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ABSTRACT Wireless sensor networks (WSNs) are often subject to failures caused by energy depletion,
software or hardware fault of nodes, environmental events, hostile attacks, and other reasons. It is critical to
ensure a WSN application system is available during some presence of fault or interruption. Recent work
in topology control has shown that a reasonable topology can improve the robustness of WSN. However,
due to the limited resource of sensor nodes, topology control cannot easily tradeoff between fault tolerance
and energy saving. To address this issue, we present a regular hexagonal-based clustering scheme (RHCS)
and a scale-free topology evolution mechanism (SFTEM) for WSNs, which increases network survivability
as well as maintains energy balance. RHCS uses a regular hexagonal structure for clustering sensor nodes,
which satisfies at least 1-coverage fault-tolerance. SFTEM combines the reliability of RHCS with scale-
free properties to connect clusters to form a robust WSN, which exploits the synergy between reliable
clustering scheme and topology evolution, and can tolerate comprehensive faults including random failure
and energy failure. In addition, to evaluate the performance of SFTEM, the simulation experiments were
carried out to compare three factors including fault-tolerance, intrusion-tolerance, and energy balance with
other methods in literature. The simulation results show that, the performance of SFTEM is superior to those
of the referenced topology evolution mechanisms of WSNs.

INDEX TERMS Wireless sensor network, fault-tolerance, reliability, Markov model, scale-free.

I. INTRODUCTION
Wireless sensor networks (WSNs) are usually composed of
a large number of distributed sensor nodes organized in an
ad-hoc pattern to monitor environments [1], [2]. In many
applications, it requires high coverage and reliability to
accomplish rigorous monitoring tasks, such as military mis-
sion [3], volcanic monitoring [4], [5], and forest fire pre-
vention [6], [7]. It further exacerbates the design challenge
of meeting application requirements. WSNs always operate
in unattended or hostile environments [8]–[10]. The sensor
nodes in WSNs are easy to breakdown caused by energy
depletion or natural disaster and deliberate attack [11], [12].
In addition, the failed sensor nodeswould reduce the coverage
of the network, would split originally connected network,
and even lead to an entire global network paralysis. For
example, if the several sensor nodes are breakdown and miss
detecting the activity of the volcano malfunctions and gives

fault readings, it might result in unneeded panic or loss of
lives due to the absence of warning.

In order to ensure high quality of service, it is essen-
tial for a WSN to be able to detect its faulty sensor
nodes before carrying out necessary recovery actions. Fault
detection in WSN is a technique which identifies a fault
when it occurred and pinpoints the type of fault and
its location. Fault detection techniques can be classified
into centralized, distributed and hybrid [13]. In centralized
approach, many algorithms are based on machine learning
techniques [14]–27]. Distributed fault detection algo-
rithms included neighborhood-based, probability-based, self-
detection and cloud-based. Many distributed algorithms are
proposed based on Bayesian model [18]–[20]. Hybrid algo-
rithms are used in multi-tiered WSNs in which sensor nodes
are organized into clusters with cluster heads (CHs). Clus-
tering routing protocols have a variety of advantages, such
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as more scalability, less load, less energy consumption and
more robustness [21]. Low-Energy Adaptive Clustering Hier-
archy (LEACH) is one of the pioneering clustering routing
approaches for WSNs. LEACH is to select sensor nodes as
CHs by rotation, so the high energy dissipation in communi-
cating with the base station is spread to all sensor nodes in the
network. The basic idea of LEACH has been an inspiration
for many subsequent clustering routing protocols, includ-
ing Hybrid Energy-Efficient Distributed clustering (HEED),
Two-Level Hierarchy LEACH (TL-LEACH) and Energy
Efficient Clustering Scheme (EECS), etc.

Fault detection helps in isolating faulty sensors. Clustering
routing scheme makes it more convenient for network topol-
ogy control, and can respond to network changes composed
of node’s increasing and unpredicted failures. To solve the
problem of random failure and hostile attack and energy
depletion of sensor nodes in WSNs deployed in harsh envi-
ronment, a robust topology can be designed to improve sur-
vivability of network. In this paper, we focus on studying
reliable clustering scheme based on regular hexagonal struc-
ture, and fault-tolerant clustering topology evolution mech-
anism of WSNs, aiming to improve network fault tolerance
and intrusion tolerance and energy balance.

A. RELATED WORK
Many mechanisms have been proposed for fault
tolerance in WSNs to achieve reliability assurance, energy
saving, and prolong the lifetime. Among them, node
redundancy [22]–[24] is one of the important approaches.
Korbi et al. [25] proposed a new fault-tolerant (FT) procedure
to ensure both coverage and connectivity based on node
redundancy. It is a proactive approach in the sense that it
aims to replace the ‘‘up to fail’’ node before its defection.
Mukhopadhyay et al. [26] proposed Markov models for
WSNs reliability analysis. They also presented a reliability
comparison for various numbers of defective nodes’ replace-
ments with hot-standby redundant nodes. Bein et al. [27]
studied the coverage problem for WSNs from the fault-
tolerance and reliability point of view. They proposed three
1-fault tolerant sensor deployment models. The placement
of the sensors forms regular shapes, square or hexagonal.
They also developed Markov models for each of the schemes
and calculate their reliability. Munir et al. [28] modeled
and analyzed fault detection and fault-tolerance in WSNs
composed of duplex sensor nodes. They investigated the
synergy between fault detection and fault-tolerance and use
the fault detection algorithms’ accuracies in their modeling
of fault-tolerant WSNs.

Topology control is one of the critical factors which can
influence the performance of WSNs. Xu et al. [29] inves-
tigated a dynamic topology control scheme to improve the
network lifetime for WSNs in the presence of selfish sensors.
A non-cooperative game aided topology control approach
was developed for designing energy-efficient and energy bal-
anced network topologies dynamically. Each sensor in the
topology control game tried to minimize its unwillingness

for constructing a connected network according to its trans-
mission power. Albert and Barabasi [30] put forward the
formation mechanism of power-law distribution in complex
networks from the point view of dynamic and growing, which
was called scale-free network, and constructed Barabasi-
Albert (BA) model. The discovery of scale-free properties
paves a new way to enhance the invulnerability of network
topology. In scale-free WSNs, the small proportion of sen-
sor nodes possesses most connections of the network, and
most of the sensor nodes are low-degree, hence it has high
resistance to random failure. Based on scale-free concepts
and BA model, numerous studies have been devoted to pro-
moting the structural robustness by designing the topology
of the network. Zheng et al. [31] proposed a topology evo-
lution model based on scale-free networks in theory. They
not only considered the node fitness but also considered
the node residual energy and node communication range of
their practical evolution model, which improved the network
energy balance andmade the topology have a good robustness
against random faults. Similarly, Liu et al. [32] presented a
topology model with scale-free concepts and combined more
characteristics of sensors, including residual energy, degree
saturation, and maximum communication radius. The topol-
ogy model improved energy efficiency as well as enhanced
network robustness. Fu et al. [33] proposed a topology
upgrading method by referencing the concept of a small
word. Their scheme could improve the energy balance of
the network significantly. Liu et al. [34] constructed a scale-
free model which can assure the topological fault-tolerance
against random faults and maximize topological intrusion-
tolerance against selective remove attacks. The scaling expo-
nent of degree distribution of the network can be adjustable.

B. CONTRIBUTIONS
The above mentioned studies show that the scale-free topol-
ogy is robust to random failure but vulnerable to intrusion
attack. In addition, in scale-free WSNs, a few key nodes pos-
sess most connections of network. The energy of these nodes
will be depleted much faster than other nodes, thus threaten-
ing the normal operation of the entire network. To tolerate
comprehensive faults and keep energy balance, we exploit
the synergy between reliable clustering scheme and topology
evolution. In this paper, we first construct a reliable clustering
scheme of nodes and analyze its reliability based on the
Markov model. And then, we present a scale-free topology
evolution mechanism of WSNs. The contributions of this
paper are:

1) A regular hexagonal-based clustering scheme (RHCS)
with FT sensor nodes as the vertexes of the hexagon
is constructed. We characterize the reliability and fault
rate hierarchically at FT sensor node and RHCS using
Markov model. Then we obtain the random failure
probability (RFP) of RHCS.

2) We discuss the energy failure probability (EFP) of
RHCS. Then we combine the RFP and EFP to model
the JFP of RHCS. The relationship between the JFP and
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its important parameters is analyzed by the mathemati-
cal method to prepare the theory for topology evolution
mechanism.

3) A scale-free topology evolution mechanism (SFTEM)
based on RHCS is presented. We treat a RHCS as
an FT cluster, and evolve the topology based on the
FT clusters. The connection strategy combines joint
failure probability (JFP) and other characteristics of FT
cluster, including node degree, node saturation and the
distance between the cluster heads.

4) Comparison of simulation experimental results to
demonstrate the superiority of the proposed SFTEM
over the existing models.

In the remainder of this paper, Section II elaborates on
the construction of RHCS. Section III models and analyzes
the JFP of RHCS. Section IV describes our FT clustering
topology evolution mechanism. Simulations and results are
presented in Section V. Section VI concludes our study.

II. TRUCTION of RHCS
In this section, we first introduce the FT sensor node and ana-
lyze the failure rate using Markov method. Then, the RHCS
with FT sensor nodes as the vertexes of the hexagon is estab-
lished. Moreover, we investigate the relationship between the
reliability of RHCS and the failure rate of FT nodes based on
the Markov model. Finally, we exploit different initial state
of RHCS and obtain the RFP.

A. FT SENSOR NODE
Node redundancy would be most effective to enhance the FT
capability of sensor nodes. Hence, we refer the duplex sensor
node as an FT sensor node [28]. In FT sensor node model,
we assume that the redundant node is in a cold standby mode.
The inactive node becomes active only when the active node
is diagnosed faulty.
Definition 1 [Node Failure Rate λt (NIST [35]):] The fail-

ure rate of a sensor node can be expressed as an exponential
distribution with a failure rate of λt over the time ts.

p = 1− e−λt ts (1)

The exponential model works well for those inter-arrival
times where the total number of events in a given time period
is given by the Poisson distribution.When these events trigger
failures, the exponential lifetime distribution model naturally
applies [28].
Definition 2 [Node Degree k (Ismail and Mohamed [36])]:

The degree of a node is the number of edges connected to the
node.
Definition 3 [Coverage (Ammari and Habib [37])]: Cov-

erage of an entire area otherwise known as full or blanket
coverage means that every single point within the field of
interest is within the sensing range of at least one sensor node.
Definition 4 (Fault Diagnosis Accuracy Factor c): Fault

diagnosis accuracy factor c represents the probability that
an active sensor node has been correctively diagnosed and
replaced by a backup sensor node. Factor c depends on node

degree k and the cumulative probability of sensor failure
λt [28]. We model c (c ≤ 1) with the empirical relation:

c = f (k) =
k × (1− λt )

k (k/M (λt ))1/M (λt )+(1−k/M (λt ))k
, (2)

Where M (λt ) is the function of λt and denotes an adjust-
ment parameter that may correspond loosely to the desired
average node degree required to achieve a good fault detec-
tion accuracy for a given λt .

FIGURE 1. Markov model of FT sensor node (Munir et al. [28]).

The Markov model of the FT sensor node is depicted
in Fig. 1. The states in the Markov model represent the
number of good sensor nodes. State 1 and State 2 represent
the active state, and State 0 means that sensor node is failed.
When the active node falls to fail, the node will transfer
State 2 to State 1 if the fault is correctly diagnosed, else the
node will transfer to State 0; when the node in State 1 fails,
the node will directly transfer to State 0. We finally obtain
the average failure rate of the FT sensor node (See the details
in [28]).

λFT =
λt

1+ f (k)
(3)

B. REGULAR HEXAGONAL-BASED CLUSTERING SCHEME
The sensing and transmission range of a sensor node
are modeled as a disk of radius rs and rc, respectively.
Zhang and Hou [38] have proved that if the ratio between
the transmission range and the sensing range, denoted as rcs,
is not smaller than 2, then coverage implies connectivity.
They have also shown that a regular triangular lattice pattern
is optimal when the ratio rcs ≤

√
3.

Definition 5 (k-Coverage Fault-Tolerance): If the node
clustering scheme removes k nodes and still maintains the
coverage of the scheme, the scheme is said to have k-coverage
fault-tolerance.

FT sensor nodes are placed as shown in Fig. 2(a). The black
contour disk is the sensing range of the common FT sensor
nodes, and the radius of the disk is rs. Six common FT nodes
form a regular hexagonal structure. The strong FT node is
located in the center of the hexagonal, whose sensing range is
denoted as red contour disk and its radius of the disk is

√
3 rs.

Furthermore, the distance d between adjacent FT nodes is all
equal to

√
3 rs.
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FIGURE 2. Regular hexagonal-based clustering scheme: (a) Regular
hexagonal structure of node clustering. (b) k-coverage fault-tolerance.

As shown in Fig. 2(b), we analyze the k-coverage cluster-
ing scheme. According to Definition 4, we can get that the
green area of themodel represents 1-coverage fault-tolerance;
the yellow area is 3-coverage fault-tolerance, and the red area
expresses 5-coverage fault-tolerance. Therefore, the model
meets at least 1-coverage fault-tolerance. We call this scheme
regular hexagonal-based clustering scheme (RHCS).

C. RANDOM FAILURE PROBABILITY (RFP)
ANALYSIS of RHCS
We make the following assumptions for the analysis of RFP
of RHCS.
• When the strong FT node keeps operate properly, regard-
less of whether or not common FT nodes fail, RHCS is
regarded as effective.

• When the strong FT node crashed but no common
FT node fails, RHCS is considered effective;

• When the strong FT node crashed, once any common
FT node fails, RHCS is considered breakdown.

Based on above assumptions, we exploit different initial state
of RHCS and obtain the RFP.

FIGURE 3. Markov model of RHCS with no faulty nodes.

1) RHCS FAULT-FREE IN INITIAL STATE
When the sensor nodes are fault-free in the initial state of
RHCS, we use the Markov model to analyze the scheme
reliability, as shown in Fig. 3. State ‘(7, 1)’ means that all

sensor nodes are operational, ‘7’ means 7 common FT sen-
sor nodes, ‘1’ means the strong FT sensor node. When the
strong FT node fails, the state is called ‘(7, 0)’; State ‘(6, 1)’
represents that one of 7 common nodes fails, and the strong
FT node is operational. When the entire model fails, the state
is ‘(0, 0)’. The common FT node failure rate is λFT , and the
failure rate of the strong FT node is λsFT .

The RFP of the model is the probability of the scheme to
be in any failed states. Assuming λsFT = λFT , we obtain the
RFP of the model depicted in Fig. 3 by solving the differential
equation (See Appendix for more details):

PF (t) = 1− e−λFT t − e−7λFT t + e−8λFT t (4)

2) RHCS HAS ONE OR MORE FAULT
NODES IN INNITIAL STATE
If the strong FT node fails in initial state of RHCS, we know
that once any common FT node failure occurs again, RHCS is
considered to be invalid. Its Markov model is shown in Fig. 4.

FIGURE 4. Markov model of RHCS with strong FT node failure.

FIGURE 5. Markov model of RHCS with strong FT node operational and
common FT node failure.

If the strong FT node is operational and the common
FT node fails in initial state of RHCS, no matter how sev-
eral faults occur, the Markov model can be represented as
shown in Fig. 5. We obtain the RFP of the above model
in Fig. 4 and Fig. 5 by solving the differential equation
(See Appendix for more details):

PF (t) = 1− e−λFT t (5)

Where λFT is related to f (k) (Equation.(3)), and f (k)
depends on the number of the faulty nodes in RHCS.

Combined with the above analysis, the RFP of RHCS can
be divided into two cases:
• When the nodes are fault-free in the initial state of
RHCS, the RFP of RHCS is shown in (4).
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• When RHCS has any faulty nodes in its initial state,
the RFP of RHCS is shown in (5).

III. MODELING AND ANALYSIS OF JOINT FAILURE
PROBABILITY IN RHCS
In this section, we first discuss the energy failure probabil-
ity (EFP) of RHCS. Then we combine the RFP and EFP to
model the JFP of RHCS. Finally, the relationship between the
JFP and its important parameters is analyzed by the mathe-
matical method to prepare the theory for topology evolution
in the next section.

A. ENERGY FAILURE PROBABILITY (EFP)
We adopt the classic First-order radio energy consumption
model of wireless communication in our paper. The energy
consumption of sending a l-bit message is Etx = Eelec · l +
εamp · l · d2, where Eelec is data fusion energy consumption,
εamp is amplifier power consumption, and d is the transmis-
sion radius of the node. The energy consumption of receiving
a one-bit message is Er = Eelec · l. So the total energy
consumption of the node is Ec = Etx + Er .
For RHCS, the basic structure of the scheme is a regular

hexagon. If the topology is evolved based on RHCS, then
the energy consumption will have little difference among
the clusters. Therefore, considering the actual deployment
requirements, the size of RHCS will change according to the
distance d , as shown in Fig. 6, where d ∈ [

√
3 rs, 2rs].

FIGURE 6. The basic structure of the RHCS.

According to the energy model above, we obtain the total
energy consumption of RHCS:

Ec = nc · Enc = 2nc · Eelec · l + nc · εamp · l · d2 (6)

Where nc is the number of nodes in RHCS that are opera-
tional.

If the initial energy of RHCS is E0, the EFP of the model
can be described as (Mizanian et al. [39]):

Pe = 1− e
−Ec
E0

t (7)

According to (7), Pe can also be written as:

Pe = 1− e−(A+B·d
2)t (8)

where A = 2nc·Eelec·l
E0

, B = nc·εamp·l
E0

.

B. JOINT FAILURE PROBABILITY (JFP)
Combining the RFP and EFP of RHCS, the joint failure
probability (JFP) of the model is established.
• When the nodes are fault-free in the initial state of
RHCS, the JFP is described as:

P = (1− e−(A+B·d
2)t )(1− e−λFT t − e−7λFT t − e−8λFT t )

(9)

• When RHCS has any faulty nodes in the initial state,
the JFP is defined as:

P = (1− e−(A+B·d
2)t )(1− e−λFT t ) (10)

1) QUALITATIVE ANALYSIS OF JFP
Definition 6 (Comprehensive Demand): For RHCS, tmin is
the minimum running time of the cluster, f (k)min and f (k)max
are the minimum and maximum of the node degree function.
If the cluster satisfies t ≥ tmin, all the nodes in the cluster
satisfy f (k)min ≤ f (k) ≤ f (k)max and the distance between
adjacent nodes follows dmin ≤ d ≤ dmax, then RHCS is
called to meet the comprehensive demand of lifetime and JFP.
Theorem 1: In RHCS, if the JFP satisfies

P = (1− e−(A+B·d
2
max)tmin )(1− e−

λt
1+f (k)min

tmin

− e−7
λt

1+f (k)min
tmin
+ e−8

λt
1+f (k)min

tmin ) (11)

or

P = (1− e−(A+B·d
2
max)tmin )(1− e−

λt
1+f (k)min

tmin ), (12)

then RHCS meets the comprehensive demand.
Proof: For simplicity, we prove that if the JFP satis-

fies (12), then RHCS meets the comprehensive demand.
According to the condition t ≥ tmin, we get

P ≥ (1− e−(A+B·d
2)tmin )(1− e−

λt
1+f (k) tmin ) (13)

Since f (k)min ≤ f (k) ≤ f (k)max and dmin ≤ d ≤ dmax,
we have

(1− e
−(A+B·d2min)tmin)

)(1− e−
λt

1+f (k)max
tmin )

≤ (1− e
−(A+B·d2tmin) )(1− e−

λt
1+f (k) tmin )

≤ (1− e
−(A+B·d2max)tmin) )(1− e−

λt
1+f (k)min

tmin ) (14)

Based on (13) and (14), it can be deduced that

P ≥ (1− e
−(A+B·d2max)tmin )(1− e−

λt
1+f (k)min

tmin ) (15)

Since f (k)min ≤ f (k) ≤ f (k)max and dmin ≤ d ≤ dmax,
we get

(1− e−
λt

1+f (k)max
t ) ≤ (1− e−

λt
1+f (k) t )

≤ (1− e−
λt

1+f (k)min
t )

(1− e−(A+B·d
2
min)t ) ≤ (1− e−(A+B·d

2)t )

≤ (1− e−(A+B·d
2
max)t ) (16)
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Then, we deduce

(1− e−(A+B·d
2
min)t )(1− e−

λt
1+f (k)max

t ) ≤ P

≤ (1− e−(A+B·d
2
max)t )(1− e−

λt
1+f (k)min

t ) (17)

Because t ≥ tmin, we have

(1− e−(A+B·d
2
max)tmin )(1− e−

λt
1+f (k)min

tmin )

≤ (1− e−(A+B·d
2
max)t )(1− e−

λt
1+f (k)min

t ) (18)

Then, we obtain

P ≤ (1− e
−(A+B·d2max)tmin )(1− e−

λt
1+f (k)min

tmin ) (19)

Based on (19) and (23), we get

P = (1− e
−(A+B·d2max)tmin )(1− e−

λt
1+f (k)min

tmin ) (20)

When the JFP of RHCS satisfies (14), denoted as P0,
the model can meet the comprehensive demand of lifetime
and joint fault-tolerance.

2) QUANTITATIVE ANALYSIS OF JFP
The above qualitative analysis transforms the comprehensive
demand of network’s lifetime and joint fault-tolerance into
the requirement of network’s JFP. By quantitative analysis
of JFP, we obtain the relationship between the node degree
function f (k) and the distance d between adjacent nodes with
the maximum lifetime satisfying P = P0 for JFP of network,
which is shown in (20).

We transform (20) into the following formula:

P = F(d, t)G(f (k), t) (21)

where F(d, t) = (1 − e
−(A+B·d2)t

), G(f (k), t) = (1 −

e−
λt

1+f (k) t ), where dmin ≤ d ≤ dmax and f (k)min ≤ f (k) ≤
f (k)max.

Then, Equation (20) can be described as

P0 = F(dmax, tmin)G(f (k)min, tmin) (22)

When d or t increases, function F(d, t) increases, so we
know that function F(d, t) has a positive correlation with
both d and t , and when d takes the minimum value, t will
take the maximum value tmax 1 to keep the F0 unchanged;
when f (k) increases, functionG(f (k), t) decreases; and when
t increases, function G(f (k), t) increases, so we call that
function G(f (k), t) is negatively correlated withf (k) and pos-
itively correlated with t , when f (k)max takes the maximum
value, t will also take the maximum value tmax 2 to keep G0
constant. We compare the value of tmax 1 and tmax 2:

• If tmax 1 > tmax 2, we get d = dmin and f (k) =
−
tmax 1×λt
ln(1−F0)

− 1, RHCS will have the maximum lifetime.
• If tmax 2 > tmax 1, we get f (k) = f (k)max and d0 =√

C−A
B , where C = − ln(1−G0)

tmax 2
and the value of A and B

defined in (8), RHCS will have the maximum lifetime.

IV. TOPOLOG Y EVOLUTION MECHANISM AND
DYNAMIC CHARACTERISTIC ANALYSIS
As a kind of energy-constrained distributed network, WSNs
tend to adopt clustering structure in many cases to prolong
the lifetime of the network. WSNs have obvious dynamic
characteristics, including the increase of new nodes and new
links, and the node failures caused by environmental fac-
tors or energy depletion. In this section, we evolve the scale-
free topology based on the reliable distribution of cluster
heads of FT clusters. Here, the process of evolution refers to
the addition of new FT cluster heads to the network. Sensor
nodes in the network are divided into strong FT nodes and
common FT nodes. The common FT nodes join the network
as in-cluster members of FT clusters and establish communi-
cation with the fixed cluster heads of FT clusters. When the
strong FT nodes as cluster heads join the network, they will
establish links with the cluster heads of other FT clusters, and
use multi-hop communication to transmit the data.

A. CLUSTERING SCALE-FREE TOPOLOGY
EVOLUTION MECHANISM
When a new cluster head joins the network, the JFP of the
FT cluster, denoted as P, the degree k of cluster head and
the distance D between cluster heads are taken as the eval-
uation criteria. Let the fitness function F be the reciprocal
of the product of the P and D between the cluster heads.
The probability of existing cluster head in the network being
selected to connect with the new added cluster head depends
on the value of F and k . Meanwhile, we set the threshold of
k as kmax , it means that the maximum connection number of
cluster head cannot exceed kmax . Specific evolution rules are
as follows:

1) Network initialization: At initial time t = 0, the initial
network consists of m0 FT clusters and e0 edges, and
at least one edge of cluster heads of each FT cluster is
connected with other cluster heads.

2) Preferential growth connection: At each time interval,
one FT cluster head is added, m cluster heads of the
existing FT cluster are selected to connect, and adding
FT nodes in the cluster based on the structure of RHCS
to form a new FT cluster. The probability

∏
ki repre-

sents that an existing FT cluster head is selected to be
connected obeys the following rule:∏

ki = (1−
ki
kmax

)
Fi × ki∑

j∈�
Fj × kj

(23)

Where Fi = 1/P(i) × Di, ki is the node degree of the
cluster node of FT cluster i, P(i) is the JFP of the ith FT
cluster, and Di is the distance between the new cluster head
and the cluster head of ith FT cluster. Obviously, according to
the connection rules, when the node degree of the FT cluster
head is kmax , the probability of the FT cluster being selected
to connect is zero.

The fitness function F combines the JFP with the distance
between cluster heads of FT clusters, which considers the
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integrated failure probability of the FT clusters to be selected,
including the RFP and EFP, and controls the energy consump-
tion of the cluster head; that is, the smaller the distance is,
the lower the energy consumption is. Meanwhile, kmax affects
the distribution of k and the energy balance of the network.

B. DYNAMIC CHARACTERISTICS ANALYSIS
With the mean-field theory (Barabási et al. [40]), we analyze
the distribution of k in the network. Assuming that the node
degree ki is continuous changing, and thus the probability can
be considered as a continuous rate of change of k . Conse-
quently, we get the dynamic equation for node i as follows:

∂ki
∂t
≈ m

∏
ki = m(1−

ki
kmax

)
Fi × ki∑

j∈�
Fj × kj

(24)

The distribution of k in the network has obvious het-
erogeneity according to the generation mechanism, which
means that a few cluster heads account for most of the
connections in the network, and the majority of nodes only
have small proportion of the connections. Therefore, we get
(1− ki

kmax
) ≈ 1 under the condition of ensuring sufficient scale

of the network. For the local-world� composed ofM cluster
heads, we have ∑

j∈�

Fj × kj = MFk̃t (25)

Where F is the expectation of fitness, and k̃ represents the
average node degree of the local world cluster heads. By the
preferential connection rules, the network adds mt links after
t time intervals, and each link connects two nodes, so the
newly added node degree is 2mt.

< k >=
2mt
m0 + t

≈ 2m (26)

After substituting (26) and (25) into (24), we get

∂ki
∂t
=

Fiki
2mMFt

(27)

Since ki(t = ti) = m, the (31) can be simplified as follows.

∂ki
∂t
=

Fi
2MFt

(28)

Solving (28), we get

ki(t) = m(
t
ti
)β (29)

Where β = Fi
2MF

, thus the probability that a cluster head
has a connectivity smaller than ki(t) is:

p(ki(t) < k) = p
(
ti >

(m
k

) 1
β

)
= 1−

t
m0 + t

(m
k

) 1
β

(30)

The probability of density p(k) can be obtained using

p(k) =
∂p (ki(t) < k)

∂k
= lim

t→0

t
m0 + t

1
β
m

1
β k
−

(
1
β
+1
)

=
1
β
m

1
β k
−

(
1
β
+1
)

(31)

Consequently, we conclude that node degree distribution
p(k) of cluster head conforms to the power law distribution
and the law exponent is γ = 1/β+1. Therefore, the network
generated by the SFTEM satisfies the characteristics of the
scale-free network, and has the fault-tolerance of the scale-
free network.

TABLE 1. Simulation parameters.

V. SIMULATION AND ANALYSIS
We use the Matlab simulation tool to verify the theoreti-
cal results and the performance of SFTEM in this study.
Assuming that sensor nodes are randomly deployed in a two-
dimensional plane region, the initial energy of nodes is the
same. In the initial network, the number m0 of FT clusters
is 4, and the connection number of newly added cluster heads
denoted as m, is set to 2. To exclude errors caused by ran-
domness, every experimental result is an average of 50 times
simulation. The network parameters are shown in Table 1.

FIGURE 7. Degree distribution comparison

A. NODE DEGREE DISTRIBUTION OF SFTEM
In each generated topology by the SFTEM, we evaluate the
degree distribution of the FT cluster head of the network.
After 50 runs of simulation, we obtain the average values
of these 50 results, as shown in Fig. 7. Meanwhile, in order
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to evaluate the influence of node degree threshold kmax on
the SFTEM, kmax takes four different values of 15, 20, 25
and 30 to analyze the distribution of node degree respectively,
the results are given in Fig. 8.

FIGURE 8. Degree distribution for different kmax .

As expected, Fig. 7 shows that the actual degree distri-
bution is basically consistent with the theoretical distribu-
tion, thus the network topologies generated by SFTEM have
the characteristics of scale-free networks, and can meet the
robustness requirements in harsh environments. Moreover,
Fig. 8 depicts that the heavy-tailed phenomenon in the degree
distribution enhanced with the increase of kmax obviously.
Therefore, by limiting the maximum degree of the FT clus-
ter nodes, the degree heterogeneity of the network can be
reduced, and the energy consumption balance can also be
improved, so as to prolong the lifetime of network. To achieve
a tradeoff between the performance of fault-tolerance and
energy consumption, we take kmax = 20 as the parameter
of the following simulation.

B. RELATIONSHIP BETWEEN LIFETIME AND f ( k) AND d
Equation (2) demonstrates that f (k) is correlated with node
failure rate λt , the failure rate empirical function M (λt ), and
node degree k . Because the number m of links of the newly
added cluster heads is set to 2, the minimum degree k of the
cluster head is 2. The values of f (k) (k = 2, 6, 10, 14, 18, 20)
are shown in Table 2.

TABLE 2. Estimated values of f(k).

Table 2 shows the fault diagnosis accuracy factor c (f (k))
decreases with the increase of node failure rate λt . Particu-
larly, if λt ≥ 0.1, f (k) is less than 1 for any k . Therefore, λt is

taken as 0.05 in the following simulation. It can be seen that
f (k)min = 0.7 and f (k)max = 1.03 from Table 2. To observe
the relationship between f (k) and k more clearly, we plot a
graph of the curve between f (k) and k as shown in Fig. 9.
Fig. 9 reveals the fact that when k ∈ [6, 15], f (k) ≥ 1, which
means that once the node fails, it can be successfully replaced
by the backup node.

FIGURE 9. The curve of f (k).

From the quantitative analysis of JFP in section III, if
f (k)min = 0.7 and f (k)max = 1.03, then tmax 2 > tmax 1, and
d0 = 1.97rs. So, when f (k) = f (k)max, d = d0, the FT cluster
will have a maximum lifetime. Next, we design four simula-
tions of topology evolutionwith different parameters to verify
the relationship between network lifetime and f (k) and d .
The initial network of the four simulations is the same except
that f (k) of FT clusters and the distance d between adjacent
nodes in the cluster during topology evolution. By controlling
the number of failure nodes in the FT cluster, the values of
f (k) of sixty percentage of FT cluster are different, including
f (k)max and f (k)min. At the same time, the distance d between
adjacent nodes in the FT cluster is also set to different values,
including dmax, dmin, and d0. Fig. 10 shows the lifetime
comparison of four simulations, where lifetime is defined
as the time of energy exhaustion of the first node in the
network [41].

FIGURE 10. Comparison of lifetime.
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The results shown in Fig. 10 demonstrate that when f (k) =
f (k)max, d = d0, the network lifetime is the longest of the four
simulations. It well validates the theoretical results presented
in section III. These results reveal that the lifetime of the
network prolongedwith the increase of f (k). Obviously, when
the distance d between adjacent nodes in the FT cluster
increases, the energy consumption of the data transmission
increases, which decreases the lifetime of the network. How-
ever, the JFP increases with the increases of d . d0 is the
compromise theoretical value that makes the lifetime achieve
the optimal value. Therefore, the following simulations will
take f (k) = f (k)max, d = d0 as parameters of the topology
evolution.

C. FAULT-TOLERANCE AND INTRUSION-TOLERANCE
COMPARISON
To evaluate the fault-tolerance and intrusion-tolerance of
RHCS topology, we compare the traditional BA model,
Model 1 [32] and Model 2 [34], Model 1 has the advantage
of energy balance, and Model 2 has the stronger network
fault-tolerance and intrusion-tolerance. The initial network
of the four topology evolution mechanism is the same, and
the simulation parameters are all referenced in Table 1. In the
fault- tolerance comparison simulation, the failure nodes are
generated randomly according to Poisson distribution. The
failure nodes are removed after each simulation time. We use
C to denote the number of nodes in the maximum connected
component to measure the fault-tolerance and intrusion-
tolerance of topology.

FIGURE 11. Comparison of fault-tolerance.

Fig. 11 shows the comparison among the fault-tolerance
of four topologies. Before 4000 simulation times, C of BA
topology is slightly bigger than SFTEM topology, because
the BA model only considers the node degree in its topology
evolution, it can achieve the optimal fault-tolerance. How-
ever, the availability of BA topology is low due to failure to
consider energy balance [42], so when the simulation time
exceeds 4000, the fault-tolerant performance of BA model is
becoming poor, as shown in Fig. 11. Fig. 11 also shows that
C of SFTEM topology is bigger than that of Model 1 and
Model 2 at each simulation time, it indicates that SFTEM

topology can better ensure the network connectivity in the
case of a comprehensive failure, and it has a strong fault-
tolerance against the comprehensive fault. SFTEM considers
the impact of comprehensive fault on network fault-tolerance
so that the results of SFTEM topology show better robustness
for the energy exhaustion and random failure of nodes.

FIGURE 12. Comparison of intrusion-tolerance.

In the intrusion-tolerance simulation, we randomly remove
the cluster heads with high degree, and the removal ratio
ranged from 0.05 to 0.25. Fig. 12 displays the compari-
son of intrusion-tolerance of four topologies. From Fig. 12,
we know that SFTEM has the strongest capacity against
deliberate attack. When the percentage of nodes removed
under selective attack is 0.15, C of SFTEM is up to 0.65,
and Model 2 also maintains good intrusion-tolerance, C of
which can keep 0.425. However, C of Model 1 is 0.123 and
BA model is only 0.075 which means the network is almost
paralysis; when the percentage of nodes removed reaches
0.25, C of SFTEM is still 0.125, and C of other three models
approaches 0. Because SFTEM considers the factor of FT
cluster energy consumption and node saturation, its degree
distribution is more uniform, thus the topologies evolved by
SFTEM have a good intrusion-tolerance. Model 2 can change
the power-law scaling exponent by adjusting its parameter,
so the degree distribution can be adjusted and to improve the
intrusion-tolerance of the network [34].

D. COMPARISON OF ENERGY BALANCE
Let EC represent the ratio of node energy consumption to
the initial energy. The higher EC is, the greater the energy
consumption is. And the smaller difference of EC of cluster
heads means that the more balanced energy consumption dis-
tribution of the network. We compare SFTEM with Model 1,
for Model 1 considering the residual energy of nodes in
its evolution rules. Fig. 13 displays the energy consumption
distribution of the network of SFTEM topology and Model 1
topology.

As shown in Fig. 13, in both network topologies, the area
near the sink node is the high energy-consuming area. Com-
pared with Model 1, energy consumption of SFTEM is more
uniform than that of Model 1. In SFTEM, the highest EC
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FIGURE 13. Energy consumption distribution: (a) RHCS. (b) Model 1.

is 0.755 and themaximum difference ofEC among the cluster
heads around the sink node is about 0.12. However, the high-
est EC is 0.875 in Model 1 and the difference among the
cluster heads around the sink node is relatively big, even the
maximum of the difference of EC is higher than 0.2.

VI. CONCLUSIONS
WSNs are susceptible to failure due to the vulnerability of
sensor nodes and attacks frommalicious intruders. Hence, the
fault-tolerance is an important issue in WSN applications. In
this paper, we construct a regular hexagonal-based clustering
scheme (RHCS) of sensor networks and analyze the reliabil-
ity of RHCS based on Markov model. Then, we present a
scale-free topology evolution mechanism (SFTEM). We also
analyze the dynamic characteristics of SFTEM using mean-
field theory. Simulation results show that the node degree
distribution of SFTEM follows a power law distribution,
and both the fault-tolerance and intrusion-tolerance of RHCS
outperform other models. However, our study has not taken
into account the transformation of backup nodes after node
failures. In the future, we will focus on developing a schedul-
ing technique for the backup nodes that will wake up one or
more backup nodes when the failure occurs in the network.

APPENDIX
We present major steps in computing the reliability function
of the Markov models of section 2.

A. RHCS WITH NO FAULTY NODES
The differential equation of the model is:

P
′

(7,1)(t) = −(λsFT + 7λFT )P(7,1)(t)

P
′

(7,0)(t) = −7λFTP(7,0)(t)+ λsFTP(7,1)(t)

P
′

(6,1)(t) = −(λsFT + 6λFT )P(6,1)(t)+ 7λFTP(7,1)(t)

P
′

(5,1)(t) = −(λsFT + 5λFT )P(5,1)(t)+ 6λFTP(6,1)(t)

P
′

(4,1)(t) = −(λsFT + 4λFT )P(4,1)(t)+ 5λFTP(5,1)(t)

P
′

(3,1)(t) = −(λsFT + 3λFT )P(3,1)(t)+ 4λFTP(4,1)(t)

P
′

(2,1)(t) = −(λsFT + 2λFT )P(2,1)(t)+ 3λFTP(3,1)(t)

P
′

(1,1)(t) = −(λsFT + λFT )P(1,1)(t)+ 2λFTP(2,1)(t)

P
′

(0,1)(t) = −λsFTP(0,1)(t)+ λFTP(1,1)(t)

P
′

F (t) = PF (t)+ 7λFTP(7,0)(t)+ λsFT (P(6,1)(t)+ P(5,1)(t)
+P(4,1)(t)+ P(3,1)(t)+ P(2,1)(t)+ P(1,1)(t)
+P(0,1)(t)

Assuming λsFT = λFT , and with the initial values
P(7,1)(0) = 1,P(7,0)(0) = P(6,1)(0) = P(5,1)(0) = P(4,1)(0) =
P(3,1)(0) = P(2,1)(0) = P(1,1)(0) = P(0,1)(0) = 0, we solve
the above equation and obtain:

PF (t) = 1− e−λFT t − e−7λFT t + e−8λFT t

B. MARKOV MODEL OF RHCS WITH
STRONG FT NODE FAILURE
The differential equation of the model is:{

P
′

(7,0)(t) = −7λFTP(7,0)(t)

P
′

(0,0)(t) = 7λFTP(7,0)(t)

Solving the above equation with the initial conditions
P(7,0)(0) = 1 and P(0,0)(0) = 0 yields:

PF (t) = P(0,0)(t) = 1− e−λFT t

C. MARKOV MODEL OF RHCS WITH
STRONG FT NODE FAILURE
The differential equation of the model is:

P
′

(n,1)(t) = −(λsFT + nλFT )P(n,1)(t)

P
′

(n−1,1)(t) = −(λsFT + (n− 1)λFT )P(n−1,1)(t)

+nλFTP(n,1)(t)
· · ·

P
′

(1,1)(t) = −(λsFT + λFT )P(1,1)(t)+ 2λFTP(2,1)(t)

P
′

(0,1)(t) = −λsFTP(0,1)(t)+ λFTP(1,1)(t)

P
′

F (t) = PF (t)+ λsFT (P(n,1)(t)+ P(n−1,1)(t)
+ · · · +P(1,1)(t)
+P(0,1)(t)+ P(1,1)(t)+ P(0,1)(t))

Assuming λsFT = λFT , and with the initial values
P(n,1)(0) = 1, P((n−1),0)(0) = . . . = P(1,1)(0) = P(0,1) (0)
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= 0, we solve the above equation and obtain:

PF (t) = 1− e−λFT t
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