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ABSTRACT This paper considers cooperative tracking control of nonlinear multi-agent systems with
actuators hysteresis over digraphs. Each agent is modeled by a higher-order nonlinear system in strict-
feedback form with the generalized Prandtl–Ishlinskii hysteresis input and unknown time-varying virtual
control coefficients. An online adaptive law is introduced for compensating the unknown hysteresis effect.
A special Nussbaum-type function is developed to handle unknown time-varying virtual control coefficients.
A switching mechanism is utilized to combine the neural networks approximation with an extra robust term,
which can take over the authority outside the neural active region. In this sense, the globally uniformly
ultimately bounded stability is guaranteed by the proposed distributed adaptive control law. Moreover, all
agents ultimately synchronize to the leader node with bounded residual errors. Simulation results justify the
proposed algorithm.

INDEX TERMS Adaptive cooperative tracking, multi-agent systems, Nussbaum-type function,
Prandtl-Ishlinskii hysteresis.

I. INTRODUCTION
Distributed cooperative control of multi-agent systems
have been extensively investigated in the past two decades,
mainly due to its ubiquitous applications ranging from the
macroscopic area such as formation of satellites, to the
micro-/nano-scale field such as diagnosis of nanobots [1]–[3].
The majority of cooperative control problems assume ideal
actuators, which means the structure of the controllers do
not have hard nonlinearity [4]. The recent years have wit-
nessed a significant interest in cooperative control of multi-
agent systems preceded by input nonlinearities, such as input
saturation [5], dead-zone [6], hysteresis [7]. It is notewor-
thy that hysteresis nonlinearities often occur in practice,
especially when the actuators are made of smart materials
including but not limited to piezoelectric ceramics, or giant
magnetostrictive materials [8], [9]. Smart material-based
actuators with ultra-high precision and rapid response have
broadly potential applications in multi-agent systems, such
as micro unmanned aerial vehicles for high-precision coop-
erative tracking, multiple robots for cooperatively biological
exploration, multi-manipulators for micromanipulation and

microassembly [10], [11]. However, the actuators hystere-
sis pose significant challenges in controlling of multi-agent
systems.

For control-oriented purpose, hysteresis characteristics,
whose input-output relations have memory effect, are gener-
ally described bymathematical or phenomenological models,
such as the Prandtl-Ishlinskii (P-I) model and the Bouc-Wen
model [12]. Since the phenomenon-based P-I model formu-
lates the hysteresis loops by selecting the density function,
and hence the P-I model can describe more detailed hys-
teresis characteristics, which is often used to model hys-
teresis phenomena within a wide range of real physical
systems [12]–[14]. In order to eliminate the effect of hys-
teresis constraints, one approach is to construct an inverse
compensator, which employs an analytical hysteresis inverse
function associated to the specific model [13]. Alternatively,
adaptive methods with respect to online parameter estimation
that do not need an analytical inverse model were developed
in [14]–[18]. In [14], a robust adaptive control was developed
for eliminating the P-I hysteresis effect without the hysteresis
inverse. The adaptive neural networks (NN) control schemes
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with P-I hysteresis parameter estimation were developed for
time-delay andMIMO nonlinear systems in [15]–[17]. More-
over, an adaptive output feedback control using backstepping
approach was studied for higher-order nonlinear system with
P-I hysteresis input in [18]. Additionally, to describe the
more general hysteresis phenomena, a class of generalized
P-I hysteresis model that can adjust the density function
and hysteresis input function was presented in [19], and an
adaptive NN control algorithm with online hysteresis param-
eter estimation was designed for pure-feedback nonlinear
system [20]. An intriguing work [21] proposed a minimal
learning parameters-based adaptive NN control algorithm
with a concise scheme for nonlinear time-delay system with
the generalized P-I hysteresis. It is worth noting that all the
aforementioned works only consider a single system instead
of multi-agent systems.

On the other hand, cooperative tracking control of higher-
order nonlinear multi-agent systems has attracted significant
attention for the past few years, and adaptive NN methods
are often employed to deal with the agents’ unknown dynam-
ics [5]–[7], [22]–[25]. It is well-known that the NN approxi-
mation only works on a prescribed compact set called neural
active region, which only guarantees semi-globally uniformly
ultimately bounded (SGUUB) stability. A switching mecha-
nism was proposed in [26] to combine a NN approximation
term and an additional robust term pulling back into the
neural active region form outside, which made for a globally
uniformly ultimately bounded (GUUB) stability. And this
switching mechanism was later modified in [27] for a single
system. To avoid the ‘‘explosion of complexity’’ of back-
stepping technique, dynamic surface control (DSC) or track-
ing differentiator (TD) were recently applied to eliminate
repeated differentiations for higher-order nonlinear multi-
agent systems [5], [28], [29]. In addition, works in [29]
pointed out that the dynamic surface filter is sensitive to the
design constant which may cause system instability or chat-
tering, and inevitably excite set-point jumping during the
initial phase, so the second-order TDwhich has characteristic
of the well filtering precision and fast convergence is more
suitable for higher-order multi-agent systems. In most exist-
ingworks onmulti-agent systems [5]–[7], [28], [29], the signs
of virtual control coefficients with constants were assumed
to be known a priori. But most often time, it is difficult to
obtain in practice. Fortunately, the Nussbaum-type function
can effectively solve the problem of unknown virtual control
coefficient for controller design of nonlinear systems [30].
With the seminal work in [31], a distributed adaptive con-
troller with a specific Nussbaum-type function was proposed
for low-order multi-agent systems such that leaderless con-
sensus was achieved. It was later studied for leader-following
tracking and cooperative regulation problems of higher-order
multi-agent systems with unknown constant virtual control
coefficients in [32]–[34]. Notice that when there is no a priori
knowledge about the signs of unknown time-varying virtual
control coefficients, distributed control design of such multi-
agent systems becomes much more difficult, and the results

in [31]–[34] are no longer applicable. This is another chal-
lenging problem to be conducted for the multi-agent systems
in a general strict-feedback form with unknown time-varying
virtual control coefficients.

This above discussion motivates our present work. In this
paper, we investigate cooperative tracking control of nonlin-
earmulti-agent systems in a general strict-feedback formwith
actuators hysteresis constraints. The generalized P-I model is
adopted, which is based on the fact that it can describe a typi-
cal hysteresis behavior. The interaction network is expressed
by a directed graph. This paper proposes a distributed adap-
tive control law to achieve cooperative tracking with bounded
residual errors, as well as guaranteeing the GUUB stability.

Main contributions of this paper are highlighted as follows.

(i) To the best of our knowledge, cooperative tracking
control of nonlinear multi-agent systems with gen-
eralized P-I hysteresis inputs has been insufficiently
investigated thus far. Compared with the existing
results [22]–[25], [28], [29], the agents’ dynamics are
extended to general higher-order nonlinear systems
with generalized P-I hysteresis actuators in the strict-
feedback form.

(ii) Unlike the existing works such as [5]–[7] and [31]–[34]
that assume the virtual control coefficients to be
all ones or unknown constants, this paper considers
the rather general multi-agent systems with unknown
time-varying virtual control coefficients with unknown
signs. With the use of the multiple Nussbaum-type
functions, a novel technique and tool is developed for
the distributed control design and stability analysis.

(iii) This paper proposes a modified distributed control law
with a switching mechanism, such that the constraint
of conventional distributed NN control law which only
works within the neural active region can be further
relaxed, in contrast with the majority of neuro-adaptive
cooperative tracking results [5]–[7], [22]–[25], [28],
[29]. In this sense, the designed distributed controller
can guarantee the GUUB stability.

The rest of this paper is organized as follows. Some prelim-
inaries and problem formulation are introduced in Section II.
A distributed adaptive control design and stability analysis
are presented in Section III. Simulation example is given in
Section IV. Section V concludes this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH THEORY
An interaction network of multi-agent systems can be rep-
resented by a graph G = {V, E}, with the finite nodes set
V = {v1, . . . , vN } and the edges set E ⊆ V × V , where ×
is the Cartesian product. The node vj is a neighbor of node vi
if (vj, vi) ∈ E , and the indices set of neighbors of node vi is
denoted by Ni = {j | (vj, vi) ∈ E}. Let A = [aij] ∈ RN×N be
an adjacency matrix, where aij > 0 if (vj, vi) ∈ E , otherwise
aij = 0.We assume that the graph has no self-loops, i.e., aii =
0. Let di =

∑N
j=1 aij and D = diag(d1, . . . , dN ) ∈ RN×N be
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the in-degree of node vi and in-degree matrix, respectively.
Then the graph Laplacian matrix is defined as L = D −
A. A sequence of edges (vi, vil ), (vil , vim ), . . . , (vin , vj) from
node vi to vj implies the directions of information flows in
a directed graph. A digraph has a spanning tree, if there is
a directed path from a root node to any other nodes. Define
B = diag(b1, . . . , bN ) ∈ RN , where bi > 0 if the node vi can
receive the information from the leader node v0, otherwise
bi = 0. Let Ḡ = {V̄, Ē} be an augmented graph including the
nodes set V̄ = {v0, v1, . . . , vN } and the edges set Ē ⊆ V̄ × V̄ .

B. GENERALIZED PRANDTL-ISHLINSKII HYSTERESIS
Consider a generalized P-I hysteresis model for describing
typical hysteresis behaviors, and its input-output relationship
has memory effect [19]. Its output oi(t) ∈ R is determined
not just by the current input ui(t) ∈ R but also by the
history of input {ui(τ ), τ ∈ (0, t]} ⊂ R. By defining
oi(t) = Hi

(
{ui(τ ), τ ∈ (0, t]}

)
:= Hi[ui](t), a generalized

P-I hysteresis model can be given as

oi(t) := Hi[ui](t) = h̄i (ui(t))−
∫ h0

0
p0i(r)fr [ui](t)dr, (1)

where the hysteresis play operator fr [ui](t) is inductively
defined as

fr [ui](0) = hr
(
ui(0), 0

)
,

fr [ui](t) = hr
(
ui(t), fr [ui](tι)

)
,

and hr (h1, h2) = max
(
h1−r,min(h1+r, h2)

)
with threshold

r ≥ 0 for tι < t ≤ tι+1 and 0 ≤ ι ≤ ῑ − 1; 0 =
t0 < t1 < · · · < tῑ is a partition of [0, tῑ] such that ui(t)
is monotone on each of subintervals (tι, tι+1]; the density
function p0i(r) ∈ R vanishes for a large value of constant
h0;

∫ h0
0 p0i(r)fr [ui](t)dr is the Lipschitz continuous operator;

and h̄i(ui) : R → R is the hysteresis input function. This
model satisfies the following assumptions [20].
Assumption 1: The unknown density function satisfying

with p0i(r) ≥ 0 and
∫
∞

0 rp0i(r)dr <∞ has an upper bound.
There exists a positive constant p̄0i such that p0i(r) ≤ p̄0i for
all r ∈ [0, h0].
Assumption 2: The locally Lipschitz non-decreasing

function h̄i(ui) is smooth and odd, which satisfies
limui→∞ h̄i(ui) = ∞, and there exist positive constants

¯
h̄i

and ¯̄hi such that
¯
h̄i ≤ h̄

(1)
i (ui) ≤ ¯̄hi, where h̄

(1)
i (ui) is the first-

order derivative with respect to ui.

C. GLOBAL NEURAL NETWORKS DESIGN
According to the universal approximation properties, NN
is often utilized to approximate unknown nonlinear func-
tions [35]. A continuous nonlinear function Fi,m(Zi,m) :
Rm
→ R on a compact set �Zi,m ⊂ Rm can be expressed

by

Fi,m(Zi,m) = WT
i,mϕi,m(Zi,m)+ εi,m,

where Zi,m = [Zi,1, . . . ,Zi,m]T ∈ Rm is the input vector
of approximator; ϕi,m(Zi,m) : Rm

→ Rυi,m with neurons

number υi,m is a basis functions vector; W i,m ∈ Rυi,m is the
ideal output weights vector; and εi,m ∈ R is the approxima-
tion error. Moreover, suppose that the function Fi,m(Zi,m) are
unknown and bounded by |Fi,m(Zi,m)| ≤ F̄i,m(Zi,m), where
F̄i,m(Zi,m) is a known nonnegative smooth function.
Assumption 3: In this paper, to avoid the distraction from

the main issues, a linear-in-parameter NN is considered,
i.e., only the NN output weights with adjustable parameters
are tuned. There exists an ideal weights vectorW i,m such that
||W i,m||

2
≤ w̄i,m with the constant w̄i,m > 0, and it makes a

bounded approximation error |εi,m| ≤ ε̄i,m with ε̄i,m > 0.
In the conventional adaptive NN control design,

the approximation

F̂i,m(Zi,m) = ŴT
i,mϕi,m(Zi,m) (2)

is often used, where Ŵ i,m is the estimate of W i,m, and it
only works on a compact set �Zi,m with semi-global ability.
It means that the adaptive NN approximator (2) is disabled
when the neural active region is no longer remained. Prior
to proceed to obtain global NN design, let constants r̄i,m >

¯
ri,m > 0 be the boundaries of the compact sets�r̄i,m and�

¯
ri,m ,

respectively. Define the following switching function as

Si,m(Zi,m) :=
m∏
`=1

si,`(Zi,`) (3)

with

si,`(Zi,`)

=



1, if |Zi,`| <
¯
ri,m

r̄2i,m − Z
2
i,`

r̄2i,m −
¯
r2i,m

e
−

(
Z2i,`−

¯
r2i,m

r̄2i,m−
¯
r2i,m

)2

, if
¯
ri,m ≤ |Zi,`| ≤ r̄i,m

0. if |Zi,`| > r̄i,m

According to [26] and [27], the following global adaptive NN
control design can be adopted to replace (2) to obtain the
global ability

Si,m(Zi,m)φNNi,m +
(
1− Si,m(Zi,m)

)
φRobusti,m (4)

with

φNNi,m = ŴT
i,mϕi,m(Zi,m),

φRobusti,m = F̄i,m(Zi,m) tanh
(
zi,mF̄i,m(Zi,m)/εi,m

)
,

where tanh(·) is the hyperbolic tangent function; εi,m is a pos-
itive constant; and the error variable zi,m will be introduced
below in (7).

Notice that the switching function si,`(Zi,`) ∈ [0, 1], and
si,`(Zi,`) = 1 within the compact set �

¯
ri,m and si,`(Zi,`) = 0

outside �r̄i,m . The global adaptive NN design (4) includes
the switching function si,`(Zi,`), a NN approximation term
φNNi,m and a robust term φRobusti,m . Define compact sets �

¯
ri,m =

�
¯
ri,1 × · · · × �

¯
ri,m and �r̄i,m = �r̄i,1 × · · · × �r̄i,m . When

�Zi,m ⊂ �
¯
ri,m , the NN approximation term φNNi,m plays a

decisive role and the state falls into the compact set �
¯
ri,m .
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Once the state runs outside the �r̄i,m , the robust term φRobusti,m
works to pull the state back to�r̄i,m . If�

¯
ri,m ⊆ �Zi,m ⊆ �r̄i,m ,

both terms (4) work and will drag the state into the compact
set �

¯
ri,m . In this sense, the global ability will be obtained.

More details can refer to [26] and [27] if needed.

D. NUSSBAUM-TYPE FUNCTION
A special Nussbaum-type function N (ξi,m) is employed to
handle the unknown time-varying virtual control coefficients,
in which it has the following properties:

lim
s→∞

sup
1
s

∫ s

0
N (ξi,m)dξi,m = +∞,

lim
s→∞

inf
1
s

∫ s

0
N (ξi,m)dξi,m = −∞.

And a crucial technical lemma is developed for the distributed
control design and stability analysis.
Lemma 1: For each m, suppose that gi,m(xi,m) is an

unknown time-varying function with the states vector
xi,m ∈ Rm, which satisfies gi,m(xi,m) ∈ [g−m, g

+
m] with

0 /∈ [g−m, g
+
m], where g−m = min1≤i≤N {gi,m} and g+m =

max1≤i≤N {gi,m}, and all gi,m(xi,m) have the identical signs for
all i = 1, . . . ,N . Let Vm(t) and ξi,m(t) be smooth functions
defined on [0, tf ) with Vm(t) ≥ 0, ∀t ∈ [0, tf ). Let N (ξi,m)
be defined by

N (ξi,m) =
(
eλmξi,m + e−λmξi,m

)
sin(ξi,m)

with λm > 1
π
ln ḡmN

¯

gm
+ βm, where

¯

gm = min1≤i≤N {
¯

gi,m}
with

¯

gi,m being the lower bound of |gi,m(xi,m)| and
ḡm = max1≤i≤N {ḡi,m} with ḡi,m being the upper bound
of |gi,m(xi,m)|, and the constant βm > 0. If the following
inequality holds:

Vm(t) ≤
N∑
i=1

e−βmt
∫ t

0
gi,m

(
xi,m(τ )

)
N
(
ξi,m(τ )

)
ξ̇i,m(τ )eβmτdτ

+

N∑
i=1

e−βmt
∫ t

0
ξ̇i,m(τ )eβmτdτ + µ̄m, ∀t ∈ [0, tf )

(5)

where µ̄m is a bounded variable, then Vm(t), ξi,m(t), and∑N
i=1 e

−βmt
∫ t
0

[
gi,m

(
xi,m(τ )

)
N
(
ξi,m(τ )

)
+ 1

]
ξ̇i,m(τ )eβmτdτ

are bounded on [0, tf ) for all i = 1, . . . ,N .
Proof: See Appendix.

E. PROBLEM FORMULATION
Consider a multi-agent system consisting of one leader node
and a group of N followers over a digraph. Dynamics of the
ith (i = 1, . . . ,N ) agent in a strict-feedback form with a
hysteresis actuator is described as

ẋi,m′ = fi,m′ (xi,m′ )+ gi,m′ (xi,m′ )xi,m′+1 + ζi,m′ ,

ẋi,M = fi,M (xi,M )+ gi,M (xi,M )Hi[ui](t)+ ζi,M ,

yi = xi,1, (6)

where m′ = 1, . . . ,M − 1; xi,m ∈ R is the mth state
(m = 1, . . . ,M ); xi,m = [xi,1, . . . , xi,m]T ∈ Rm; fi,m(xi,m),
gi,m(xi,m) : Rm

→ R are unknown nonlinear functions
assumed to be locally Lipschitz; ui is the control input; the
actuatorHi[ui](t) is in the generalized P-I hysteresis form (1);
ζi,m ∈ R are unknown external disturbances; and yi ∈ R is
the output.
Control Objectives:The reference trajectory of leader node

is denoted by y0(t). In this paper, we aim to design a dis-
tributed control law ui for the multi-agent system (6) such
that the following objectives are achieved:
(i) All signals of the closed-loop system are globally uni-

formly ultimately bounded.
(ii) All followers ultimately synchronize to the leader node

with bounded residual errors, i.e., the tracking error
δi = yi − y0 converges to a small neighborhood of the
origin for all i = 1, . . . ,N .

The following assumptions are made.
Assumption 4: The functions fi,m(xi,m) are unknown and

bounded by |fi,m(xi,m)| ≤ f̄i,m(xi,m), where f̄i,m(xi,m) are
known nonnegative smooth functions.
Assumption 5: For each m, the unknown virtual

control coefficients gi,m(xi,m) for all i are strictly either
positive or negative with unknown signs, and there exist
known positive constants

¯

gi,m and ḡi,m such that
¯

g
i,m
≤

|gi,m(xi,m)| ≤ ḡi,m.
Remark 1: Assumption 5 is reasonable because gi,m(xi,m)

being away from zero is the controllable condition,
and it implies that all gi,m(xi,m) have unknown identi-
cal control directions, which is made in most control
systems [20], [30], [31].
Assumption 6: The external disturbances ζi,m are bounded

by |ζi,m| ≤ ζ̄ i,m for some positive constant ζ̄ i,m.
Assumption 7: The leader’s trajectory y0 ∈ R is continu-

ously differentiable, and the available y0, ẏ0 are bounded.
Assumption 8: The augmented digraph Ḡ contains a span-

ning tree with the unique root node being the leader v0.

III. ADAPTIVE CONTROL DESIGN
A. DISTRIBUTED CONTROL LAW DESIGN
In this subsection, a distributed adaptive control law for
each agent is proposed. The backstepping incorporating with
tracking differentiator (TD) is used to avoid the complexity
of repeated differentiation. The design procedure containsM
steps. First, the error variables are introduced as follows

zi,1 =
∑
j∈Ni

aij(yi − yj)+ bi(yi − y0),

zi,k ′ = xi,k ′ − αi,k ′−1, (k ′ = 2, . . . ,M ) (7)

where αi,k ′−1 is the designed intermediate controller, and it
will be presented later.
Step 1: The derivative of zi,1 is

żi,1 = (di + bi)fi,1(xi,1)−
∑
j∈Ni

aij
(
fj,1(xj,1)+ gj,1(xj,1)xj,2

)
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+ (di + bi)gi,1(xi,1)(zi,2 + αi,1)+ (di + bi)ζi,1

−

∑
j∈Ni

aijζj,1 − biẏ0.

Using NN to approximate the unknown function, we obtain

Fi,1(Zi,1) = (di + bi)fi,1(xi,1)

−

∑
j∈Ni

aij
(
fj,1(xj,1)+ gj,1(xj,1)xj,2

)
= WT

i,1ϕi,1(Zi,1)+ εi,1,

whereZi,1 = [xi,1, xj,1, . . . , xj,2]T within a compact set�Zi,1 ,
and there exists a known smooth function F̄i,1(Zi,1) such that
|Fi,1(Zi,1)| ≤ F̄i,1(Zi,1) by Assumptions 4 and 5. Considering
the switching function Si,1(Zi,1) defined as (3), we obtain

żi,1 = Si,1(Zi,1)WT
i,1ϕi,1(Zi,1)+

(
1− Si,1(Zi,1)

)
Fi,1(Zi,1)

+ (di + bi)gi,1(xi,1)(zi,2 + αi,1)+ ρi,1 − biẏ0, (8)

where ρi,1 = Si,1(Zi,1)εi,1 + (di + bi)ζi,1 −
∑

j∈Ni
aijζj,1 is

a bounded variable assumed to be bounded by 0 < |ρi,1| ≤
ρ̄i,1. For the simplicity, the states vector Zi,m will be omit-
ted from the corresponding functions Fi,m(Zi,m), F̄i,m(Zi,m),
ϕi,m(Zi,m), and Si,m(Zi,m) in the following analysis.
Design the intermediate controller αi,1 and adaptive laws

as

ηi,1 = ci,1zi,1 + Si,1zi,1ŵi,1ϕTi,1ϕi,1
+ (1− Si,1)F̄i,1 tanh(zi,1F̄i,1/εi,1)

+ ρ̂i,1 tanh(zi,1/εi,1)− biẏ0,

αi,1 = −N (ξi,1)ηi,1/(di + bi),

ξ̇i,1 = zi,1ηi,1,
˙̂wi,1 = γwi,1(Si,1z2i,1ϕ

T
i,1ϕi,1 − σwi,1ŵi,1),

˙̂ρi,1 = γρi,1

(
zi,1 tanh(zi,1/εi,1)− σρi,1ρ̂i,1

)
, (9)

where ŵi,1 is the estimate of wi,1 = ||W i,1||
2 for reducing the

estimate parameter of the NNweights; and ρ̂i,1 is the estimate
of ρ̄i,1; ci,1, γwi,1, γρi,1, σwi,1, σρi,1 and εi,1 are positive design
constants.
Choose a Lyapunov function candidate as

Vi,1 =
1
2
z2i,1 +

1
2γwi,1

w̃2
i,1 +

1
2γρi,1

ρ̃2i,1,

where w̃i,1 = wi,1−ŵi,1 and ρ̃i,1 = ρ̄i,1−ρ̂i,1 are the estimate
errors. The time derivative of Vi,1 along with (8) and (9) is

V̇i,1 = zi,1żi,1 −
1
γwi,1

w̃i,1 ˙̂wi,1 −
1
γρi,1

ρ̃i,1 ˙̂ρi,1

≤ −ci,1z2i,1 +
[
−gi,1(xi,1)N (ξi,1)+ 1

]
ξ̇i,1

+ (di + bi)gi,1(xi,1)zi,1zi,2 + Si,1zi,1WT
i,1ϕi,1

+ (1− Si,1)
[
|zi,1F̄i,1| − zi,1F̄i,1 tanh(zi,1F̄i,1/εi,1)

]
+ ρ̄i,1

[
|zi,1|−zi,1 tanh(zi,1/εi,1)

]
−Si,1z2i,1wi,1ϕ

T
i,1ϕi,1

+ σwi,1w̃i,1ŵi,1 + σρi,1ρ̃i,1ρ̂i,1. (10)

Using Young’s inequality and Cauchy-Schwarz inequal-
ity [36], we have

Si,1zi,1WT
i,1ϕi,1 ≤ Si,1(zi,1WT

i,1ϕi,1)
2
+
Si,1
4

≤ Si,1z2i,1wi,1ϕ
T
i,1ϕi,1 +

1
4
. (11)

By [37, Lemma 1], we have the following property of the
hyperbolic tangent function

(1−Si,1)
[
|zi,1F̄i,1|−zi,1F̄i,1 tanh

(
zi,1F̄i,1
εi,1

)]
≤ 0.2785εi,1,

ρ̄i,1

[
|zi,1|−zi,1 tanh

(
zi,1
εi,1

)]
≤ 0.2785ρ̄i,1εi,1.

(12)

In addition, the following inequalities hold

(di + bi)gi,1(xi,1)zi,1zi,2 ≤
di + bi

2
z2i,1 +

di + bi
2

ḡ2i,1z
2
i,2,

σwi,1w̃i,1ŵi,1 ≤ −
σwi,1

2
w̃2
i,1 +

σwi,1

2
w2
i,1,

σρi,1ρ̃i,1ρ̂i,1 ≤ −
σρi,1

2
ρ̃2i,1 +

σρi,1

2
ρ̄2i,1, (13)

by Young’s inequality. Substituting inequalities (11), (12)
and (13) into (10) yields

V̇i,1 ≤ −
(
ci,1 −

di
2
−
bi
2

)
z2i,1 −

σwi,1

2
w̃2
i,1 −

σρi,1

2
ρ̃2i,1

+

[
−gi,1(xi,1)N (ξi,1)+ 1

]
ξ̇i,1 + 0.2785(ρ̄i,1 + 1)εi,1

+
1
4
+
σwi,1

2
w2
i,1 +

σρi,1

2
ρ̄2i,1 +

di + bi
2

ḡ2i,1z
2
i,2.

Let V1 =
∑N

i=1 Vi,1. It can be obtained that

V̇1 ≤ −β1 V1 +
N∑
i=1

[
−gi,1(xi,1)N (ξi,1)+ 1

]
ξ̇i,1

+µ1 +

N∑
i=1

di + bi
2

ḡ2i,1z
2
i,2, (14)

where β1 and µ1 are positive constants denoted as

β1 = min
1≤i≤N

{
2ci,1 − di − bi, γwi,1σwi,1, γρi,1σρi,1

}
,

µ1=

N∑
i=1

[
0.2785(ρ̄i,1+1)εi,1+

1
4
+
σwi,1

2
w2
i,1 +

σρi,1

2
ρ̄2i,1

]
.

Multiplying (14) by eβ1t and integrating both sides of (14)
over [0, t], we have

V1≤
µ1

β1
+

(
V1(0)−

µ1

β1

)
e−β1t

+

N∑
i=1

e−β1t
∫ t

0

[
−gi,1(xi,1)N (ξi,1)+ 1

]
ξ̇i,1eβ1τdτ

+

N∑
i=1

e−β1t
∫ t

0

di + bi
2

ḡ2i,1 z
2
i,2e

β1τdτ
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≤
µ1

β1
+ V1(0)+

N∑
i=1

di + bi
2β1

ḡ2i,1 sup
τ∈[0,t]

{
z2i,2(τ )

}
+

N∑
i=1

e−β1t
∫ t

0

[
−gi,1(xi,1)N (ξi,1)+1

]
ξ̇i,1eβ1τdτ. (15)

Notice that if zi,2 is bounded over time interval [0, tf ), then
we can obtain the boundedness of

∑N
i=1

di+bi
2β1

ḡ2i,1 supτ∈[0,t]{
z2i,2(τ )

}
. Moreover, (15) can be rewritten as

V1≤
N∑
i=1

e−β1t
∫ t

0

[
−gi,1(xi,1)N (ξi,1)+ 1

]
ξ̇i,1eβ1τdτ + µ̄1,

(16)

where µ̄1 =
µ1
β1
+V1(0)+

∑N
i=1

di+bi
2β1

ḡ2i,1 supτ∈[0,t]
{
z2i,2(τ )

}
.

According to Lemma 1, it can be verified that V1 and ξi,1
are bounded on [0, tf ). Since [38, Proposition 2] implies
tf = ∞, it can be concluded that zi,1, w̃i,1 and ρ̃i,1 are
uniformly ultimately bounded. The boundedness of zi,2 will
be guaranteed in the following procedures.
Step k (k = 2, . . . ,M − 1): In order to avoid the compli-

cated differential computation of the intermediate controller,
let αi,k−1 pass through a TD to obtain the estimate of α̇i,k−1.
According to [39, Sec. III], a TD is defined as

ω̇i,k = ω
′
i,k ,

ω̇′i,k = −τi,ksgn
(
ωi,k − αi,k−1 +

ω′i,k |ω
′
i,k |

2τi,k

)
, (17)

where ωi,k , ω′i,k ∈ R are the states of TD, and τi,k > 0 is a
design constant. Let$i,k = ω

′
i,k − α̇i,k−1 denote the estimate

error, which is bounded according to [40, Th. 1.1].
Utilizing NN to approximate the unknown nonlinearity

fi,k (xi,k ), denoteFi,k (Zi,k ) = fi,k (xi,k ) = WT
i,kϕi,k (Zi,k )+εi,k ,

where Zi,k = xi,k within a compact set�Zi,k . By Assumption
4, there exists a known smooth function F̄i,k (Zi,k ) such that
|Fi,k (Zi,k )| ≤ F̄i,k (Zi,k ). Considering (6), (7), (17) and using
the switching function Si,k (Zi,k ) defined as (3), we have

żi,k = Si,kWT
i,kϕi,k + (1− Si,k )Fi,k

+ gi,k (xi,k )(zi,k+1 + αi,k )+ ρi,k − ω′i,k ,

where ρi,k = Si,kεi,k + ζi,k +$i,k is a bounded variable and
is bounded by 0 < |ρi,k | ≤ ρ̄i,k .
The following intermediate controller αi,k and adaptive

laws are designed

ηi,k = ci,kzi,k + Si,kzi,k ŵi,kϕTi,kϕi,k
+ (1− Si,k )F̄i,k tanh(zi,k F̄i,k/εi,k )

+ ρ̂i,k tanh(zi,k/εi,k )− ω′i,k ,

αi,k = −N (ξi,k )ηi,k ,

ξ̇i,k = zi,kηi,k ,
˙̂wi,k = γwi,k (Si,kz2i,kϕ

T
i,kϕi,k − σwi,k ŵi,k ),

˙̂ρi,k = γρi,k

(
zi,k tanh(zi,k/εi,k )− σρi,k ρ̂i,k

)
, (18)

where ŵi,k and ρ̂i,k are the estimates of wi,k = ||W i,k ||
2 and

ρ̄i,k , respectively; ci,k , γwi,k , γρi,k , σwi,k , σρi,k and εi,k are
positive design constants.

Select a Lyapunov function candidate as

Vi,k =
1
2
z2i,k +

1
2γwi,k

w̃2
i,k +

1
2γρi,k

ρ̃2i,k ,

where w̃i,k = wi,k−ŵi,k and ρ̃i,k = ρ̄i,k−ρ̂i,k are the estimate
errors. Proceeding similarly as in Step 1, and utilizing the
aforementioned inequalities properties (11), (12) and (13),
the time derivative of Vi,k along with (18) results in

V̇i,k ≤ −
(
ci,k −

1
2

)
z2i,k −

σwi,k

2
w̃2
i,k −

σρi,k

2
ρ̃2i,k

+

[
−gi,k (xi,k )N (ξi,k )+ 1

]
ξ̇i,k + 0.2785(ρ̄i,k + 1)εi,k

+
1
4
+
σwi,k

2
w2
i,k +

σρi,k

2
ρ̄2i,k +

1
2
ḡ2i,kz

2
i,k+1.

Let Vk =
∑N

i=1 Vi,k . We have

V̇k ≤ −βkVk +
N∑
i=1

[
−gi,k (xi,k )N (ξi,k )+ 1

]
ξ̇i,k

+µk +

N∑
i=1

1
2
ḡ2i,kz

2
i,k+1, (19)

where βk and µk are positive constants denoted as

βk = min
1≤i≤N

{
2ci,k − 1, γwi,kσwi,k , γρi,kσρi,k

}
,

µk =

N∑
i=1

[
0.2785(ρ̄i,k+1)εi,k+

1
4
+
σwi,k

2
w2
i,k+

σρi,k

2
ρ̄2i,k

]
.

Multiplying (19) by eβk t and integrating both sides of (19)
over [0, t] leads to

Vk ≤
µk

βk
+

(
Vk (0)−

µk

βk

)
e−βk t

+

N∑
i=1

e−βk t
∫ t

0

[
−gi,k (xi,k )N (ξi,k )+ 1

]
ξ̇i,keβkτdτ

+

N∑
i=1

e−βk t
∫ t

0

1
2
ḡ2i,k z

2
i,k+1e

βkτdτ

≤
µk

βk
+ Vk (0)+

N∑
i=1

1
2βk

ḡ2i,k sup
τ∈[0,t]

{
z2i,k+1(τ )

}
+

N∑
i=1

e−βk t
∫ t

0

[
−gi,k (xi,k )N (ξi,k )+ 1

]
ξ̇i,keβkτdτ.

(20)

If zi,k+1 is bounded, then (20) can be rewritten as

Vk≤
N∑
i=1

e−βk t
∫ t

0

[
−gi,k (xi,k )N (ξi,k )+ 1

]
ξ̇i,keβkτdτ + µ̄k ,

(21)
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where µ̄k =
µk
βk
+Vk (0)+

∑N
i=1

1
2βk

ḡ2i,k supτ∈[0,t]
{
z2i,k+1(τ )

}
.

As discussed before, it can be verified that Vk and ξi,k are
bounded by Lemma 1, and zi,k , w̃i,k and ρ̃i,k are uniformly
ultimately bounded. The bounded zi,k+1 will be ensured in
Step k + 1.
Step M: At this last step, the actual control law ui will be

designed. According to theMean Value Theorem, there exists
a function νi(ui) such that

h̄i(ui)− h̄i(u∗i ) = h̄(1)i (ui)
∣∣
ui=νi(ui)

(ui − u∗i ),

with the existence of u∗i satisfying h̄i(u∗i ) = 0. Denote
hi(νi) = h̄(1)i (ui)|ui=νi(ui) and then one has h̄i(ui) = hi(νi)ui −
hi(νi)u∗i . By Assumption 2, there exist positive constants

¯
hi

and h̄i such that 0 <
¯
hi ≤ hi(νi) ≤ h̄i, and hi(νi)u∗i is also

bounded.
Similarly, let αi,M−1 pass through a TD by

ω̇i,M = ω
′
i,M ,

ω̇′i,M = −τi,M sgn
(
ωi,M − αi,M−1 +

ω′i,M |ω
′
i,M |

2τi,M

)
,

where ωi,M , ω′i,M ∈ R are the states of TD, and τi,M > 0
is a design constant. Denote the bounded estimate error as
$i,M = ω

′
i,M − α̇i,M−1.

The time derivative of zi,M is

żi,M =Si,MWT
i,Mϕi,M + (1− Si,M )Fi,M + gi,M (xi,M )hi(νi)ui

+ ρi,M −

∫ h0

0
gi,M (xi,M )p0i(r)fr [ui](t)dr − ω′i,M ,

where NN is used to approximate the unknown function
Fi,M (Zi,M ) = fi,M (xi,M ) = WT

i,Mϕi,M (Zi,M ) + εi,M within a
compact set�Zi,M ; and there exists a known smooth function
F̄i,M such that |Fi,M | ≤ F̄i,k ; Si,M is the switching function;
and denote ρi,M = Si,Mεi,M−gi,M (xi,M )hi(νi)u∗i +ζi,M+$i,M
which is unknown but bounded by 0 < |ρi,M | ≤ ρ̄i,M ; and the
hysteresis-related term gi,M (xi,M )p0i(r)fr [ui](t) can be put as
a whole, which is unknown but has an upper bound p̄i > 0
according to Assumptions 1 and 5 and [14].

At this stage, we propose the following actual control law
and adaptive updating laws

ηi,M = ci,M zi,M + Si,M zi,M ŵi,MϕTi,Mϕi,M

+ (1− Si,M )F̄i,M tanh
(
zi,M F̄i,M
εi,M

)
+ ρ̂i,M tanh

(
zi,M
εi,M

)
+ sgn(zi,M )

∫ h0

0
p̂i(t, r)dr − ω′i,M ,

ui = −N (ξi,M )ηi,M ,

ξ̇i,M = zi,Mηi,M ,
˙̂wi,M = γwi,M (Si,M z2i,Mϕ

T
i,Mϕi,M − σwi,M ŵi,M ),

˙̂ρi,M = γρi,M

(
zi,M tanh(zi,M/εi,M )− σρi,M ρ̂i,M

)
,

∂ p̂i(t, r)
∂t

=

{
γpi

(
|zi,M | − σpip̂i(t, r)

)
, if 0 ≤ p̂i(t, r) < p̄i

−γpiσpip̂i(t, r), if p̂i(t, r) ≥ p̄i
(22)

where ŵi,M , ρ̂i,M and p̂i(t, r) are the estimates of wi,M =
||W i,M ||

2, ρ̄i,M and p̄i, respectively; ci,M , γwi,M , γρi,M , γpi,
σwi,M , σρi,M , σpi and εi,M are positive design constants.

Consider the following Lyapunov function candidate

Vi,M =
1
2
z2i,M +

1
2γwi,M

w̃2
i,M +

1
2γρi,M

ρ̃2i,M

+
1

2γpi

∫ h0

0
p̃2i (t, r)dr,

where w̃i,M = wi,M−ŵi,M , ρ̃i,M = ρ̄i,M−ρ̂i,M and p̃i(t, r) =
p̄i− p̂i(t, r) are the estimated errors. As previously discussed,
it can be induced that the derivative of Vi,M is

V̇i,M ≤ −ci,M z2i,M −
σwi,M

2
w̃2
i,M −

σρi,M

2
ρ̃2i,M

+

[
−gi,M (xi,M )hi(νi)N (ξi,M )+ 1

]
ξ̇i,M

+ 0.2785(ρ̄i,M + 1)εi,M +
1
4
+
σwi,M

2
w2
i,M

+
σρi,M

2
ρ̄2i,M + |zi,M |

∫ h0

0

(
p̄i − p̂i(t, r)

)
dr

−
1
γpi

∫ h0

0
p̃i(t, r)

∂

∂t
p̂i(t, r)dr . (23)

Additionally, considering the adaptive law ∂ p̂i(t,r)
∂t in (22),

when the threshold parameter r ∈ �r := {r | 0 ≤ p̂i(t, r) <
p̄i} ⊂ [0, h0], we have ∂ p̂i(t,r)

∂t = γpi

(
|zi,M | − σpip̂i(t, r)

)
,

the last two terms of (23) can be rewritten as

|zi,M |
∫

r∈�r

p̃i(t, r)dr −
1
γpi

∫
r∈�r

p̃i(t, r)γpi

×

(
|zi,M | − σpip̂i(t, r)

)
dr ≤ σpi

∫
r∈�r

p̃i(t, r)p̂i(t, r)dr .

When r ∈ �C
r := {r | p̂i(t, r) ≥ p̄i} ⊂ [0, h0], we have

∂ p̂i(t,r)
∂t = −γpiσpip̂i(t, r). Then, it can be induced that

|zi,M |
∫

r∈�Cr

(
p̄i − p̂i(t, r)

)
dr +

1
γpi

∫
r∈�Cr

p̃i(t, r)

× γpiσpip̂i(t, r)dr ≤ σpi

∫
r∈�Cr

p̃i(t, r)p̂i(t, r)dr .

Combining the above two cases, when all r ∈ [0, h0], the last
two terms of (23) result in

|zi,M |
∫ h0

0

(
p̄i − p̂i(t, r)

)
dr −

1
γpi

∫ h0

0
p̃i(t, r)

∂

∂t
p̂i(t, r)dr

≤ σpi

∫ h0

0
p̃i(t, r)p̂i(t, r)dr . (24)

VOLUME 6, 2018 33021



T. Yu et al.: Adaptive Cooperative Tracking Control of Multi-Agent Systems With Unknown Actuators Hysteresis

Moreover, the following inequality holds

σpi

∫ h0

0
p̃i(t, r)p̂i(t, r)dr ≤ −

σpi

2

∫ h0

0
p̃2i (t, r)dr +

σpi

2
h0p̄2i ,

(25)

by Young’s inequality. Substituting (24) and (25) into (23)
yields

V̇i,M ≤−ci,M z2i,M −
σwi,M

2
w̃2
i,M −

σρi,M

2
ρ̃2i,M

−
σpi

2

∫ h0

0
p̃2i (t, r)dr

+

[
−gi,M (xi,M )hi(νi)N (ξi,M )+ 1

]
ξ̇i,M

+ 0.2785(ρ̄i,M + 1)εi,M +
1
4
+
σwi,M

2
w2
i,M

+
σρi,M

2
ρ̄2i,M +

σpi

2
h0p̄2i .

Let VM =
∑N

i=1 Vi,M . We have

V̇M ≤−βMVM

+

N∑
i=1

[
−gi,M (xi,M )hi(νi)N (ξi,M )+1

]
ξ̇i,M+µM , (26)

where βM and µM are positive constants denoted as

βM = min
1≤i≤N

{
2ci,M , γwi,Mσwi,M , γρi,Mσρi,M , γpiσpi

}
,

µM =

N∑
i=1

[
0.2785(ρ̄i,M + 1)εi,M +

1
4
+
σwi,M

2
w2
i,M

+
σρi,M

2
ρ̄2i,M +

σpi

2
h0p̄2i

]
.

Multiplying (26) by eβM t and integrating both sides of (26)
over [0, t], it becomes

VM ≤
N∑
i=1

e−βM t
∫ t

0

[
−gi,M (xi,M )hi(νi)N (ξi,M )+ 1

]
× ξ̇i,MeβM τdτ +

µM

βM
+

(
VM (0)−

µM

βM

)
e−βM t

≤

N∑
i=1

e−βM t
∫ t

0

[
−gi,M (xi,M )hi(νi)N (ξi,M )+ 1

]
× ξ̇i,MeβM τdτ + µ̄M , (27)

where µ̄M =
µM
βM
+ VM (0). According to Assump-

tions 2 and 5, [38, Proposition 2], and using Lemma 1,
it can be verified that VM and ξi,M are bounded, and
hence zi,M , w̃i,M , ρ̃i,M and p̃i(t, r) are uniformly ultimately
bounded. Owing to the boundedness of zi,M , it follows that
the boundedness of

∑N
i=1

1
2βM−1

ḡ2i,M−1 supτ∈[0,t]
{
z2i,M (τ )

}
is

naturally guaranteed at StepM − 1. Furthermore, employing
Lemma 1 forM−1 times backward, it can be concluded from
the aforementioned recursive design processes that Vm′ , ξi,m′ ,
zi,m′ , w̃i,m′ and ρ̃i,m′ (∀m′ = 1, . . . ,M − 1) are uniformly
ultimately bounded.

B. STABILITY ANALYSIS
We are now ready to present our main results which show the
stability and the tracking performance.
Theorem 1: Consider the nonlinear multi-agent system (6)

preceded by hysteresis actuator (1). Let Assumptions 1-8
hold. Design the distributed control law and adaptive updat-
ing laws as (9), (18) and (22). Then the following objectives
can be achieved for any bounded initial conditions.
(i) All signals of the closed-loop system remain globally

uniformly ultimately bounded.
(ii) All outputs of the agents ultimately synchronize to the

leader’s trajectorywith bounded residual errors, i.e., the
tracking error δ = y − y0 remains on the compact set
�δ specified as

�δ :=

{
δ

∣∣∣ ||δ|| ≤ √
2ϑ∗1

¯
σ (L + B)

}
,

whose size ϑ∗1 > 0 can be adjusted by the choice of the
design parameters, where y = [y1, . . . , yN ]T ∈ RN ,
y0 = [y0, . . . , y0]T ∈ RN , and

¯
σ (L+B) is theminimum

singular value of matrix L + B.
Proof: For all m = 1, . . . ,M , denote zm =

[z1,m, . . . , zN ,m]T , w̃m = [w̃1,m, . . . , w̃N ,m]T , ρ̃m =

[ρ̃1,m, . . . , ρ̃N ,m]T and p̃ = [p̃1(t, r), . . . , p̃N (t, r)]T ,
and let 0wm = diag(γw1,m, . . . , γwN ,m), 0ρm =

diag(γρ1,m, . . . , γρN ,m), 0p = diag(γp1, . . . , γpN ) be the
constant matrices. In addition, let ςM and ςm′ be the upper
bounds of the terms
N∑
i=1

e−βM t
∫ t

0

[
−gi,M (xi,M )hi(νi)N (ξi,M )ξ̇i,M + ξ̇i,M

]
eβM τdτ

and
N∑
i=1

e−βm′ t
∫ t

0

[
−gi,m′ (xi,m′ )N (ξi,m′ )ξ̇i,m′ + ξ̇i,m′

+
1
2
ḡ2i,m′ z

2
i,m′+1

]
eβ
′
mτdτ,

respectively.
From the previous result (27), one has

VM =
1
2
z2M +

1
2
w̃TM0

−1
wM w̃M +

1
2
ρ̃TM0

−1
ρM ρ̃M

+
1
2

∫ h0

0
p̃T0−1p p̃dr

≤ ςM +
µM

βM
+ VM (0).

Furthermore, according to the recursive design results (21)
and (16) from Step M − 1 to Step 1, one has

Vm′ =
1
2
z2m′ +

1
2
w̃Tm′0

−1
wm′w̃m′ +

1
2
ρ̃Tm′0

−1
ρm′ ρ̃m′

≤ ςm′ +
µm′

βm′
+ Vm′ (0).

Consider the global Lyapunov function candidate V =∑M
m=1 Vm, and denote ϑm = ςm +

µm
βm
+ Vm(0) for each m.

33022 VOLUME 6, 2018



T. Yu et al.: Adaptive Cooperative Tracking Control of Multi-Agent Systems With Unknown Actuators Hysteresis

It can be guaranteed that all signals of the closed-loop system
remain on the compact set � = �1 × · · · ×�M , where

�m′ :=

{
[zTm′ , w̃

T
m′ , ρ̃

T
m′ ]

T ∣∣ z2m′ + w̃Tm′0−1wm′w̃m′
+ ρ̃Tm′0

−1
ρm′ ρ̃m′ ≤ 2ϑm′

}
,

�M :=

{
[zTM , w̃

T
M , ρ̃

T
M , p̃

T ]T
∣∣ z2M + w̃TM0−1wM w̃M

+ ρ̃TM0
−1
ρM ρ̃M +

∫ h0

0
p̃T0−1p p̃dr ≤ 2ϑM

}
.

As time t → ∞, according to (16), (21) and (27), it can
be shown that � eventually converges to the compact set
�′ = �′1 × · · · ×�

′
M , where

�′m′ :=
{
[zTm′ , w̃

T
m′ , ρ̃

T
m′ ]

T ∣∣ z2m′ + w̃Tm′0−1wm′w̃m′
+ ρ̃Tm′0

−1
ρm′ ρ̃m′ ≤ 2ϑ∗m′

}
,

�′M :=

{
[zTM , w̃

T
M , ρ̃

T
M , p̃

T ]T
∣∣ z2M + w̃TM0−1wM w̃M

+ ρ̃TM0
−1
ρM ρ̃M +

∫ h0

0
p̃T0−1p p̃dr ≤ 2ϑ∗M

}
, (28)

with ϑ∗m = ςm +
µm
βm

.
As a consequence, for the closed-loop system, given any

initial compact set �0, as long as the initial conditions start
in �0, the proposed distributed control law will guarantee
that all signals remain on the compact set � and eventually
converge to the compact set�′, regardless of whether they are
subsets of the NN active region�NN or not. In this sense, our
stability result is global, and hence all signals of the closed-
loop system are GUUB.

Additionally, it can be shown that the size of ultimately
compact set �′ depends on the choice of design parameters
ci,m, γwi,m, γρi,m and γpi. In particular, we can tune these
design parameters ci,m, γwi,m, γρi,m and γpi to make βm
increase, which together with (28) implies that the size of �′

can be made arbitrarily small.
It can be verified that (28) implies ||z1|| ≤

√
2ϑ∗1 .

[23, Lemma 2] implies that as long as ||z1|| is bounded,
||y− y0|| ≤ ||z1||/

¯
σ (L + B), i.e., ||δ|| ≤

√
2ϑ∗1 /
¯
σ (L +

B) guarantees the boundedness of tracking errors. So all
outputs of the agents ultimately synchronize to the leader’s
trajectory with bounded residual errors. This completes the
proof.

IV. SIMULATION EXAMPLE
Consider a multi-agent system consisting of five fol-
lowing agents and one leader as shown in Figure 1.
Each follower node is a single-link manipulator with actuator
hysteresis [18], which can be modeled as the Lagrangian
dynamics

Jiq̈i + Biq̇i +Mig`i sin(qi) = Hi[ui](t)+ ζi, (29)

where i = 1, . . . , 5; qi, q̇i and q̈i are the angle position,
angular velocity and angular acceleration, respectively; Ji is

FIGURE 1. Topology of the digraph Ḡ.

FIGURE 2. Evolutions of the output trajectories yi .

FIGURE 3. Evolutions of the tracking errors δi .

the total rotational inertia; Bi is the overall damping coeffi-
cient; Mi is the total mass of the link; g is the gravitational
acceleration; `i is the distance from the joint axis to the link
center of mass; ζi is the external disturbance; Hi[ui](t) is the
actuator signal with the generalized P-I hysteresis; and denote
yi = qi as the output signal.
The leader’s trajectory is given as y0 = sin(t) +

0.5 sin(0.5t). In the simulation, the system parameters Ji,
Bi, Mi, `i and the hysteresis input function h̄i(ui)(t) =
0.2
(
tanh(ui) + 9ui

)
and density function p0i(r) =

0.08e−0.067(r−1)
2

are unknown to the distributed con-
troller design. The unknown disturbance ζi is random but
bounded.

During the simulation, the initial conditions are given as
x1(0) = [−0.1; 0.1], x2(0) = [0.2; 0.1], x3(0) = [0.1; 0.1],
x4(0) = [−0.2; 0.1], x5(0) = [0; 0], ξi,1(0) = ξi,2(0) = 0,
ŵi,2(0) = 0, ρ̂i,2(0) = 0, p̂i(0, r) = 0, and ωi,2(0) =
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FIGURE 4. Evolutions of the control signals ui .

FIGURE 5. Evolutions of the Nussbaum-type function signals N (ξi,2).

FIGURE 6. Evolutions of the estimated signals ŵi,2.

ω′i,2(0) = 0. According to the structure of Lagrangian sys-
tem (29), the boundaries ḡ1 = max1≤i≤5{ḡi,1} = 1.2, ḡ2 =
max1≤i≤5{ḡi,2} = 1.5,

¯

g1 = max1≤i≤5{
¯

gi,1} = 0.8,
¯

g2 =
max1≤i≤5{

¯

gi,2} = 0.5, and F̄i,2 = 4+ q̇2i , and the hysteresis-
related parameter r ∈ [0, 100] and p̄i = 5 can be known
a priori. In the distributed control scheme (9), (18) and (22),
the design parameters are chosen as ci,1 = 16, ci,2 = 10,
τi,2 = 10, εi,2 = 0.05,

¯
ri,2 = 1.5, r̄i,2 = 2.5, γwi,2 = 1.2,

γρi,2 = 0.98, γpi = 0.2, σwi,2 = σρi,2 = σpi = 0.01 for all
i = 1, . . . , 5, and λ1 = λ2 = 2. In this example, six neurons

FIGURE 7. Evolutions of the estimated signals ρ̂i,2.

FIGURE 8. The convergent behavior of the estimate values p̂3(t, r ).

FIGURE 9. Evolutions of the switching function signals Si,2.

are used for each NN, and the Sigmoid basis functions are the
NN activation functions.

The simulation results are shown in Figures 2-9. The trajec-
tories of the angle positions and reference signal are depicted
as Figure 2. Figure 3 graphically shows that the tracking
errors converge to a neighborhood of the origin. The control
signals are given in Figure 4. In addition, the Nussbaum-
type function signals N (ξi,2) and the estimated signals ŵi,2
and ρ̂i,2 are illustrated through Figures 5-7, respectively.
The convergent behavior of estimate values p̂3(t, r) is shown
in Figure 8. The switching function signals Si,2 are shown
in Figure 9.
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V. CONCLUSION
In this paper, we studied a cooperative tracking control prob-
lem of nonlinear multi-agent systems in strict-feedback form
with the generalized P-I hysteresis inputs over digraphs. The
use of the multiple Nussbaum-type functions is developed to
handle the problem of unknown time-varying virtual control
coefficients. By using backstepping incorporating with TD
technique, a distributed adaptive control law with a switching
mechanism is proposed to guarantee the GUUB stability.
Moreover, the leader-following tracking can be achieved with
bounded residual errors.

APPENDIX
PROOF OF LEMMA 1
Proof: For each m = 1, . . . ,M and all i = 1, . . . ,N ,

construct the following Nussbaum-type function

N (ξi,m) =
(
eλmξi,m + e−λmξi,m

)
sin(ξi,m) (A1)

where λm > 0 is a design constant. Integrating both sides
of (A1) over [0, ξi,m] gives

M(ξi,m) =
∫ ξi,m

0
N (σ )dσ

=
1

1+ λ2m

[
λm

(
eλmξi,m − e−λmξi,m

)
sin(ξi,m)

−

(
eλmξi,m + e−λmξi,m

)
cos(ξi,m)+ 2

]
.

Then it is straightforward that the following properties hold.
(i) N (ξi,m) is an odd function, and is nonnegative for

ξi,m ∈ [2nπ − 2π, 2nπ − π ], and is nonpositive for
ξi,m ∈ [2nπ − π, 2nπ ] with n being a positive integer.

(ii) M(ξi,m) is an even function. Over the interval ξi,m ∈
[0, 2nπ ], its minimal value can be taken at ξi,m = 2nπ
as

M(2nπ ) =
1

1+ λ2m

[
−

(
eλm2nπ + e−λm2nπ

)
+ 2

]
,

and its maximum value can be taken at ξi,m = 2nπ−π
as
M(2nπ − π )

=
1

1+ λ2m

[
eλm(2nπ−π ) + e−λm(2nπ−π ) + 2

]
.

We will prove the boundedness of ξi,m (i = 1, . . . ,N ) by
seeking a contradiction. Therefore, suppose that there exist
some ξi,m which are unbounded. Without loss of generality,
we assume that ξ1,m, ξ2,m, . . . , ξq,m are unbounded, while
ξq+1,m, ξq+2,m, . . . , ξN ,m are bounded with 1 ≤ q ≤ N .

Let the related functions defined on [0, tf ) be smooth. From
the smoothness of ξi,m, there exists a monotonic increasing
sequence {ts} (s = 0, 1, 2 . . . ) on the time interval [0, tf ),
such that

ts =


min
1≤i≤q

{
t : ξi,m(t) = 2nπ

}
, if all gi,m(xi,m) > 0

min
1≤i≤q

{
t : ξi,m(t) = 2nπ − π

}
, if all gi,m(xi,m) < 0

with lims→∞ ts = tf .

According to Assumption 5, for eachm, all unknown time-
varying functions gi,m(xi,m) possess the same signs which
are strictly either positive or negative. Hence, the following
analysis can be divided into two cases.
Case 1 (When all gi,m(xi,m) > 0): In this case, similarly,

we define the monotonic increasing sequence {t1s } and {t
2
s }

as

t1s =
{
t : ξi,m(t) = 2nπ − 2π

}
, for 1 ≤ s ≤ q

t2s =
{
t : ξi,m(t) = 2nπ − π

}
, for 1 ≤ s ≤ q.

With the definition of ts, there exists a p with 1 ≤ p ≤ q such
that ξp,m(ts) = 2nπ . It is noted that ξi,m(t) ≤ 2nπ when i 6= p
for all t ∈ [0, tf ).
Consider Vm(t) over the time interval [0, ts], the inequal-

ity (5) can be rewritten as

Vm(ts)

≤

q∑
i=1,i 6=p

e−βmts
∫ ts

0
gi,m(xi,m)N (ξi,m)ξ̇i,meβmτdτ

+ e−βmts
∫ ts

0
gp,m(xp,m)N (ξp,m)ξ̇p,meβmτdτ

+

q∑
i=1

e−βmts
∫ ts

0
ξ̇i,meβmτdτ

+

N∑
i=q+1

e−βmts
∫ ts

0

[
gi,m(xi,m)N (ξi,m)+ 1

]
ξ̇i,meβmτdτ

+µ̄m. (A2)

Noting that 0 < e−βm(ts−τ ) ≤ 1 for τ ∈ [0, ts], and ξi,m(ts) ≤
2nπ , one has

q∑
i=1

e−βmts
∫ ts

0
ξ̇i,meβmτdτ ≤

q∑
i=1

∫ ts

0
ξ̇i,me−βm(ts−τ )dτ

≤ q2nπ −
q∑
i=1

ξi,m(0).

Then (A2) can be transformed into

Vm(ts) ≤
q∑

i=1,i 6=p

∫ ts

0
gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(ts−τ )dτ

+

∫ ts

0
gp,m(xp,m)N (ξp,m)ξ̇p,me−βm(ts−τ )dτ

+ q2nπ + µm1, (A3)

where µm1 =
∑N

i=q+1
∫ ts
0 [gi,m(xi,m)N (ξi,m) + 1]

ξ̇i,me−βm(ts−τ )dτ + µ̄m −
∑q

i=1 ξi,m(0). Owing to the bound-
edness of gi,m(xi,m) and ξi,m for q + 1 ≤ i ≤ N , µm1 is
bounded.

It is noted that the maximum value of the first term at
the right-hand side of (A3) is obtained at ξi,m = 2nπ − π ,
and N (ξi,m) is nonnegative for ξi,m ∈ [2nπ − 2π, 2nπ −
π ], and thus the time interval [0, ts] is decomposed into
[0, t1s ]

⋃
[t1s , t

2
s ]
⋃
[t2s , ts]. Utilizing the integral property and
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noting that 0 < e−βm(t
2
s−τ ) ≤ e−βm(ts−τ ) ≤ 1 for τ ∈ [0, t1s ],

we have
q∑

i=1,i 6=p

∫ ts

0
gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(ts−τ )dτ

≤

q∑
i=1,i6=p

∫ t1s

0
gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t

1
s−τ )dτ

+

q∑
i=1,i 6=p

sup
ξi,m∈[2nπ−2π,

2nπ−π ]

{∫ t2s

t1s

gi,m(xi,m)N (ξi,m)

× ξ̇i,me−βm(t
2
s−τ )dτ

}
≤

q∑
i=1,i 6=p

∫ t1s

0
gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t

1
s−τ )dτ

+ ḡm(q− 1)
∫ 2nπ−π

2nπ−2π
N (σ )dσ, (A4)

where ḡm = max1≤i≤N {ḡi,m} with constants ḡi,m being
the upper bound of |gi,m(xi,m)|. To continue, when i = p,
using the integral property and noting that e−βm(ts−τ ) ≥
e−βm(ts−t

2
s ) = e−βmπ > 0 for τ ∈ [t2s , ts], we have∫ ts

0
gp,m(xp,m)N (ξp,m)ξ̇p,me−βm(ts−τ )dτ

≤

∫ t1s

0
gp,m(xp,m)N (ξp,m)ξ̇p,me−βm(t

1
s−τ )dτ

+ sup
ξp,m∈[2nπ−2π,

2nπ−π ]

{∫ t2s

t1s

gp,m(xp,m)N (ξp,m)ξ̇p,me−βm(t
2
s−τ )dτ

}

+ inf
ξp,m∈[2nπ−π,

2nπ ]

{∫ ts

t2s

gp,m(xp,m)N (ξp,m)ξ̇p,me−βm(ts−τ )dτ
}

≤

∫ t1s

0
gp,m(xp,m)N (ξp,m)ξ̇p,me−βm(t

1
s−τ )dτ

+ ḡm

∫ 2nπ−π

2nπ−2π
N (σ )dσ +

¯

gme−βmπ
∫ 2nπ

2nπ−π
N (σ )dσ,

(A5)

where
¯

gm = min1≤i≤N {
¯

gi,m} with constants
¯

gi,m being the
lower bound of |gi,m(xi,m)|. Then, substituting (A4) and (A5)
into (A3) yields

Vm(ts) ≤
q∑
i=1

∫ t1s

0
gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t

1
s−τ )dτ

+ ḡmq
∫ 2nπ−π

2nπ−2π
N (σ )dσ +

¯

gme−βmπ

×

∫ 2nπ

2nπ−π
N (σ )dσ + q2nπ + µm1,

=

q∑
i=1

∫ t1s

0
gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t

1
s−τ )dτ

+ ḡmqM(2nπ − π )+
¯

gme−βmπM(2nπ )

+ q2nπ + µm1
− ḡmqM(2nπ − 2π )−

¯

gme−βmπM(2nπ − π ).

(A6)

Recalling the properties of M(ξi,m), one has

ḡmqM(2nπ − π )+
¯

gme−βmπM(2nπ )+ q2nπ + µm1

=
eλm2nπ

1+ λ2m

[
ḡmqe−λmπ −

¯

gme−βmπ +
q2nπ (1+ λ2m)

eλm2nπ

]
+
e−λm2nπ

1+ λ2m

(
ḡmqeλmπ −

¯

gme−βmπ
)
+ µm2, (A7)

where µm2 =
2ḡmq
1+λ2m

+
2
¯

gme−βmπ

1+λ2m
+ µm1 is bounded. Since λm

is designed as λm > 1
π
ln ḡmN

¯

gm
+βm, it results in ḡmqe−λmπ −

¯

gme−βmπ < 0. Moreover, it is noted that

lim
n→∞

q2nπ (1+ λ2m)
eλm2 nπ

= 0 and lim
n→∞

e−λm2 nπ

1+ λ2m
= 0.

Thus, it can be guaranteed that as n→∞, (A7)→−∞.
Consider the last two terms in (A6) as

−ḡmqM(2nπ − 2π )−
¯

gme−βmπM(2nπ − π )

=
eλm(2nπ−π )

1+ λ2m

(
ḡmqe−λmπ −

¯

gme−βmπ
)

+
e−λm(2nπ−π )

1+ λ2m

(
ḡmqeλmπ −

¯

gme−βmπ
)
−

2ḡmq
1+ λ2m

−
2
¯

gme−βmπ

1+ λ2m
. (A8)

Similarly, it can be verified that as n→∞, (A8)→−∞.
To proceed, the following considered term over the

time interval [0, t1s ] is divided into finite subintervals
as
q∑
i=1

∫ t1s

0
gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t

1
s−τ )dτ

=

q∑
i=1

∫ t2πs

0
gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t

2π
s −τ )dτ

+

q∑
i=1

∫ t4πs

t2πs

gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t
4π
s −τ )dτ

+ · · · +

q∑
i=1

∫ t1s

t2nπ−4πs

gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t
1
s−τ )dτ,

(A9)

where the monotonic increasing sequences are defined
as t2πs =

{
t : ξi,m(t) = 2π

}
, t4πs =

{
t :

ξi,m(t) = 4π
}
, . . . , t2nπ−4πs =

{
t : ξi,m(t) =

2nπ − 4π
}
, respectively. Considering the general term

of (A9) and decomposing the interval [t2nπ−4πs , t1s ] into
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[t2nπ−4πs , t2nπ−3πs ]
⋃
[t2nπ−3πs , t1s ], we have

q∑
i=1

∫ t1s

t2nπ−4πs

gi,m(xi,m)N (ξi,m)ξ̇i,me−βm(t
1
s−τ )dτ

≤ ḡmq
∫ 2nπ−3π

2nπ−4π
N (σ )dσ +

¯

gmqe−βmπ
∫ 2nπ−2π

2nπ−3π
N (σ )dσ.

(A10)

Then using the similar technique as proved previously, it is
derived that as n → ∞, (A10) → −∞, when λm >
1
π
ln ḡmN

¯

gm
+ βm.

Combining all aforementioned results, it can be obtained
that Vm(ts) → −∞ from (A3) as n → ∞. Obvi-
ously, it contradicts with Vm(t) ≥ 0. Therefore, all
ξi,m (i = 1, . . . ,N ) must be bounded on [0, tf ). As a
consequence, it can be further induced that Vm, ξi,m, and∑N

i=1 e
−βmt

∫ t
0

[
gi,m

(
xi,m(τ )

)
N
(
ξi,m(τ )

)
+ 1

]
ξ̇i,m(τ )eβmτdτ

are bounded on [0, tf ).
Case 2 (When all gi,m(xi,m) < 0): The proof is similar to

that of Case 1. Hence, it is omitted.
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