC) operation. The data
encoding technique used in NETCONF is based on XML to
support data configuration and operation. Another configura-
tion protocol is RESTCONF which is similar in some aspect
to the typical REST-like protocol. This protocol is responsible
for providing programmatic interface over the HTTP [38].

YANG is used as a modelling language so that models can
communicate with each other. Initially, YANG was used to
configure the models but later it was used to describe the
other network constructs i.e. services, policies, protocols etc.

36262 VOLUME 6, 2018



M. Paliwal et al.: Controllers in SDN: A Review Report

FIGURE 6. OpenDaylight architecture (network view).

The data structure used by the YANG is a tree structure. The
internal structure of tree can be further complex i.e. lists and
unions [39].

While developing the OpenDaylight controller certain con-
siderations are taken. The controller should be flexible.
It should provide a common configuration platform for dif-
ferent application development. The system should support
runtime modularity for the addition of models at runtime.
The modularity should meet the performance and scalability
feature [38].

Fig. 6 describes the network view of OpenDaylight con-
troller architecture. The OpenDaylight architecture con-
sists of a set of North Bound and South Bound plugins
which are separated by the Service Adaption Layer (SAL).
At the Southbound side, the plugins are Openflow, Netconf
Client, PCEP etc. Similarly, North Bound plugins consist of
Topology exporter, Forwarding Rule manager, Statistics
Manager etc. To meet the objective of the OpenDaylight,
the SAL is modified using the model-driven software
engineering concept and termed as Model Driven Service
Adaption Layer (MDSAL). Following are the certain points
regarding the MDSAL.

i) An RPC is a call from a consumer to the provider which
is processed either locally or remotely. The call connection is
of one to one type.

ii) A Notification is a reply expected by the consumer from
the provider side.

iii) The Data store is a tree-like logical structure described
by the YANG schemas.

iv) A Path is the location of the specific leaf in the tree.
Fig. 7 describes the architecture of MDSAL. It consists

of two different brokers for data handling. DOM Broker

deals with the runtime activity of the architecture. Binding
aware broker deals with the JAVA APIs for plugins. BA-BI
Connector works as a mediator between the DOM broker and
Binding aware broker. To implement the dynamic late bind-
ing, the BA-BI connector works along with Codec Registry
and Codec Generator.

B. DISTRIBUTED CONTROLLER
In comparison to centralized controllers, distributed con-
trollers have advantages in case of scalability and high
performance during increase demand of requests.

1) HYPERFLOW
HyperFlow [40] is the first distributed control plane designed
for OpenFlow. The original design of HyperFlow is inspired
by the NOX [26]. The design is distributed because of
physical availability of different controllers but they form a
logically centralized environment. There are certain issues
pointed out during the design e.g.When the switches increase
in their quantity than the traffic increases towards the cen-
tralized controller. In such condition, centralized control
becomes a bottleneck. To handle such scenario we need
multiple controller replicas physically distributed over a geo-
graphical area. This large network size gives rise to long
flow setup latency for switches. The processing power of
individual controller is also a significant issue.

FlowVisor [41] has a similar design to HyperFlow but
it allows resource slicing so that each slice takes care
by corresponding controller instance. HyperFlow uses pub-
lic/subscribe message system to send the event messages
towards another controller. During message passing, it is

VOLUME 6, 2018 36263



M. Paliwal et al.: Controllers in SDN: A Review Report

FIGURE 7. MD-SAL design.

necessary that we have persistent storage of events because
there may be a chance of reordering of event list for a con-
troller during network partitioning into slices. To adopt such
feature HyperFlow makes use of WheelFS [42] which is a
distributed file system for distributed applications. When the
network gets partitioned WheelFS continues its functioning
in each partition. Controllers in one partition don’t receive
any messages from other partition controllers.

In HyperFlow design, each controller can only program the
switches which are directly controlled by it. While to control
other it publishes a message which contains the source con-
troller identifier, target switch identifier, and local command
identifier. Each controller continues to send periodic mes-
sages to show its presence in the network. If any controller
fails to send a message within three advertisement intervals
then it is assumed to be failed. In this condition, the switches
associated with failed controller needs to migrate to some
other controller to continue operation. The control applica-
tion should not depend on the temporal ordering of events
until they belong to same switch or links because different
controllers see different ordering of events. HyperFlow also
supports the Authoritative controller to ensure the correct
operation of each case [40].

2) SMARTLIGHT
SMaRtLight [43] is designed to address the fault tolerance
issue in the network. Three aspects of failure are discussed in
it which are a switch or link failures in the data plane, switch-
controller connection failure in the control plane and failure
of the controller. The controller is designed by extending the
Floodlight [44] controller. Lease management application,
One to one mapping between switches and data store connec-
tion, caching support for data store are major changes which
are carried out in Floodlight for SMaRtLight design.

To achieve fault tolerance, we assign the job of overall
network management to a single controller which is called
primary controller while other controllers act as backups.
In the case of failure of primary a smooth transition is per-
formed to choose one of the back-ups as a new primary.
The controller stores all the application related data in a
shared data store which is implemented through Replicated
State Machine (RSM) [45]. Shared data store keeps all the
state related information to the application like Network
Information Base (NIB). During the transaction from the fail
controller, the new controller gets a complete update from the
data store.

The design also keeps a cache for fast access to state
information. Now we don’t need to access data store again
and again for a simple read operation. The cache is also
free from synchronization aspects because at a time only one
controller is using it.

The system is arranged in such a way that switches
can directly connect to a controller but not to data stores.
Controllers are available in between the data store and
switches so they can communicate with both. Based on mes-
sage passing paradigm we can say that process p is connected
to process q if the request sends by p can be answered in
a predefined time interval by process q [43]. System design
gives three main facts to detect the failure of the component.

i) If a switch is connected to all correct controllers and it
has not crashed then it is working correctly.

ii) If a controller is connected to all data servers and it has
not crashed then it working correctly.

iii) If a data store is well connected to all correct data
servers and running the recovery protocols then we can say
that it is working correctly.

Initially, all the switches have controller’s role as EQUAL.
Once a Primary gets selected the primary replica changes its

36264 VOLUME 6, 2018



M. Paliwal et al.: Controllers in SDN: A Review Report

status in all switches as MASTER. Eventually, this leads to
change the role of other controllers as SLAVE in all switches.
Few points to be noted while interacting the controller repli-
cas as at any point of time there can be only one primary
replica in the system. Once primary replica fails some correct
controller replicas can claim to become the primary. Each
replica must generate an acquireLease(id;L) message which
should be sent to the data server. The parameter id defines the
id of replica and L defines the lease time require. The reply
message from data store contains the id of primary replica.
If any controller receives id its own from data server then
it becomes eligible to be MASTER otherwise, nothing will
happen and lease time will be updated for the current primary.
Data store is designed in such away that it works on key-value
store interface which supports a basic operation like put, get,
remove, list, etc. It also supports a cache for fast access to
state information [43].

3) ONOS
Open Network Operating System (ONOS) [46] is the Open
source, Distributed Controller designed for SDN environ-
ment. It is mainly designed to address the scalability,
availability, and performance issue. The major challenges
identified are-

i) Achieve high throughput: about 1M requests per second.
ii) Latency should be in 10-100 ms range for event

processing
iii) State size for network which is order of 1TB
iv) Achieve high availability 99.99% for services
Similar to HyperFlow it supports logically centralized but

physically distributed controller architecture. Two prototype
specifications are defined for the ONOS. Prototype 1 focuses
on building network architecture which provides a global net-
work view with fault tolerant and scalability features. It was
originally based on open source single instance controller,
Floodlight [44]. Prototype 2 focuses on improving the per-
formance of overall system. To achieve this, they emphasized
on a number of remote operation and time required to process
them. This should be kept as small as possible.

To achieve high performance in the system, RAMCloud
data store [47] is used which provides latency in the range
15-30 ms for read/write operation. Topology cache support
is provided to reduce the time for most frequent read oper-
ations. Faster lookup can be possible through in memory
topology view. The polling issue is addressed by implement-
ing public-subscribe event notification and communication
system based on Hazelcast [48]. Network View API is also
simplified and contains major three areas - Topology abstrac-
tion, Path installation system, and events. Table 1 discusses
the various characteristic aspects of the controller in central-
ized and distributed domain.

4) FLEET
Fleet [21] is one of the first controllers which addressed
the malicious administrator problem. The idea is to prevent
the controller from malfunctioning because of malicious

administrator configuration. The administrator can damage
the routing, forwarding, network ability of controller.
It has been observed that human errors are responsible for
50% to 80% network outages [49]. The malicious network
administrator can easily degrade the performance of the
system by misconfiguring the controller.

The objective of Fleet design is to prevent the k mali-
cious administrators among n administrators from further
affecting routing, forwarding and availability in the system.
It is assumed that the number of network administrators
for a network is restricted to at most 10. Switches in the
system are installed with authentication scheme so that they
can verify controller. The non-malicious administrators are
grouped and they follow a single routing policy among them.
Besides this, all administrators have proper communication
to each switch for message exchange. The probability of
compromise, Protocol Overhead and Recovery time are the
metrics considered for measurement. The first metric is used
to find out the possibility that amongst the given controllers
a group of k controllers will have different network configu-
ration compared to non-malicious controllers [21]. Protocol
overhead specifies computational overhead which is carried
out by the system from the time when failure first introduced
in the network and a fix is performed on the same. Total time
duration denotes the third parameter recovery time.

The basic building block of Fleet architecture is Adminis-
trator Layer and Switch intelligence Layer [21]. These lay-
ers are arranged in logically centralized manner but physi-
cally they are distributed across various controller instances.
Switch intelligence layer interacts with its corresponding
switch and operates on each switch. Two versions of Fleet
design are suggested by the researchers. They are- single
configuration approach and multi-configuration approach.
In single configuration approach, all the administrators agree
upon a single threshold value for making a high-level routing
decision which is installed in corresponding switches. On the
other hand, the multi-configuration approach allows a set of
n different routing configuration decisions from the different
administrator and select anyone for particular switch flow
based on metrics.

5) ONIX
SDN requires a common control platform which allows
implementing various control functions like routing, access
control, traffic engineering etc. ONIX [19] is introduced
as distributed controller offering such a common control
platform written in C++. There are certain challenges for
designing common control platform.

The control platform should ensure that it provides various
functionality for management application in various contexts.
Scalability is the need for any network architecture so control
paradigm should meet this requirement.

i) It should be reliable to handle failure in the system.
ii) It should provide a simplified structure for building

management application.

VOLUME 6, 2018 36265



M. Paliwal et al.: Controllers in SDN: A Review Report

TABLE 1. Characteristics comparison of controllers.

iii) Control plane functionality should not enforce addi-
tional burden on the overall functioning of the system to deal
with performance and latency issues.

Onix allows its instance to be written in multiple languages
which subsequently run in different processes. Currently,
Onix supports C++, Python, and Java for implementation.
Some of the management application built on the top of Onix
instances are Multi-tenant virtualized data centers, Scale-out
carrier-grade IP router, Distributed Virtual Switch etc. The
NIB stores all the state information of the Switches and func-
tion supported by Onix API. Query, Create, destroy access
attributes, notifications, synchronize, configuration and pull
are certain functions supported by Onix API [19].

6) PANE
The idea of PANE [50] controller suggests that there should
be a configuration API between user and control plane.

In networking scenario, it happens that many times the
required condition cannot be fulfilled instantly but we can
reserve it for future. Configuration API does the same thing.
It applies greater visibility and control over the network to
make a required reservation. PANE deals with two problems-
decomposition of control and visibility in the network,
conflict resolution among the users and their requests.
Decomposition of control and visibility can be resolved
with the use of Privileges. Similarly, request conflict can be
resolved by making use of conflict resolution operator and
using the Hierarchical flow table.

Principals in PANE are end users or more specifically
application running on their behalf. The principal can inter-
act with three types of messages which are request, query
and hints. The request message is used to take control over
the resources e.g. bandwidth or access control. Query mes-
sages are used to gain information about the network states.

36266 VOLUME 6, 2018



M. Paliwal et al.: Controllers in SDN: A Review Report

Hints messages indicate the future demand of systems or
possible future behaviour of the system. The principal should
be limited in their authority. For this, PANE introduces the
concept of the share which is a combination of principal,
privileges and flow group. A share indicates that which
principal can issue which message for which flow. Based
on the different shares it prepares a share tree. Share tree
does not itself introduce any new policy in the system while
it applies a constraint to the existing policies. Policies and
share tree combined together to form a policy tree. It may be
possible that two policies can conflict with each other over
some criteria. To avoid such condition policy tree are well
organized in Hierarchical Flow Tables [50].

The request in PANE is processed in step by step manner.
First, a principal generates a request regarding requesting a
resource or something else and passes it to the controller.
It should be noted that only an authenticated principal can
send a request message to the controller. PANE first checks
for the integrity of the message and if the messages follow the
specified criteria and are compatible with network state. If the
request gets passed successfully than it gets added to the tree
and controller installs appropriate policy in the network.

Conflict resolution in PANE takes place through the con-
flict resolution operator which is used in the Hierarchical
Flow Table. For each of the two conflicting request three
types of operators can be applied they are +D, +P and +S.
The conflict request can have different types of relationship
to each other like they can be siblings, they can be parent and
child to each other or they can belong to the same share. Based
on this relationship PANE applies the appropriate operator.
+D operator is used to avoid conflict when both the requests
belong to the same share. +P operator is used when the
requests follow the parent-child relationship to each other.
+S operator applies when both requests are siblings. Based
on the operator PANE introduces very simple procedures
as in the case of a parent-child relationship, child request
overrides the parent request. Similarly, in the case of siblings,
Deny request will be overridden by the Allow request. The
+D and+S operator in the PANE have similar meaningwhile
dealing with conflict resolution procedure [50].

Each request gets processed in either strict mode or
Partial mode. In strict mode, it is necessary that the required
condition should hold clearly for each packet. No relaxation
is allowed in strict mode. For example, if an application is
demanding for 50 Mbps bandwidth then it is necessary that
result of HFT must allocate 50 Mbps bandwidth to it. On the
other hand in partial mode, there can be a relaxation for
the required condition. For a similar example, the required
bandwidth 50 Mbps can be get relaxed with the 40 Mbps
bandwidth. Each of these two modes has their own advan-
tages and they purely depend on the network application
behaviour. Another point of interest in PANE design is Net-
work Information Base which stores the network element like
switches, ports, queues etc. and their corresponding capabili-
ties. NIB translates the logical action into their corresponding
physical actions and holds the necessary information related

to the switch characteristic vendor, version, and statistic
details [50].

Just like other controllers, PANE also contains fault tol-
erance and Resilience procedure. Two types of failures can
be possible in network one is the failure of networking ele-
ments i.e. links, ports, switches etc. Second is the failure
of the controller itself. In the case of link failure or link
modification, PANE controller recompiles the policy tree.
As we know that the link gets updated so the outcome of
the recompilation is not necessarily been available. If it is
not available then in such scenario controller processes the
request again and again to recreate a new policy tree and each
of the principal gets informed regarding this. To handle the
controller failure it stores the database instance into the log
by periodically checking the database. If the controller gets a
restart because of failure, the instance details copies from the
log record so that the controller can continue its functioning
like before [50].

V. PERFORMANCE ANALYSIS
This section discusses performance analysis among various
controllers discussed in the previous section. Two metrics
namely throughput and Response time are taken for analy-
sis. Throughput defines the number of input requests which
controller can handle per second. Access time defines latency
which is a time period required by the controller to process
the request.

Cbench [50] provides a platform to evaluate these param-
eters. The features offered by Cbench are a measurement
of maximum and minimum response time for controller
irrespective of a number of connected switches, throughput
measurement in bounded environment i.e. bounded number
of the packet on the fly, calculation of maximum throughput
etc. It operates in two modes i.e. latency and throughput
mode. In latency mode, each switch interacts with the single
request at a time until the processing is over and subsequently
proceeds for next request. Generally, low load condition is
considered for this case. On the other hand throughput mode
computes the maximum flow processed by the controller in
unit time.

Controller’s throughput performance is also evaluated in
theMultithreaded and single threaded environment. For com-
parative analysis of controller, system configuration assumed
to be having Intel Xeon E5-2870 processor, 32-64 RAM
with Ubuntu 11.10 or higher VM. Fig. 8 defines responses
of the controller in a single-threaded environment where
Onix is leading with 2.2M requests per second. Amongst
the discussed controllers Onix and Beacon are the only con-
trollers which show throughput over 1M/s. Onix has double
responses in the unit time period as compared to another
controller like NOX and ONOS. Ryu [52], Hyperflow and
POX [53] are amongst the controller having least response
time. For application development, which requires higher
throughput, Onix can be a preferred choice.

On the other hand, Fig. 9 shows the throughput perfor-
mance in a multithreaded environment where Beacon again

VOLUME 6, 2018 36267



M. Paliwal et al.: Controllers in SDN: A Review Report

FIGURE 8. Throughput in single thread environment.

FIGURE 9. Throughput in multithread environment.

leads in the range 4.6 – 11.9M responses/second. From the
graph, we can see steady growth in Beacon performance.
Threads are taken frommin 2 to max 12. In the graphMaestro
shows the performance up to 8 threads only. However, its per-
formance is much better than Floodlight which gives 1.39M
responses/second when number of threads are 12. NOX have
slightly high throughput performance compare toMaestro but
comparatively very low to Beacon.

Fig. 10 shows the latency performance based on average
response time for the single request. Onix has least response
time (latency) amongst the controllers. POX controller shows
the average response time in the interval of 100 to 200 which
is slightly higher than other controllers. POX is the only
controller which has response time over 100 µs. OpenDay-
Light, which shows latency higher than only Onix, is in the
category of low latency controller. PANE, NOX, Maestro and
Floodlight have latencies similar to each other.

We again took a set of controllers like Rosemary, NOX,
Floodlight, and Beacon to evaluate the throughput. Fig. 11
shows that Rosemary is leading in the chart up to 10 threads
and performs better than other controllers like Beacon etc.
But when the number of threads goes beyond 10 then the
throughput becomes stable and now beacon shows better
performance over it. So it’s clear from the figure that beacon

FIGURE 10. Latency in single thread environment.

FIGURE 11. Throughput comparison of popular controller in multithread
environment.

will be a preferred choice for a multithreaded environment
with a high number of threads. On the other hand, Flood-
light has throughput range in 0.27-1.06 M responses/second.
Fig. 11 represents that initially floodlight and NOX behave
similarly but when we gradually increase threads the differ-
ence of throughput among them becomes high. NOX shows
throughput near about 4 times in comparison to Floodlight at
16 number of threads.

Based on the overall analysis Beacon shows through-
put 5M/s-12.8M/s with having threads in the range from
2 to 12. NOX also have the near optimal throughput to Beacon
from 5M/s-8M/s. Maestro lacks this performance by hav-
ing throughput only 1M/s-5M/s. So in throughput scenario,
Beacon performs well over NOX and Maestro. Similar case
consider for latency calculation which shows a result that
Beacon has 24.7 µs (25 µs), Maestro has 55 µs and NOX
has 50 µs of latency.

VI. CONCLUSION
Software Defined Network reforms the existing network
design by introducing the control in a centralized way.

36268 VOLUME 6, 2018



M. Paliwal et al.: Controllers in SDN: A Review Report

Bringing routing control functionality at the centralized
location relax the forwarding devices working. All the intel-
ligence of SDN comes from the controller that acts like the
brain of the system. The capability of the controller can be
defined by the number of requests it can handle from the
switches. Various modules inside the controller take care of
network discovery, path discovery, flow pushing functionality
etc.

The centralized controller provides simplified architecture,
efficient handling of request messages but it fails to address
the scalability issue. On the other hand, Distributed con-
trollers perform well at scalability issue and give maximum
throughput with high availability but they require proper
message exchange procedure in the cluster.

Both categories contain controllers from open source as
well as dedicated vendors. Open source controllers like
ONOS, Beacon, OpenDaylight provide rich community sup-
port to go through the SDN concept in brief. We can also
categorize the controllers based on their uses in industry and
academia. Selection of controller depends upon the various
criteria like a single thread, Multithread etc. The choice of
controller for academia can differ from industry.

REFERENCES
[1] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and

G. J. Minden, ‘‘A survey of active network research,’’ IEEE Commun.
Mag., vol. 35, no. 1, pp. 80–86, Jan. 1997.

[2] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
‘‘Extending networking into the virtualization layer,’’ in Proc. Workshop
Hot Topics Netw., 2009, pp. 1–6.

[3] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus net-
works,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[4] K. Sood, S. Yu, and Y. Xiang, ‘‘Software-defined wireless networking
opportunities and challenges for Internet-of-Things: A review,’’ IEEE
Internet Things J., vol. 3, no. 4, pp. 453–463, Aug. 2016.

[5] H. Kobo, A. Abu-Mahfouz, and G. Hancke, ‘‘A survey on software-
defined wireless sensor network: Challenges and design requirements,’’
IEEE Access, vol. 5, pp. 1872–1899, 2017.

[6] H. Zubaydi, M. Anbar, and C. Wey, ‘‘Review on detection techniques
against DDoS attacks on a software-defined networking controller,’’ in
Proc. PICICT, 2017, pp. 10–16.

[7] A. Neghabi, N. Navimipour, M. Hosseinzadeh, and A. Rezaee, ‘‘Load
balancing mechanisms in the software defined networks: A system-
atic and comprehensive review of the literature,’’ IEEE Access, vol. 6,
pp. 14159–14178, 2018.

[8] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A compre-
hensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[9] D. Sheinbein and R. Weber, ‘‘800 service using SPC network capability,’’
Bell Syst. Tech. J., vol. 61, no. 7, pp. 1737–1744, 1982.

[10] A. Doria et al., Forwarding and Control Element Separation (ForCES)
Protocol Specification, document RFC 5810, Internet Engineering Task
Force, 2010.

[11] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,
‘‘Ethane: Taking control of the enterprise,’’ in Proc. Conf. Appl. Technol.
Architect. Protocols Comput. Commun., 2007, pp. 1–12.

[12] (2013). Open vSwitch. [Online]. Available: http://vswitch.org/
[13] E. Fernandes and C. Rothenberg, ‘‘OpenFlow 1.3 software switch,’’ in

Proc. Brazilian Symp. Comput. Netw. Distrib. Syst., 2014, pp. 1021–1028.
[14] (2013). Pica8 3920. [Online]. Available: http://www.pica8.org/

documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
[15] Juniper Networks, Inc. (2013). Contrail Virtual Router. [Online]. Avail-

able: https://github.com/Juniper/contrail-vrouter
[16] IBM System Networking. (2013). RackSwitch G8264. [Online]. Available:

http://www-03.ibm.com/systems/networking/switches/rack/g8264/

[17] B. Pfaff and B. Davie, The Open vSwitch Database Management Protocol
Internet Engineering Task Force, document RFC 7047, 2013.

[18] M. Smith, OpFlex Control Protocol Internet Engineering Task Force,
Internet Draft, 2014.

[19] T. Koponen et al., ‘‘Onix: A distributed control platform for large-scale
production networks,’’ in Proc. 9th USENIX Conf. Oper. Syst. Design
Implement., 2010, pp. 1–6.

[20] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
‘‘Participatory networking: An API for application control of SDNs,’’ in
Proc. ACM SIGCOMM Conf., 2013, pp. 327–338.

[21] S. Matsumoto, S. Hitz, and A. Perrig, ‘‘Fleet: Defending SDNs from mali-
cious administrators,’’ in Proc. 3rd Workshop Hot Topics Softw. Defined
Netw., 2014, pp. 103–108.

[22] U. Krishnaswamy, ONOS: An Open Source Distributed SDN OS, 2013.
[23] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang, ‘‘Merid-

ian: An SDN platform for cloud network services,’’ IEEE Commun. Mag.,
vol. 51, no. 2, pp. 120–127, Feb. 2013.

[24] M. Raju, A. Wundsam, and M. Yu, ‘‘NOSIX: A lightweight portability
layer for the SDNOS,’’ SIGCOMMComput. Commun. Rev., vol. 44, no. 2,
pp. 28–35, 2014.

[25] D. Erickson, ‘‘The beacon openflow controller,’’ in Proc. 2nd ACM SIG-
COMM Workshop Hot Topics Softw. Defined Netw., 2013, pp. 13–18.

[26] N. Gude et al., ‘‘NOX: Towards an operating system for networks,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[27] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
‘‘On controller performance in software-defined networks,’’ in Proc. 2nd
USENIX Conf. Hot Topics Manage. Internet Cloud Enterprise Netw. Ser-
vices, 2012, p. 10.

[28] C. Demetrescu and G. F. Italiano, ‘‘A new approach to dynamic all pairs
shortest paths,’’ J. ACM, vol. 51, no. 6, pp. 968–992, 2004.

[29] Open Service Gateway Initiative. Accessed: Nov. 11, 2017. [Online].
Available: https://www.osgi.org/

[30] S. Shin et al., ‘‘Rosemary: A robust, secure, and high-performance network
operating system,’’ in Proc. 21st ACM Conf. Comput. Commun. Secur.,
Scottsdale, AZ, USA, 2014, pp. 78–89.

[31] M. Accetta et al., ‘‘Mach: A new kernel foundation for unix development,’’
in Proc. USENIX Conf., 1986, pp. 93–112.

[32] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, ‘‘Applying NOX to
the datacenter,’’ in Proc. 8th ACM Workshop Hot Topics Netw. (HotNets-
VIII), 2009, pp, 1–6.

[33] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
‘‘Hedera: Dynamic flow scheduling for data center networks,’’ in Proc.
USENIX NSDI, 2010, p. 19.

[34] R. N.Mysore et al., ‘‘PortLand: A scalable fault-tolerant layer 2 data center
network fabric,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4,
pp. 39–50, 2009.

[35] Z. Cai and A. Cox, ‘‘Maestro: A system for scalable OpenFlow control,’’
Rice Univ., Houston, TX, USA, Tech. Rep., 2011.

[36] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, ‘‘The
nature of data center traffic: measurements & analysis,’’ in Proc. IMC,
2009, pp. 202–208.

[37] T. Benson, A. Akella, and D. Maltz, ‘‘Network traffic characteristics of
data centers in the wild,’’ in Proc. IMC, 2010, pp. 267–280.

[38] J. Medved, R. Varga, A. Tkacik, and K. Gray, ‘‘OpenDaylight: Towards a
model-driven SDN controller architecture,’’ in Proc. IEEE 15th Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[39] M. Bjorklund, YANG—A Data Modeling Language for the Network Con-
figuration Protocol (NETCONF), document RFC 6020, Internet Engineer-
ing Task Force, 2010.

[40] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw., 2010, p. 3.

[41] R. Sherwood et al., ‘‘FlowVisor: A network virtualization layer,’’ Deutsche
Telekom Inc. R&D Lab, Stanford, Nicira Netw., Stanford, CA, USA,
Tech. Rep. 1, 2009.

[42] J. Stribling et al., ‘‘Flexible, wide-area storage for distributed systems
with wheelfs,’’ in Proc. 6th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), Boston, MA, USA, 2009, pp. 43–58.

[43] F. Botelho, A. Bessani, F. Ramos, and P. Ferreira, ‘‘SMaRtLight: A prac-
tical fault-tolerant and controller,’’ Cornell Univ. Liberary, Netw. Internet
Archit., Ithaca, NY, USA, Tech. Rep., 2014.

[44] Project Floodlight. (2012). Floodlight. [Online]. Available:
http://floodlight.openflowhub.org/

VOLUME 6, 2018 36269



M. Paliwal et al.: Controllers in SDN: A Review Report

[45] F. Botelho, F. M. V. Ramos, D. Kreutz, and A. Bessani, ‘‘On the feasibility
of a consistent and fault-tolerant data store for SDNs,’’ in Proc. EWSDN,
2013, pp. 38–43.

[46] P. Berde, ‘‘ONOS: Towards an open, distributed SDN OS,’’ in Proc. 3rd
Workshop Hot Topics Softw. Defined Netw., 2014, pp. 1–6.

[47] J. Ousterhout et al., ‘‘The case for RAMClouds: Scalable high-
performance storage entirely in DRAM,’’ SIGOPS Operat. Syst. Rev.,
vol. 43, no. 4, pp. 92–105, 2010.

[48] Hazelcast Project. Accessed: Oct. 22, 2017. [Online]. Available:
http://www.hazelcast.org/

[49] What’s Behind Network Downtime? Sunnyvale, CA, USA, 2008.
[50] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,

‘‘Participatory networking: An API for application control of SDNs,’’ in
Proc. ACM SIGCOMM Conf., 2013, pp. 327–338.

[51] R. Sherwood and K. Yap. Cbench: An Open-Flow Controller
Benchmarker. Accessed: Dec. 2, 2017. [Online]. Available:
http://www.openflow.org/wk/index.php/Oflops

[52] Nippon Telegraph and Telephone Corporation. (2012). RYU Network
Operating System. [Online]. Available: http://osrg.github.com/ryu/

[53] POX. (2012). [Online]. Available: http://noxrepo.org/

MANISH PALIWAL received the B.E. degree
in computer science and engineering from
UIT-RGPV, Bhopal, in 2012, and the M.Tech.
degree from the Government College of Engineer-
ing at Amravati, Amravati, in 2015. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, Visvesvaraya
National Institute of Technology, Nagpur, India.

DEEPTI SHRIMANKAR received the B.Tech.
degree in computer technology and the M.Tech.
degree in image processing from Nagpur Univer-
sity in 1997 and 2007, respectively, and the Ph.D.
degree in parallel computing from the Visves-
varaya National Institute of Technology, Nagpur,
India. She is currently an Assistant Professor
with the Department of Computer Science and
Engineering, Visvesvaraya National Institute of
Technology.

OMPRAKASH TEMBHURNE received the
B.E. degree in computer engineering and the
M.Tech. degree from Rastrasant Tukadoji Maharaj
Nagpur University in 2009 and 2012, respectively.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineer-
ing, Visvesvaraya National Institute of Technol-
ogy, Nagpur.

36270 VOLUME 6, 2018


	INTRODUCTION
	PRERUNNERS OF SDN
	ARCHITECTURAL ELEMENTS OF SDN
	INFRASTRUCTURE
	SOUTHBOUND INTERFACE
	NETWORK OPERATING SYSTEM
	NORTHBOUND INTERFACE
	NETWORKING APPLICATIONS

	CONTROLLER CATEGORIES
	CENTRALIZED CONTROLLER
	BEACON
	ROSEMARY
	MAESTRO
	NOX-MT
	MERIDIAN
	OPENDAYLIGHT

	DISTRIBUTED CONTROLLER
	HYPERFLOW
	SMARTLIGHT
	ONOS
	FLEET
	ONIX
	PANE


	PERFORMANCE ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	MANISH PALIWAL
	DEEPTI SHRIMANKAR
	OMPRAKASH TEMBHURNE


