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ABSTRACT In this paper, we introduce a novel and efficient hybrid trajectory planning method for
autonomous driving in highly constrained environments. The contributions of this paper are fourfold. First,
we present a trajectory planning framework that is able to handle geometry constraints, nonholonomic
constraints, and dynamics constraints of cars in a humanlike and layered fashion and generate curvature-
continuous, kinodynamically feasible, smooth, and collision-free trajectories in real time. Second, we present
a derivative-free global path modification algorithm to extract high-order state information in free space for
state sampling. Third, we extend the regular state-space samplingmethodwidely used in on-road autonomous
driving systems to a multi-phase deterministic state-space sampling method that is able to approximate
complex maneuvers. Fourth, we improve collision checking accuracy and efficiency by using a different
car footprint approximation strategy and a two-phase collision checking routine. A range of challenging
simulation experiments show that the proposed method returns high-quality trajectories in real time and
outperforms existing planners, such as hybrid A* and conjugate-gradient descent path smoother in terms of
path quality, efficiency, and computation resources used.

INDEX TERMS Trajectory planning, motion planning, autonomous driving, obstacle avoidance, kinody-
namic constraints, collision checking.

I. INTRODUCTION
During the past few decades, autonomous driving techniques
have attracted a great deal of attention in both academia
and industry due to their promising potential to prevent
collisions due to human error, reduce traffic congestion and
emissions, and provide mobility to all, including people who
are unable to drive themselves [1]–[3]. As a key module to
the autonomous driving system, trajectory planning plays an
important role in guaranteeing the ride safety and comfort
by generating a smooth, dynamically-feasible, collision-free
trajectory towards a destination, while taking into account
obstacles around the vehicle, vehicle dynamics, traffic rules
and other task specific constraints.

In general, a trajectory planning problem refers to finding
an optimal path with time stamped positions, orienta-
tions, and velocities from the current configuration to the
goal configuration by minimizing certain objectives subject
to geometry constraints (feasible paths must lie in the
free space), task constraints (requirements to visit certain

intermediate targets), and nonholonomic constraints (vehicle
kinematics and dynamics). This kind of problem is known to
be PSPACE-hard, which means there is no polynomial-time
algorithm able to solve all instances of the problem [4], [5].
The compounding effect of geometry, task and and nonholo-
nomic constraints (differential constraints) increases the
difficulty of developing practical trajectory planning algo-
rithms that directly solve the complete trajectory planning
problem [6], [7]. Instead, many different methods have been
developed to address the trajectory planning problem by
approximating the solution or solving sub-problems of the
original one.

A. RELATED WORK
The methodologies used by the motion planning commu-
nity for autonomous driving can be divided into three cate-
gories: sampling-based methods, search-based methods
and optimization-based methods. They all have their own
strengths and weaknesses.
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Sampling-based methods can be further categorized
into random sampling-based methods and deterministic
sampling-based methods. Random sampling-based methods
include probabilistic roadmaps [8]–[10] and rapidly-
exploring random trees [11]–[15]. The latter family has
been widely adopted for autonomous driving applications.
Kuwata et al. [12] develop a closed-loop RRT method
by combining physical, logical bias RRT with a low-level
controller to forward simulate the path. Ryu et al. [13] exploit
a more efficient RRTmethod with a different biased sampling
strategy to generate the random tree and then filter out the
final path with a low pass filter over the tangential vector and
curvatures of the path. Although various sampling strategies
and corrections are applied to improve the performance of
the RRTmethod, the solution generated remains sub-optimal.
Karaman et al. [10], [16] develop the RRT* algorithm that
is able to converge to the optimal solution asymptotically.
Jeon et al. [14] incorporate a fast local steering algorithm
based on a half-car dynamical model and the RRT* algorithm
to generate dynamically feasible trajectory for high-speed
autonomous driving. The random sampling-based methods
are in general good at exploring the reachability of the free
space using control space paths and rapid collision checking
in complex environments. The tree structure generated by
sampling strategies also approximates the connectivity of the
free space without having access to the explicit geometry
model of the free space [5]. Some random sampling-based
methods such as PRM and RRT are known to be probabilis-
tically complete, ensuring a path will eventually be found if
one exists [15]. Due to the repeated selection of the random
intermediate states or control inputs, however, resulting paths
tend to be jerky, redundant and not curvature continuous,
which is not acceptable for autonomous driving applications,
especially at high speed. The run-time is also unlimited and
unpredictable. For a more comprehensive review of random
sampling-based methods, we refer readers to [17].

Deterministic sampling-based methods are also referred to
as local search methods [1], which mainly include control
state sampling methods and state space sampling methods.
The main approach is to generate several shifted curves from
the car’s current configuration to sample the space near the
car and arrive at a set of goal locations, and then to select the
best path according to factors such aswhether the path is colli-
sion free and the distance to the reference path or the center
line of lanes etc. Control space sampling methods simply
run discrete control inputs for a certain duration to generate
the shifted curves [18], [19], while state space sampling
methods instead get goal states from a reference path or a
center line of the road within a certain horizon, then solve
a two-point boundary value problems with predefined curve
models connecting the initial state of the car and the goal state
set [20]–[25]. The curves that are used to sample the space can
be arcs (generated from control space [18], [19]), spirals [20],
[21], splines [22], [26], polynomials [23]–[25]. All the curve
models except arcs required goal states such as position,
orientation, and curvature to be defined from a reference

FIGURE 1. (a) The demonstrated sampling depth is one. With the
different sampling horizons and many sampling paths, the sampling
depth is still one. (b) The demonstrated sampling depth is three.

path in order to construct candidate paths. The goal state
plays an import role in affecting the shape of the seeds paths.
Compared to random sampling-based methods, deterministic
sampling-based methods reduce the solution space dramat-
ically by using preferred actions (control space sampling)
or taking advantages of the structure of roads (state space
sampling), which makes behaviors of the planner predictable
and also avoids unreasonable sampling seeds. The determin-
istic sampling-based methods can be thought of as a class
of planners whose sampling depth is one, regardless of their
look-ahead horizon, as seen in Figure 1a. Although these
methods can generate smooth trajectories efficiently, their
ability to capturing the topology of free space is restricted
due to the limited sampling depth. The reliance on a goal
state generated from the reference path also discards key
information such as orientation and curvature in terms of
obstacle avoidance with the presence of obstacles, as shown
in Figure 2. The state sampling method work reasonably well
without obstacles or with sparse distributed obstacles along
the road, but is fundamentally limited in the complexity of
the environments with dense obstacles that can be handled
effectively [25], [27]. The presence of dense obstacles break
the original geometry property of the road exploited by
deterministic sampling methods. Following the road heading
or curvature information underestimates the steering efforts
required to avoid consecutive obstacles and misleads the
motion planning process. In practice, a car may run into situ-
ations in which it cannot make any progress along the road,
despite a feasible trajectory existing, due to the restricted
search imposed by these methods.

Search-based methods, as distinct from sampling-based
methods, refer to methods which employ graph-based search
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FIGURE 2. The original goal state underestimates the steering efforts and
also provides an inperfect heading information, which may fail the
navigation.

approaches such as A* [28]–[30], state lattice [31]–[33],
Dijkstra [34], hybrid A* [35] and their variants. Some search-
based methods provide a theoretical guarantee of resolution
completeness. This class of methods usually constructs a
directed graph to sample the configuration space uniformly
and then searches the graph with different search strategies.
Instead of randomly exploring the free space of the envi-
ronment at run-time, search-based methods discretize the
configuration space with fixed number of motion primitives
and build the search graph in advance. The graph that is
built has a better coverage of the whole free space with less
configuration states compared to RRTs at the early stages
of planning, which must construct their search tree from
scratch. This distinction ensures that search-based methods
have a better global view of the geometry model of free
space before searching for a path. The search strategies only
focus on finding a globally optimal path according to given
objectives. With a well designed search space and admis-
sible heuristics, searched-based methods are able to find a
globally optimal or sub-optimal path in real-time for some
autonomous driving scenarios [28], [35]. Hybrid A* and
AD* have shown strong performance in path planning for
autonomous driving in parking lots scenarios [21], [28], [35].
However, as the pre-constructed graph is a discrete represen-
tation of the configuration space, the solution space will be
dramatically reduced if the search space is not well designed.
This may lead to highly sub-optimal solutions or even no
solution while one exists. When it comes to high dimen-
sional problems, graph search-based methods inevitably fall
prey to the curse of dimensionality. In addition, the resulting
paths are not curvature continuous, which is not feasible for
high speed autonomous driving. A post smoothing process
can be applied to the generated path to make it feasible
for on-road driving scenarios, but the collision-free property
of the path generated by searching does not remain after
smoothing [35]. More adjustments are then required to make
it safe to follow. In summary, search-based methods are good
at solving path planning problems with geometric constraints
but poor at dealing with kinodynamic constraints of the
system in general.

Finally, optimization-based methods, also called varia-
tional methods, solve two point boundary value problems

using nonlinear optimization techniques to address the
trajectory planning problem [25], [35]–[39]. These methods
usually represent the path of a vehicle with certain
parametrized curve models, such as splines [40], [41],
spirals [37], [42], polynomials [43], [44] or piecewise
lines [38], [45], and then optimize for the prescribed objec-
tives over a finite dimensional parameter vector space to
get smooth paths or trajectories. They are widely used
in autonomous driving systems due to their fast convergence
rate to local optimum and high quality solutions. However,
most approaches are non-convex, and are challenged to find
the global optimum unless an initial guess that is sufficiently
close to optimal is available. The complexity of environments
depends on the geometry shape of the free space, and not
just on the number of obstacles. To the best of our knowl-
edge, there is no optimization-based method that incorpo-
rates the explicit geometry model of the free space into the
trajectory planning problem formulation. Further, the curve
model chosen in problem formation for trajectory planning
also limits the ability of handling obstacles. For example,
the quadratic polynomial curve model can only represent a
single swerve motion. Therefore, the trajectory optimization
based on a quadratic polynomial parametrization can only
deal with one obstacle within its planning horizon. A piece-
wise continuous curve model is able to resolve this limitation,
but it leads to computation of optimization. This requires
solving multiple coupled optimization problems at the same
time. The intermediate states need to be chosen smartly
as well. To sum up, optimization-based trajectory planning
methods are good at providing high quality solutions with
embedded high order curves or dense waypoint curves but
poor at handling obstacles. Some of the methods can incor-
porate nonholonomic constraints in the optimization, but
including obstacle avoidance within the optimization is still
problematic.

B. CONTRIBUTIONS
In order to solve the motion planning problem in real time for
autonomous driving, we propose a hybrid trajectory planning
algorithm by combining the strengths of different methods.
We assume the drivable region and the global path, which
may be or may not be collision-free, are provided. As an
optimization problem with both nonholonomic and geometry
constraints is PSPACE-hard [4], [5], the trajectory planning
problem is decomposed into spatial path planning and speed
planning sub-problems. The spatial path planning problem
is further decomposed to a global path modification layer
within the given drivable region and a multi-phase state space
sampling planner layer. The speed planning sub-problem is
solved by an optimization-based speed planning layer along
the fixed path. In this way, the combinatorial constraints of
the motion planning problems are separated, which is conve-
nient to address different constraints by taking advantages
of different methods. Besides, the decomposition makes the
planner be able to limit the search space by leveraging the
constraint information while still maintaining richness of
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the feasible solution space in different layers. Our contribu-
tions are:
• We propose an efficient layered trajectory planning
framework. This framework handles each type of
constraint using distinct methods. We first handle the
geometry constraints using a search-based global path
modification layer, which identifies the shortest path
through the environment without regard for vehicle
motion constraints. The second layer, a multi-stage state
sampling method, samples in the neighbourhood around
the shortest path to generate a kinematically-feasible
path, which resolves the nonholonomic constraints of
the vehicle. In this way, the framework reduces the
infeasible state space region from the potential sampling
space significantly. More precisely, it prevents the
state space sampling method from spending computa-
tion resources on generating high-cost kinematically-
feasible paths to sample the infeasible region that is
limited by constraints, which improves the sampling
efficiency. Once the best path is found in the sampling
stage, the dynamical constraints of the vehicle (lateral
accelerations and longitudinal accelerations and decel-
erations) are imposed to define a speed profile. This
approach differs from the hybrid A* and RRT* fami-
lies of methods, which first impose nonholonomic
constraints to generate kinematically-feasible motion
primitives, then incrementally construct a sampling
graph using motion primitives to resolve the geometry
constraint. Their strategy leads to swerving paths due
to the discretized or randomized motion primitives. Our
method results in more human-like solutions, by finding
the best coarse path through the environment first, and
then refining the path to meet kinodynamic constraints.

• We introduce a general global path modification
algorithm with a derivative-free smoothing process to
extract high order state information for the state space
sampling. A big difference from the origin space explo-
ration method used in the heuristic search path planning
framework [46] is that we provide a derivative free path
smoothing algorithm based on the curve energy function
and fit a B-spline to get the precise orientation and
curvature information of the path. Chen [46] uses the
resulting circle path to limit the search region for the
hybrid A*, which only leverages the position informa-
tion of the circle path. We instead exploit the position,
orientation and curvature information of the smoothed
circle path, leading to more drivable paths. Gu et al.
also propose global path deformation methods (dynamic
programming method [47], elastic band method [48]).
However, these methods require precise road geometry
information to construct the search graph. Our method
only require traversable region information, which can
be easily extended to free space planning scenarios.

• We extend the regular state space sampling method to a
multi-phase deterministic state space sampling method
to handle navigation problems in complex and crowded

environment. Different from the regular state space
sampling methods [21], [25], [49] that use a single
polynomial function to represent naive maneuvers with
only one swerve, our method divides the path plan-
ning problem with nonholonomic constraints to several
consecutive stages and uses curvature-continuous piece-
wise cubic spirals to represent complex maneuvers
(consecutive s shape paths) subject to nonholonomic
constraints of cars. In this way, our planner is not only
able to get rid of high order polynomials that leads to
heavy computations but also provides a long-term path
with a continuous curvature profile aligned with the
geometry of the modified global path.

• We developed a more efficient and accurate collision
checking method by using a different footprint approx-
imation strategy and a two-phase collision checking
routine.

This paper is organized as follows. The methodology is
presented in Section II, which includes the following subsec-
tions: the global path modification, multiple stage state
sampling, optimization-based speed planning, hierarchical
collision checking. Section III explains the experiments
setup and evaluation of the proposed algorithm in details.
Section IV summarizes the contributions and discusses future
work.

II. METHODOLOGY
The overall structure of the hybrid trajectory planning frame-
work is shown in Fig. 3. We first create a traversable
region around the global path and set the intersection of
the traversable region and on-board free-space perception
results as the search space of the global path modifica-
tion layer. This pre-processing step restricts the region of
interest and filters irrelevant obstacles from the motion
planning problem. Next, the global path modification layer
employs a novel space exploration method to identify a
collision-free and smooth path inside the aforementioned
search space. A multiple stage state sampling layer is then
applied to sample along the new reference path and identifies
a collision-free, kinematically-feasible, curvature-continuous
desired path. Finally, an optimization-based time-optimal
speed planning layer is employed to construct a speed profile
along the path, taking into account the dynamic constraints of
the vehicle.

A. GLOBAL PATH MODIFICATION
The goal of the global path modification layer is to get a
collision-free global path within the region limited by the
original global path and the traversable region from the
perception module. In realistic on-road driving scenarios,
the original global path provided by a high-level route plan-
ningmodule will not be optimal, andmay not even be feasible
due to the presence of obstacles such as parked cars along the
roads and reconstruction coneswhich appear temporarily. In a
highly curved lanewith tight turning radius without obstacles,
following the center line of the lane results in more control
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FIGURE 3. Hybrid trajectory planning framework.

efforts and larger lateral accelerations for the car than are
necessary [25]. Improvements to the path cost can be made
by short-cutting the corner within the road boundaries in this
case.

In order to solve these problems, we propose a global path
modification method to provide correct guidance information
for obstacle avoidance of the multiple phase state sampling
layer. The core idea is to reconstruct the topology of the
on-road free space and generate a new smooth global path
embedded with the geometric information of the free space
within the boundary defined by the original global path,
shown in Fig. 4. The resulting path in this step does not
necessarily have to consider the nonholonomic constraints,
but needs to be as continuous and short as possible. We adapt
existing space exploration methods to modify the non-
collision-free global path according to the on-board percep-
tion information. After that, a derivative-free iterative path
smoothing algorithm is developed to reduce the slackness
of the path generated from the search. Finally, a B-spline
curve fitting algorithm is applied to generate the high order
geometry information of the modified global path.

For completeness, we recall the original space explore
algorithm from [46]. Given the current start position of the
car and the desired goal state on the global path, the space
exploration algorithm is to find a sequential overlapped
circle path in workspace using a heuristic A* graph search
algorithm. The centers of the circles are waypoints of the
path. The circle node used to construct the search graph is
a tuple ni = (pi, ri, gi, hi, fi), where pi is the position (xi, yi)

FIGURE 4. Due to the presence of obstacles, the geometry of the roads is
changed. The modified path captures the geometry properties of the free
space, which provides more high-order state information for state
sampling.

FIGURE 5. The node expanding pattern. The ni is the parent node.
Rclearance is the radius acquired from the grid map according to current
situation and radius limits [Rmin,Rmax ].

of the circle center(vertex of the graph), ri is the clearance
radius of the circle, gi is the actual travel distance cost (the
length of edges between nodes) from the start node to the
current node and hi is the Euclidean distance heuristic from
the current node to the goal node. The summation of gi and
hi is fi, which is the total cost, and is a lower bound on
the cost to travel through ni from start to goal. The explo-
ration begins with the start node nstart pushed to the open
set Sopen. The open set Sopen stores the nodes to be explored
and sorts the nodes according to the fi in descending order.
The closed set Sclosed maintains the nodes that have been
explored. At each iteration, the PopTop(Sopen) operation
will pick the node ni with the minimum fi value to expand.
The ExpandNode(ni, j,Rmin,Rmax) operation generates the
children node set Schildren for ni, with j elements evenly
distributed in a circle around ni with radius

ri =


Rclearance, if Rclearance ∈ [Rmin,Rmax]
Rmin, if Rclearance < Rmin
Rmax , if Rclearance > Rmax ,

as shown in Fig. 5, where the Rclearance is the max distance
from ni to the closest obstacle in clearance map.1 The Rmin

1The clearance map is the same with the one explained in section II-D
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Algorithm 1 The Space Exploration Algorithm
Data: nstart The start node.

ngoal The goal node.
Result: {nstart , · · · , ngoal } or ∅

1 Sopen← {nstart } ;
2 Sclosed ← ∅ ;
3 fgoal = ∞;
4 while Sopen 6= ∅ do
5 Sort(Sopen);
6 ni←PopTop(Sopen) ;
7 if fgoal < fi then
8 break;

9 else if ni 6∈ Sclosed then
10 Schildren = {n1, · · · , nj} ← ExpandNode(ni, j,

Rmin, Rmax);
11 Sopen← Schildren

⋃
Sopen;

12 if Overlap (ni, ngoal) then
13 fgoal = min(fi, fgoal);

14 Sclosed ← {ni}
⋃
Sclosed ;

15 else
16 continue;

17 if fgoal <∞ then
18 return success

19 else
20 return failure;

and Rmax are the lower and upper bound for the radius
of expanding circle nodes, respectively. Then, the children
nodes of ni in Schildren are added to Sopen and the expanded
node ni is moved from Sopen to Sclosed . The total cost, fgoal ,
is initialized to infinity, and updated with a new value and
associated path whenever the expanded node, ni, overlaps
with the goal node ngoal and a smaller cost to goal is
found. The Overlap(ni, nj) is defined as the Algorithm 2.
The process continues until all the nodes in the Sopen are
explored or have a higher total cost than fgoal .

Algorithm 2 Overlap(ni, nj)
Data: ni The circle node i.

nj The circle node j.
Result: true if overlapped, false otherwise
Operation: Distance Calculate the Euclidean

distance of two points in plane.
1 if

(
Distance (pi, pj) − Max (ri, rj)

)
≤ 0.5∗Min

(ri, rj) then
2 return true

3 else
4 return false

FIGURE 6. The update direction of pi+1. The symbol Xobs represents an
obstacle.

The output of this process is a discrete curve connecting
the start and goal nodes through the free space in the envi-
ronment. More precisely, a discrete curve is an ordered tuple
(p0, p1, · · · , pn−1) ∈ R2n of vertices pi ∈ R2, with pi+1 6= pi
for all i. The consecutive vertices are connected by straight
lines that are called edges.

Although the space exploration layer is able to extract the
free space knowledge to approximate the optimal corridors
to reach the temporary goal in 2D workspace in terms of
the path length, the resulting path (red curve) generated by
this algorithm is only G0 continuous2 as shown in Fig. 7.
It is inadmissible for state sampling along the path due to
the discontinuous heading profile. In order to smooth the path
and extract high order state information for the state sampling
module, an iterative path smooth algorithm is applied to refine
the path. The core idea of path smoothing is reducing the
slackness of the path (shortening the length) while increasing
the smoothness. We define an energy function for a discrete
curve to measure the progress of smoothing:

Jd =
N∑
i=2

(κ2pi−1 + κ
2
pi )1spi

2
(1)

where κpi is the discrete curvature at point pi, and 1spi is the
distance between point pi and pi−1.

This is an approximation of the continuous version of the
bending energy representation

J =
∫ s

0
κ2 ds

The objective is used to define the stop criteria for the iter-
ative smoothing algorithm. The update rule is defined as the
Algorithm 3: Given the adjacent three points pi, pi+1, pi+2
and the center point ppi of the parent node of pi on the path,
try to push the pi+1 to point E while still keep the clearance
greater than Rmin and κpi ≤ κmax . Algorithm 3 calculates
the discrete curvature according to the SSS Theorem [50]
(line 3-5). The initial position of E is at the intersection point
of−−−−−−−→pipi+2pipi+1 with the perpendicular line going through the
pi+1 shown in Fig. 6.

2G represents the geometry continuity. G0 means a curve is joined.
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Algorithm 3 GetNewCircleCenter (pi, pi+1, pi+2)
Data: pi,pi+1,pi+2 The adjacent three points of nodes.
Result: pnewi+1 The new position of pi+1
Parameter: Rmin The lower boundary for the radius of a

circle node.
κmax The max curvature defined by users
according to platforms.
ppi The center of the parent node of pi.
resoution The resolution of the grid map.

Operation: Clearance Acquire the clearance value
according to the position in the map.
Distance Calculate the Euclidean
distance of two points in plane.

1 E ← (−−−→pipi+2 ⊥
−−−→
pi+1E) ∧ (E ∈ −−−→pipi+2) ;

2 do

3 a =
−−→
ppi pi, b =

−→
piE , c =

−→
ppi E ;

4 s = a+b+c
2 , K =

√
s(s− a)(s− b)(s− c);

5 κpi =
4K
abc ;

6 if (Clearance(E) ≥ Rmin) ∧ (κpi ≤ κmax) then
7 pnewi+1 ← E ;
8 return pnewi+1 ;
9 else
10 E ← E+pi+1

2 ;

11 while Distance(E,pi+1) > resolution;
12 return pi+1 ;

As the update rule and objective function are defined,
the path smoothing algorithm performs as in Algorithm 4.
Every iteration the algorithm will work to decrease the slack-
ness of the path by performing a binary search for a feasible
updated circle center, subject to the triangle inequality rule,
curvature upper boundary and the clearance constraint. If the
distance between the new circle center (e.g. F) and orig-
inal circle center (e.g. pi+1) falls below the resolution of
the grid map, it means there is no improvement available.
The update will skip the circle center to optimize others.
The blue piecewise linear curve shows the optimized path
of original result of the space explore algorithm (red curve)
in Fig. 7. It is obvious that there is a great improvement
after smoothing. But the optimized path are still piecewise
linear and sparse, which only provides rough heading and
curvature information. The orientation and curvature profiles
calculated based on the optimized path are discontinuous and
imprecise. In addition, the geometry information of inter-
vals of waypoints is missing due to the linear approxima-
tion of a path. But as we mentioned before, the high order
state information such as orientation and curvature have
great impacts on the shape of paths. Smooth orientation and
curvature profile are preferred to prevent sudden changes of
paths during state sampling. It’s well known the B-spline
has C2 continuity for the entire curve. By fitting a B-spline
over the optimized path, we manage a smooth transition
between waypoints and reconstruct the geometry information

Algorithm 4 PathSmoothing({pi}, Rmin,Rmax)
Data: {pi} The discrete curve consists of positions pi of

the circle nodes ni.
Result: refined_path The smoothed discrete curve.
Parameter: threshold The optimization stop threshold

defined by users.
Operation: Clearance Acquire the clearance value

according to the position in the map.

1 do
2 refined_path← {pi} ;
3 Jprev = Jd (refined_path) ;
4 foreach ni ∈ {pi} \ {pstart , pgoal} do
5 p = GetNewCircleCenter(pi−1, pi, pi+1);
6 ni← (p, Clearance(p));

7 new_refined_path← {pi} ;
8 Jnew = Jd (new_refined_path) ;
9 1J = ‖Jnew−Jprev‖Jnew

;
10 if Jnew < Jpre ∧ 1J < threshold then
11 refined_path = new_refined_path;
12 Return refined_path ;

13 while Jnew < Jpre;
14 Return refined_path ;

of intervals between waypoints as well. Although B-spline
doesn’t pass through the data points, it does stay close to
them. Our algorithm generates waypoints based on clearance,
which provides enough support waypoints for curve fitting.
Thus, the fit B-spline still maintains a good approximation
of the geometry of the circle path. The green curve in Fig. 7
shows the smoothed path after the curve fitting process.

B. MULTIPLE-PHASE DETERMINISTIC STATE SAMPLING
This section is interested in solving a path planning problem
of the following class: Given an initial state of a vehicle and a
reference path, plan a smooth collision-free path aligned with
the reference path while respecting nonholonomic constraints
of vehicles.

Once amodified smooth global reference path is generated,
a multiple stage deterministic state sampling method is used
to generate collision-free, kinematically-feasible paths for
cars by sampling along the modified global path. Different
from the regular state sampling methods [20], [21], [25]
that treat state sampling as a single stage sampling problem,
our method divides state sampling into several consecutive
stages, as shown in Fig. 8. In every stage, state sampling
is employed to generate a finite set of seeding paths with
different lateral offsets shifting from the reference path,
which results in solving several two-point boundary value
problems (TPBVPs). The closest collision-free path to the
reference path at every stage is selected as the start state of the
next stage. By doing so, a greedy search strategy is employed.
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FIGURE 7. The path smoothing results in unstructured environment. The black region represents obstacles and white region is free
space. The red curve represents the circle path generated by the space explore algorithm. The colorred dots show the centers of circle
nodes. The grey curves are the intermediate path smoothing results. The blue curve is the final circle path generated by the
smoothing algorithm. The green curve is the curve fitting result with dense way points.

FIGURE 8. Mutiple phase state sampling.

The rational behind this will be explained in II-B.2.b part
(Path Selection in Single Phase).

1) REFERENCE PATH SEGMENTING
Unlike the simple, single swerve, reference paths aligned
with road geometry used in [20], [21], and [25], our smooth
reference path may include several swerves with different
turning directions when navigating through environments
with dense obstacles. More waypoints or higher order poly-
nomials are needed to approximate the exact shape of a path,
which could lead to heavy computational requirements for
our system. Instead, we divide the complex reference path
into several segments sampled with simple motion primitives
and use a cubic spiral representing each path segment to
reduce the dimensions of the parameter space while still

maintaining strong expressiveness over the set of possible
paths. The reference path can be segmented based on either
arc-length (distance along a curve) of the motion primitives
or the curvature profile of the reference path. In our imple-
mentation, we use the former, which is set to lphase = 6.0 m.
In this way, a complex motion can be approximated by piece-
wise cubic spirals.

2) SINGLE PHASE STATE SPACE SAMPLING
In single phase state space sampling, the base goal state is
acquired from the reference path segmenting module, and a
set of goal states are generated with different lateral offsets
from the base goal state at every stage. Different from the
goal states lateral offsetting strategy used in [20], [21], [25],
and [51], we exploit an adaptive offset sampling to deter-
mine feasible goal states to generate a kinematic-feasible
path. The lazy sampling strategy used in [20], [21], [25],
and [51] is shown in Fig. 9, which keeps a large fixed number
of sampling points with equidistant offsets to cover the
road region and generates computationally-expensive paths
without checking the feasibility of the sampling points. When
the dimension of the obstacle increases, more samples are
needed to generate collision-free path candidates, and the
number of samples required is challenging to determine for
different scenarios. The calculation time increases as well
in this case. In contrast, thanks to the guidance information
provided by the global path modification layer, our method
only needs to maintain a small set of sampling points to
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FIGURE 9. Lazy sampling strategy.

nudge around the modified global path and get collision-free
and kinematic-feasible path candidates (see Fig. 10), since
the modified global path already lies in free space. The total
sample count of our method for one stage will not be affected
by the dimension of obstacle as the locations of samples
depend on the modified global path. Further, we check every
sampling point for collision using the footprint of the car
and the infeasible sample points are filtered out of the total
sample set. Only collision-free goal states (effective sampling
points in Fig. 10) that are picked adaptively according to
environments, based on the car footprint, are passed to the
path generation module. In this way, the computationally-
expensive task of path generation is avoided when a goal state
cannot be reached.

FIGURE 10. Adaptive sampling strategy.

As the current vehicle state and the goal state are known,
the path generation can be formulated as a classical Two-
Point-Boundary-Value problem (TPBVP) then solved using
nonlinear programming techniques. Before converting a
TPBVP problem to a constrained nonlinear programming
problem, a parameter representation of the path needs to
be determined to formulate the problem. Several parame-
terized path representations have been proposed, including
B-spline [40], [41], Bezier Curve [52], [53], piecewise linear
curve [38], clothoid [54]–[56], polynomial curve [43], [44],
and polynomial spiral (greater than second order) [37], [42].
The B-spline, Bezier curve, piecewise linear curve and poly-
nomial curve do not satisfy kinematic constraints of the
car model according to their curve definitions and indepen-
dent parametrization for x and y in Cartesian coordinates.

FIGURE 11. A single track vehicle model

The polynomial curve is not able to represent a simple curve
like an arc or a line and may dramatically change with
small perturbations. The clothoid is known as a first order
polynomial spiral and widely used in both road design [57]
and motion planning. However, clothoids only have three
parameters and therefore cannot satisfy tangent conditions
and curvature constraints at both boundary points [37] simul-
taneously. A cubic polynomial spiral such as (2) is suffi-
ciently expressive to satisfy positional constraints, tangency
conditions, and curvature constraints while still maintaining
the acceptable low order in parametrization. A curve is said
to be parameterized by arc-length if its speed is always unit
speed [58]. It is well known that every regular curve has an
arc-length parametrization [59]. By representing the control
input function as a cubic spiral (see (2)) as in [37], an arc-
length parametrized curve for the path of a vehicle can be
found directly with the vehicle model.

κ(s) = a+ bs+ cs2 + ds3 (2)

A motion model for a vehicle can be formulated as a set of
nonlinear equations in terms of arc-length based on the single
track vehicle model [60],

x(s) = x0 +
∫ sf

0
cos(θ(s))ds

y(s) = y0 +
∫ sf

0
sin(θ(s))ds

θ (s) = θ0 +
∫ sf

0
κ(s)ds (3)

where x(s), y(s) represent the position of the vehicle, θ (s) is
the orientation of the vehicle, κ(s) is the curvature of a path.
The κ(s) can be mapped to a steering angle φ(s) of the vehicle
using φ(s) = arctan(L · κ(s)), where L is the wheelbase.
Equation (3) can be quickly derived from a typical motion
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model of a vehicle by using s = Vt and ds = Vdt in the
time domain, where V is the longitudinal velocity of the
vehicle. Themotionmodel (3) defines a vehicle configuration
at s by q(s) =

(
x(s), y(s), θ(s)

)
. Since any configuration can

be transformed to the origin of a local frame by a homo-
geneous transformation in SE(2),3 the initial configuration
q0 = (x0, y0, θ0) is set to (0, 0, 0).
Such a parametrization that combines (2) and (3) enables

our algorithm to optimize the curve depending on the
geometric shape of the path embedded with the motion model
of the vehicle. In practice, however, it is very difficult to
find an analytical expression for the arc-length parameterized
curve, due to the fact that a length equation is challenging to
integrate analytically. Instead, we can approximate the inte-
gral numerically by using the Trapezoidal rule or Simpson’s
rule [62].

Based on the prior discussion, the arc-length parameterized
representation for the path in Cartesian coordinates becomes:

r(p) = (x(p), y(p))

s.t. x(p) =
∫ s

0
cos

(∫ s

0
κ(p)ds

)
ds

y(p) =
∫ s

0
sin
(∫ s

0
κ(p)ds

)
ds

κ(p) = a+ bs+ cs2 + ds3 ∀s ∈ [0, sf ], (4)

where a is the known initial curvature, while b, c, d, sf are the
unknown optimization parameters and sf is also the final arc-
length at the goal state. Let pc = (b, c, d, sf )T be the coef-
ficient parameter vector. The workspace path, r(s) defined
with this parameterization, is at least C2 and at most C5

continuous.
Instead of using pc directly in the optimization, we re-

parametrize the path by using the curve knot spacing tech-
nique that is widely used in curve fitting [63], which is
suggested in [42]. Apply a transformation T to pc and a new
parameter vector called a knot parameter vector p is obtained:

p =


m1
m2
m3
m4

 =

κ(
sf
3
)

κ(
2sf
3

)

κ(sf )
sf

 = T · pc, (5)

where,

T =


sf
3

(
sf
3
)2 (

sf
3
)3 0

2sf
3

(
2sf
3

)2 (
2sf
3

)3 0

sf (sf )2 (sf )3 0
0 0 0 1

. (6)

The choice of parameter vectors p or pc make no differ-
ence in the parametrization for the workspace path, as they
are mathematically equivalent. However, this choice of

3Special Euclidean group [61].

parametrization leads to fast convergence, in our experience
and as mentioned in [42].

As k(sf ) is the known curvature at the goal state, the param-
eter vector is further reduced to pr = (pr1, p

r
2, p

r
3) =

(m1,m2,m4).
In addition, this re-parameterization makes the algorithm

optimize the parameters that are not merely abstract mathe-
matical symbols, but objects having physical interpretations.
In the coefficient parameter space, it is impossible to give a
lower and upper bound for parameter values for our problem.
But this is trivial in the knot parameter space. A lower
boundary, κL , and an upper boundary, κU , on p1, p2 can
be provided according to the limitations of steering angle
actuation of the vehicle. An informed initial guess of the knot
parameters can also be assigned easily.

a: PATH GENERATION PROBLEM FORMULATION
Given the current vehicle state qinit = (xinit , yinit , θinit , κinit )
and the goal state qend = (xend , yend , θend , κend ), a path
generation problem is formulated as

minimize J = Jsmoothness(pr ) =
∫ sf

0
‖κ(pr)‖2ds

s.t. q(r(pr )) = qinit when s = 0

q(r(pr )) = qend when s = sf
0 ≤ sf ≤ smax , (7)

where pr = (p1, p2, p3)T , smin, smax are the lower and upper
boundary for the arc-length of the curve assigned by users
respectively, κL and κU are the lower boundary and upper
boundary for the curvature of the path respectively. The path
smoothness term Jsmoothness is a line integral of the square of
curvature of the path with respect to arc-length:

Jsmoothness =
∫ sf

0
‖κ(pr)‖2ds (8)

where ‖k(pr)‖ is the curvature scalar of the path. A curve
connecting two configurations while minimizing Jsmoothness is
the so-called Least Energy Curve, which has the least bending
energy [64]. By solving a nonlinear programming problem
like (7), our method generates a smooth path that distributes
the steering efforts evenly along the path while satisfying
the boundary constraints. The initial guess for pr and smin
can be easily obtained by solving a Dubin path planning
problem [65].

b: PATH SELECTION IN SINGLE PHASE
In the path selection stage, an efficient collision checking
algorithm is employed to filter out paths in collision, which
will be further described in the II-D section. Instead of consid-
ering multiple objectives to choose the best path among these
collision-free paths, we use a single objective, the distance
to the reference path, to select the best path. We argue
that multiple objectives may conflict with each other, which
can lead to hesitation and rapid variation in the selected
path. Further, a single weighting coefficient matrix of the
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objectives may not be suitable for all scenarios encountered,
and may require repeated tuning and careful selection of
coefficients to achieve the desired behaviour throughout the
set of operating conditions. It is non-trivial to find perfect
coefficient matrix for every situation. Since the global path
modification module has already refined the original global
path and provided rational geometry information to guide the
state sampling, the goal of the single phase state sampling
step is to follow the modified reference path while satisfying
nonholonomic constraints and keeping the selected paths
collision-free. The multiple state space sampling method
produces a curvature-continuous, collision-free, kinematic-
feasible path, which satisfies all the requirements imposed on
the path from the outset.

C. SPEED PLANNING ALONG THE FIXED PATH
Speed planning plays an important role in guaranteeing the
ride comfort and safety of the vehicle. Dynamic constraints
of the vehicle are also enforced through the speed profile
selection, by considering the slip circle. As a path with
continuous curvature is provided, this section focuses on
finding a minimum time speed profile traveling along a fixed
path subject to the vehicle dynamics constraints, slip circle
constraints, and actuator limits. The determination of an
optimal speed profile along a fixed path has been shown to
be a convex optimization problem [66], [67].

A workspace path, r , of the body point, b, at the center of
the rear axle with footprint,A, is defined as r : [0, sf ]→ R2.
In order to provide a general solution, we use the workspace
path (9) to represent a fixed path, with the orientation and
curvature encoded implicitly by the path. The relationship
between the arclength s and the corresponding time t is
formed as the function s = f (t), therefore the time param-
eterized workspace path r̃(t) = (x̃(t), ỹ(t)), t ∈ [0, tf ] can be
easily acquired by substituting in for s.

r(s) = (x(s), y(s)), s ∈ [0, sf ] (9)

Since the path, r(s), is known, the speed vector Ev in Cartesian
coordinates can be calculated as below,4

Ev = ṙ(s) = r ′(s)ḟ , (10)

where r ′(s) is the unit tangent vector of the path r(s) at s that
represents the direction of the speed of a car by assuming no
sliding, ḟ is the corresponding longitudinal speed of the car
in ego frame. Let θ (s) represent the heading of the car at s of
the path r , we get

r ′(s) =
(
cos (θ(s)) , sin (θ (s))

)
=
(
x ′(s), y′(s)

)
. (11)

The acceleration vector Ea in Cartesian coordinates system is

Ea = r̈(s) = r ′′(s)ḟ 2 + r ′ f̈ , (12)

where f̈ is the longitudinal acceleration and r ′′(s) is the
principle normal vector of the path, which is also called the

4The prime ′ and the dot · denote derivatives with respect to the arc-
length, s, and the time, t , respectively for a curve throughout the paper.

curvature vector. The 2-norm of the r ′′(s) is the scalar of the
curvature.

κ = ‖r ′′‖ (13)

The control force is defined as u = (ulong, ulat ), where ulat
is the lateral force and ulong is the longitudinal force in ego
frame. The dynamics of the car are given by

Ru = mr̈, (14)

where

R =
[
cos(θ (s)) − sin(θ (s))
sin(θ (s)) cos(θ(s))

]
is the rotation matrix that maps forces from the ego frame
to the global Cartesian coordinate system, m is the mass of
the car. The control forces are limited by the friction circle as
below

‖u‖ ≤ µ mg, (15)

where µ is the coefficient of friction between the tires and
the road surface. The longitudinal force upper bound can be
calculated according to the maximum longitudinal accelera-
tion by ulong ≤ ma

long
max . There is no need to add a lateral accel-

eration constraint since it has been already limited by (15)
and the longitudinal acceleration, although a user-specified
lateral acceleration upper bound alatmax can be added to satisfy
ride comfort as follows,

‖u‖ ≤ (alatmax)
2
+ (alongmax )

2
≤ (µ mg)2. (16)

We now replace the f̈ with a function α(s), ḟ 2 with a
function β(s) according to [66],

α(s) = f̈ , β(s) = ḟ 2. (17)

Then, β̇(s) = 2f̈ ḟ = 2α(s)ḟ = β ′ ḟ . Thus,

β ′(s) = 2α(s), s ∈ [0, sf ]. (18)

The objective function T =
∫ T
0 1dt is the total time travelling

along the fixed path from 0 to sf . Substitute the time variable
t with arclength s and a convex optimization problem is posed

minimize
α(s),β(s),u(s)

T =
∫ f (tf )

f (0)

1

ḟ
ds =

∫ sf

0
β(s)−

1
2 ds

s.t. (14), (18)(
α(s), β(s),u(s)

)
∈

{(
r̈(s), ṙ2(s),u(s)

) ∣∣
‖u‖ ≤ µ mg, ulong ≤ malongmax

}
(19)

where ṙ2(s) =
(
r ′(s)

)2
β(s) and r̈(s) = r ′α(s) + r ′′β(s). We

use the MTSOS solver [67] to solve this problem and refer
readers to [67] for more details.
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D. COLLISION CHECKING
Collision checking is one of the most time-consuming
processes in sampling-based motion planning module.
For collision checking, we employ a similar method to that
used in [25] and [38], but with an alternate footprint approx-
imation strategy and a different collision checking routine to
improve accuracy and efficiency, respectively. By applying
the distance transform explained in [68] to the occupancy
grid map, a clearance map that represents the distance to the
closest obstacle is generated, as shown in Fig. 12. The foot-
print of the car is approximated by a cluster of circles.
Given the footprint of a car, we first calculate a circum-
circle of the footprint rectangle called the bounding circle,
Cbounding ∈ R2 and decompose the whole rectangle to four
equal sized squares aligned with corner points and two rect-
angles with the same size shown in Fig. 13(b), then cover the
small rectangles using circumcircles that are called footprint
circles Cfootprint ∈ R2. The collision checking routine is
divided to two phases: the broad phase and the narrow phase.
In the broad phase, if the distance from the center of the
Cbounding to the closest obstacle is greater than its radius,
it is deemed collision-free and collision checking terminates.
Otherwise, the collision checking proceeds to the narrow
phase. The collision is detected if the distance from the center
of any footprint circle Cfootprint to the closest obstacle is
less than its radius.

FIGURE 12. (a) The grid map. (b) The clearance map by applying distance
transform algorithms to the grid map.

Since obstacles are represented in an occupancy grid map
that can be easily generated from a practical perception
system, our method works well on obstacles with general
shapes in a realistic on-road autonomous driving system.
Compared to the fast collision checking method used in [69],
our method is able to avoid computationally-intensive calcu-
lations of SE(2) configuration space obstacles with respect
to all possible rotations along the path. In addition, the six-
circle approximation method maintains lower approximation
errors in the x direction and in overall area, as compared
to the four-circle decomposition strategy used in [25], [38],
and [70], while still keeping the number of collision checking
circles small, as seen in Fig. 13(d). Although our method
has a greater error than that of four-circle approxima-
tion method in the y direction, the absolute error remains
relatively low (0.1 m), which is acceptable in practice.

Algorithm 5 CollisionFree(state)
Data: state The vehicle state that includes (x, y, θ )

in map frame.
Result: true if the car state is collision-free, false

otherwise
Parameter: {Cfootprint } The footprint circle set.

Cbounding The bounding circle of the car
footprint.

Operation: Position Acquire the position element of
a circle (C) object.
Radius Acquire the radius element of a
circle object.
Transform Acquire the position in map
frame of a point represented in ego frame by
performing the homogeneous
transformation between map and ego frame.
Clearance Acquire the clearance value
according to the position in the map.

1 pEbounding = Position(Cbounding); // Position
in ego frame

2 pMbounding = Transform(state, pbounding); // Position
in map frame

3 dbounding = Clearance(pMbounding);
4 if dbounding > Radius(Cbounding) then // Broad

phase checking
5 return true;
6 else
7 foreach C i

footprint ∈ {Cfootprint } do // Narrow
phase checking

8 pE = Position(C i
footprint);

9 pM = Transform(state, pE);
10 d = Clearance(pM);
11 if d ≤ Radius(C i

footprint) then
12 return false;

13 return true

In order to evaluate the performance of the proposed colli-
sion checking algorithm, we conducted benchmark tests by
checking 1 million random SE(2) states for collision within
an 800×800 cell grid map with different numbers of random
obstacles. Footprints of the first 1500 random states and
50 random obstacles are presented in an example benchmark
test setup,5 as shown in Fig. 14(a). As we use more circles
to check collision, our improved footprint approximation
with a single phase checking routine consumes more time to
return results comparing to the four-circle method for all the
cases. Thanks to the two-phase collision checking routine,
our overall method maintains lower runtimes than the four-
circle method used in [25], [38], and [70] in the presented
test scenarios with obstacle density below 23% although

5As the performance of our method will not be affected by the shape of
obstacles, we use disks whose radii are 3 m to generate random obstacles.
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FIGURE 13. (a) The footprint of a car. (b) Six-circle decomposition. (c) Four-circle decomposition. (d) Dimension and area errors of both
decomposition strategies in percentage.

we use more circles to approximate the footprint, as seen
in Fig. 14(b). By leveraging the dimension information of
the clearance, our method only need to check one bounding
circle when the vehicle is far away from obstacles, which
avoids unnecessary checking of several circles and saves
up to 83.33% time for one collision checking. In practice,
a large portion of waypoints on the path are far from obsta-
cles, our method is able to gain great performance boosts,
especially in scenarios with a low obstacle density. In worst
case, we need to check 7 circles. So it’s possible that our
method may be slower than four-circle method on average
when the obstacle density increases to a certain threshold. But
the threshold is way more higher than that of most of realistic
on-road driving scenarios.

III. SIMULATION RESULTS
In order to highlight the performance and features of the
proposed algorithm, we evaluate its performance in multiple
challenging simulated scenarios, in presence of multiple
obstacles. The proposed planning algorithm is implemented
in C++ running on a PC with an Intel Xeon E3 processor
at 2.8GHz and 8GB RAM in a Linux system. We compare
the proposed algorithm with the hybrid A* path plan-
ning algorithm from Autoware6 [71] and the conjugate-
gradient (CG) descent path smoother of [35]. We compare
with the hybrid A* as it is a well tested planner and is used
for both on-road driving and free-space driving scenarios
in Autoware. The hybrid A* planner employs a customized

6https://github.com/CPFL/Autoware

collision checking method by checking grid cells of the
footprint of the car for collision in the grid map. It is also
an approximated collision checker due to the discrete grid
representation. For the CG path smoother, we consider the
obstacle avoidance term, the change of headings term, and the
square of curvatures term mentioned in [35] as objectives to
smooth the path of hybrid A* using the CG descent method.
The corresponding coefficients of the aforementioned three
terms are wo, ws, wk , respectively. For all the following
experiments, the CG path smoother uses 122 way points
(roughly with 0.5m for an interval) to perform the smoothing.
We also implement the single phase state space sampling
planners using two different path generation methods, such
as the spiral path generation from [20] and [21] for red curves
in Fig. 15 and the curvilinear path generation from [25]
and [51] for orange curves in Fig. 15, for comparison. Unfor-
tunately, both fail the easiest test scenario (Case A) that we
present in this section, as shown in Fig. 15. There is no
feasible path in their path candidates. Thus we only provide
detailed results of the hybrid A* planner and the CG path
smoother to comparewith ours in the following test scenarios.

The vehicle model parameters are based on the dimen-
sions of the Lincoln MKZ, shown in Fig. 16. The kine-
matics and dynamics of the vehicle are simulated in the high-
fidelity V-REP simulator [72]. The global path and the road
boundaries for traversable region extraction are predefined
by Lanelet maps [73]. The proposed planner communicates
with other support modules throughROS7. The vehiclemodel

7http://www.ros.org/
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FIGURE 14. (a) An example of benchmark tests. The corresponding
obstacle density is close to 20%. Colored rectangles depict car footprints
and black disks represent obstacles. (b) Runtimes of the proposed two
phase collision checking routine and single phase collision checking
routine with the same 6 circle approximation for tests in (a).

and other parameters used by the proposed planner are listed
in Table 1. The curvature bounds are κL = −0.2 m−1 and
κU = 0.2 m−1 according to rmin.

A. CURVY ROAD DRIVING WITHOUT OBSTACLES.
We set up a challenging test scenario on a curvy, single lane
road with a width of 8 m. Fig. 18, Fig. 19, and Fig. 20
illustrate the scenario along with resulting paths, heading
profiles, and curvature profiles respectively for the proposed
planner, and the hybrid A* planner and its CG path smoother.
It should be noted that the CG path smoother needs an initial
path that is collision-free to get a result, or it may not be

FIGURE 15. Single phase state space sampling failures with a long
planning horizon along a curvy road.

FIGURE 16. Lincoln MKZ vehicle platform.

TABLE 1. Parameter setting.

able to provide a solution. The resulting path of the hybrid
A* planner is used as the input of the CG path smoother.
Since the obstacle avoidance term in the CG path smoother
is a soft constraint, the smoothed path is not guaranteed to
be collision-free. Thus we conduct three experiments with
different parameter settings (see Fig. 17) to find the best
feasible path to comparewith and show the limitations of their
method as well. The S-CG path is not collision-free since the
coefficient wo is zero. The L-CG path is sub-optimal due to a
relative large coefficient wo = 0.5 for the obstacle avoidance
term. Therefore, we only compare the results of the M-CG
pathwith that of hybridA* planner and ours. The length of the
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FIGURE 17. CG paths with different coefficient settings. S-CG:
ws = 100,wk = 1,wo = 0. M-CG: ws = 100,wk = 1,wo = 0.08. L-CG:
ws = 100,wk = 1,wo = 0.5.

original global path (GP) from start to goal is 67.07 m. All the
listed planning results in Fig. 18 show some path shortening
capacity of the tested planners when compared to the original
global path. The length reductions of the optimized global
path (OGP) and multiple state sampling path (MSSP) are
7.75% and 7.28%, respectively. The hybrid A* planner and
the CG path smoother show similar results in terms of path
length, providing 6.99% and 7.1% reductions, respectively.
The proposed planner demonstrates a notable path smoothing
feature according to the curvature profiles in Fig. 20, which is
not observed in the hybrid A* planner. In constrast, the hybrid
A* planner generates a serrated curvature profile due to its
use of discretized motion primitives to construct the path.
The CG path smoother shows a similar result with ours
visually in terms of smoothness based on the hybrid A* path.
We also provide quantitative measurements of smoothness
of the resulting paths using (1), shown in the Smoothness
column in Table 3 (the lower, the better). The smooth-
ness of the proposed planner’s path is only 13.94% of that
of the hybrid A* planner and 82.11% of that of the CG
path smoother. It should be noted that the smoothness of
CG paths can be improved by tuning the coefficients, and
may ultimately perform better than our method. However,
it requires a major tuning effort to identify such coefficients
and the best coefficients may be environment-dependent.
It is hard or even impossible to find a single suitable coef-
ficient set for the scenarios presented, or for autonomous
driving in general. In addition, the collision-free property

FIGURE 18. Path results for the scenario without obstacles.

FIGURE 19. Heading profile results for the scenario without obstacles.

and kinematic-feasibility are not guaranteed according to
the problem formulation of the CG path smoother [35].
This scenario demonstrates both the path shortening and
smoothing capacity of the proposed method within the given
traversable region.

B. CURVY ROAD DRIVING WITH DENSE OBSTACLES.
In the second scenario, we placed several consecutive static
obstacles close together on the curvy road to investigate the
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FIGURE 20. Curvature profile results for the scenario without obstacles.

TABLE 2. Path shortening and smoothing.

obstacle avoidance ability and resulting path quality of the
proposed planner, as shown in Fig. 22, Fig. 23, and Fig. 24.
Similar to the previous tests, we conduct three experiments
for the CG path smoother using different parameter settings
to get a reasonable well result to compare with, as shown
in Fig. 21. The results of S-CG and L-CG both collide with
the obstacle or boundary of the road due to the reasons that
have been stated in last subsection. Thus only detailed results
of the M-CG path smoother are presented in the following
comparison. As the hybrid A* planner cannot exactly reach
the goal state with discretized motion primitives, we set
a 0.3 m tolerance on the position dimension to prevent
unbounded search or failures for the hybrid A* planner.
All the listed planners are able to generate collision-free,
kinematically-feasible paths to reach the goal, as depicted
in Fig. 22. According to results in Table 3, the path length
of the hybrid A* planner is slightly shorter (0.18 m) than that
of the proposed planner in this scenario. However, the path
endpoint of the hybrid A* did not exactly reach the goal
according to the x axis data in Fig. 22, Fig. 23, and Fig. 24
due to the position tolerance. Thus, the deviation in length can
be ignored. The CG path smoother shows a slightly longer
path than ours. Again, the proposed planner outperforms the
hybrid A* planner in smoothness, time and memory usage
aspects and outperforms the CG path smoother in smooth-
ness, path length and memory usage aspects. The smoothness
scalar of the proposed planner is 0.4377, roughly half of that

FIGURE 21. CG paths with different coefficient settings. S-CG:
ws = 100,wk = 1,wo = 0. M-CG: ws = 100,wk = 1,wo = 0.2. L-CG:
ws = 100,wk = 1,wo = 1.

TABLE 3. Performance.

of the hybrid A* planner and 93.99% of that of the CG path
smoother.

To compare the runtime, we ran all the planners 1000 times
for the same scenario with the same start and goal, then calcu-
lated the mean and the standard deviation of the runtime for
a single planning loop in both cases. To keep the comparison
fair, we only compare the running time of path generation
part of the both planners since there is no speed planning
module available for the hybrid A* planner and the CG path
smoother. The running time of the speed planning layer for
our planner is also listed separately for reference. The related
results are presented in Table 3. The proposed planner only
consumed 17.81% and 22.26% of time of the hybrid A*
planner in Fig. 18 and Fig. 22 cases with the presented plan-
ning horizon, respectively. It should be noted the runtimes
of the CG path smoother listed in Table 3 only show the time
consumed in the smoothing process. The final runtime for the
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FIGURE 22. Path results for the scenario with multiple obstacles.

FIGURE 23. Heading profile results for the scenario with multiple
obstacles.

result of the CG path smoother should be the summation of
runtimes of the hybrid A* path generation part and the CG
path smoothing part. Thus, the proposed method also outper-
forms the overall CG path smoother in run-time performance.
Since the first running of the hybrid A* planner took over
2000 ms for setting up, we removed it from the results for
fairness. As the hybrid A* planner needs to build a huge 3D
search space to explore, it took up to 3072MB memory while

FIGURE 24. Curvature profile results for the scenario with multiple
obstacles.

FIGURE 25. The g-g diagram of the resulting trajectory.

the proposed planner requires only 20MB memory. The CG
path smoother itself takes memory beween 60MB and 90MB
roughly for one planning cycle. For both planning scenarios,
the optimized global path generated by the global path modi-
fication (GPM) layer is shorter and smoother than the final
path. This is due to the fact that the GPM layer searches a
2D workspace and optimizes the path without considering
the nonholonomic constraints and current heading of the car.
The GPM provides the shortest path through the environment
subject to the given constraints, but non-collision and kine-
matic feasibility of the path are not guaranteed. The small
deviation between the optimized global path and final path,
as well as the curvature profiles in Fig. 18 and Fig. 22 justify
the three layer decomposition presented in this work, as each
layer refines the previous result without drastically altering it.

Interested readers are encouraged to view a video
of the proposed planner for this scenario, available
at https://vimeo.com/257666203. An MPC controller is
integrated into the system to track the resulting final path
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FIGURE 26. Other challenging on-road driving scenarios.

in the video. Note that we did not deliberately tune the
weight matrix of the MPC controller for this case. The car
is still able avoid the consecutive obstacles. In addition,
the grid map data is noisy between frames in simulation,
and the proposed planner handled it well through rapid re-
planning.We also include several planning results of different
on-road driving scenarios without quantity analyses, shown
in Fig. 26.

In terms of dynamic constraints of cars, the normalized
longitudinal and lateral accelerations results of the speed
planning portion are plotted with a friction circle (‘‘g-g’’
diagram [74], [75]) in Fig. 25 for the obstacle free scenario of
Fig. 18. As depicted in Fig. 25, the accelerations at every point
of the trajectory were limited within the friction circle and all
the longitudinal accelerations are below the max longitudinal
acceleration threshold. As the objective of speed planning is
minimum time of travel along the path, most acceleration
points tend to stay close to the acceleration limits imposed
on the solution.

IV. CONCLUSION
In this paper, we have presented a novel and efficient
hybrid trajectory planning framework to handle geom-
etry constraints, nonholonomic constraints and dynamics
constraints nicely in a human-like and layered fashion.
The proposed method employs a derivative-free global
path modification algorithm to refine the reference path
and extract high-order state information in free space for
state sampling, which provides correct guidance informa-
tion for sampling and increases sampling efficiency as well.
By extending a single phase state space sampling to a multi-
phase state space sampling, ourmethod is able to approximate
complex motions without bringing in too much computation
burden. The proposed method also exploits a more accu-
rate and efficient collision checking algorithm to filter out
sampling paths in collision. The results show our method is
able to generate curvature-continuous, kinodynamic-feasible,
smooth and collision-free trajectories in real-time while using
fewer computational resources and outperforming the hybrid
A* planner, the CG path smoother and the single phase
state space samplingmethod inmultiple challenging planning
scenarios.

Although we have addressed the trajectory planning
problem with several essential constraints for autonomous
driving in highly constrained environments, our method
does not consider dynamic obstacles explicitly. By fast re-
planning, our method is able to avoid some of the dynamic
obstacles in a reactive way. But it’s not ideal and safety-
guaranteed. We will consider dynamic obstacles in both
spatial and temporal domain in our future research and inves-
tigate how to manipulate lateral motions and longitudinal
motions of cars to avoid dynamic obstacles smartly.
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