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ABSTRACT This paper analyzes the notion of resilience in power systems from a fundamental viewpoint
and thoroughly examines its practical implications. This paper aims to describe and classify different high-
impact rare (HR) events, provide a more technical definition of power system resilience, and discuss linkages
between resilience and other well-established concepts, such as security and reliability. Most relevant
decisions of system operators in the face of HR events involve a significant level of stress and strain. In order
to make informed decisions within this context, it is crucial to have an all-inclusive picture of the state of
the system. This paper provides an appropriate framework that not only characterizes the various states of
the system but also derives informed decisions from a resilience-oriented perspective. It also describes and
analyzes diverse resilience improvement strategies. Comprehensive models and classifications are provided
to clearly capture various aspects of power system resilience.

INDEX TERMS High-impact rare (HR) events, power system restoration, proactive management, resilience
assessment, resilience improvement.

I. INTRODUCTION
Ever-increasing dependence on electricity has led to numer-
ous difficulties with the occurrence of any short- or long-term
interruption or outage. A plethora of hazards stemming from
natural, technical, or human factors could jeopardize the con-
tinuous, secure, and reliable supply of electricity. Historically,
power systems have been designed, built, and operated in a
way that could not be influenced by credible contingencies.
They may be, however, affected by high-impact, rare (HR)
events.

In retrospect, power experts have adopted several ways
to face severe disturbances in power systems. In this line,
system protection schemes (SPSs) or remedial action
schemes (RASs) are generally accepted as effective mecha-
nisms that detect abnormal or predetermined system condi-
tions and mitigate potential threats in power systems. SPSs
and RASs may be comprised of automatic control measures,
such as changes in demand, generation (MW and MVAr),
or grid configuration to preserve network stability, bus

voltages, or transmission line flows. Nevertheless, the occur-
rence of large and combinational incidents (e.g., simultane-
ous generator and line tripping) motivated the need for special
defensive measures commonly referred to as defense plans.
A defense plan is defined as a set of coordinated SPSs and
RASs which together can minimize the risk of forthcoming
contingencies cascading to widespread blackouts. Particu-
larly, a defense plan could be considered another layer of a
protection system and is the last resort for maintaining the
system stability [1].

The aforementioned plans andmechanisms are specifically
tailored for transmission networks. Nowadays, distribution
systems require more attention since they have embraced rev-
olutionary changes including the proliferation of distributed
energy resources (DERs), bi-directional flow of power, and
mesh/loop topologies, which render them more complex and
dynamic. Moreover, power distribution systems are histori-
cally behind power transmission systems in terms of observ-
ability and monitoring system deployment. The available
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statistics pertaining to recent widespread interruptions are a
testimony to the claim representing the growing importance
of distribution networks. Accordingly, it has been estimated
that 90% of customer outages in the United States are related
to distribution networks [2].

In the aftermath of unprecedented disasters and attacks
in recent years, resilience has become a buzzword in power
system discipline. Resilience study ismainly concerned about
the mitigation of catastrophic HR events, whose likelihood
cannot be estimated via historical data. The variety and num-
ber of definitions for power system resilience has signifi-
cantly increased over past several years, making it difficult
to find a universal understanding of the term ‘‘resilience’’
in power systems. Moreover, a fundamental question has
remained unanswered in power system community: how
resilient is a given power system? Additionally, if our sys-
tem is not resilient enough, what are the optimal resilience
enhancement strategies? The ultimate goal of our paper is to
address these questions. Specifically, the main contributions
of our paper are as follows:
• Conceptualize the different types of HR events in power
systems;

• Present a historical overview of resilience concept;
• Provide a unified approach to define resilience in power
systems;

• Identify the linkages between the terms resilience,
security, reliability, and stability in power systems; and
clarify the relationships between the terms resilience,
vulnerability, and robustness;

• Illustrate different temporal phases of system behavior
following anHR event; and propose an eight-point linear
approximation of system performance;

• Develop a seven-stage resilience assessment framework
for determining the level of resilience in a power sys-
tem. The aim of the proposed framework is to identify
the trouble spots (i.e., vulnerabilities) in the face of
HR events.

• Identify and classify effective strategies for resilience
improvement.

• Describe operator actions during the phases of perfor-
mance of a power system in case of an HR event; and
construct a mapping between resilience improvement
measures and their effectiveness on the level of perfor-
mance of the system (this mapping is constructed from
Fig. 9 to Fig. 10 in Section IX).

The rest of our paper is organized as follows.
Sections II and III introduce the preliminary definitions
required to define the concept of power system resilience.
The classification of HR events, as the origins of resilience-
related incidents, is expressed in Section IV. The historical
overview of resilience concept and the unified definition
of the power system resilience is presented in Section V.
Section VI expresses how we can measure the resilience of
a power grid in the system level. Section VII explains how
resilience impacts the operating states of a power system.
Section VIII and IX represent various stages of the resilience

assessment method, and what measures we can take to
improve the resilience of a power grid, respectively. Finally,
the conclusions and possible future directions are given
in Section X.

II. KNOWN, UNKNOWN, AND UNKNOWABLE EVENTS
In thewake of global climate change, the frequency and inten-
sity of extreme weather events have increased on an unprece-
dented scale. Harvey, Irma, and Maria are not unknown
names to our nation, and the Globe, because of how devas-
tating these hurricanes has impacted many lives. This trend,
which is projected to continue, has adversely affected the
performance of power systems. Severe weather events are
among the leading causes of widespread power outages in
the United States [2]. For instance, in 2012, Hurricane Sandy
left about 8.5 million households and businesses, including
tens of millions of people, without power and in some cases,
restoring power took a couple of weeks. During 2003 to 2012,
approximately 679 power outages, each affecting at least
50,000 customers, occurred due to weather events in the
United States, and 80%−90% of these outages stemmed from
failures in distribution systems [3].

Aside from extreme weather events, the current power
systems infrastructure is highly vulnerable to cyber and phys-
ical attacks which could cause small and large-scale power
outages. A major cyber-attack on the U.S. electrical grid can
cause an economic loss - of more than $1 trillion. In a large
blackout, facilities with backup generators may be able to
function, but all other facilities, including but not limited to
phone systems, internet, television, radio, and street lights,
will likely be shut down. A blackout can also raise mor-
tality rates as health and safety systems fail, and a decline
in trade as ports shut down [4]. This issue stems, in part,
from the proliferation of information and communications
technology (ICT) usage in electricity grids. On the one hand,
the advent of ICT has promoted the development of smart
grids, while on the other hand, it has set the stage for acts
of sabotage. The recent hack of a Ukrainian power grid on
Dec 23, 2015 shows how easy it can be to plunge a community
into darkness. The attack impacted 225,000 customers in
three different distribution level service territories and lasted
for several hours [5].

The growing concern over extreme weather events, along
with the cyber and physical security threats, has underscored
the need for a resilient power grid. Providing a precise def-
inition for the notion of resilience in power systems is a
decisive and pivotal step toward the design, standardization,
and operation of resilient grids. In this regard, the discernment
of potential threats to power system resilience could consid-
erably pave the way for reaching a precise definition. Indeed,
a key question ought to be addressed: What are the salient
characteristics of extreme weather events or cyber-attacks?
The short answer is that they are black or gray swans.

A black swan is a metaphor for an unpredictable, high-
impact, and rare (UHR) event. This type of event is also
referred to as the ‘‘unknowable,’’ i.e., a rare cataclysmic event
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with unforeseen or unobserved consequences upon random
occurrence. The proliferation of the smartphones and the
impact of Google search technology are examples of positive
black swans. In contrast, the devastating consequences of
the September 11 attacks (9/11) and the 2004 Indian Ocean
tsunami are negative black swans. Obliterating impacts of a
severe earthquake is another instance of black swans. To sum-
marize, the key elements of black swans are rarity, extreme
impact, and retrospective predictability (people make concoct
explanations after the event) [6], [7].

On the other hand, a gray swan is ametaphor for a partially-
predictable, high-impact, and rare (PHR) event, which is
disregarded by many people [7]. This category of events has
rarely observed impacts and can be interpreted as ‘‘unknown’’
(PHRs can be modeled to some extent, yet a considerable part
of them is unknown). Weather events (such as tornado and
flooding) are examples of gray swans. It is worth mentioning
that black and gray swans might be seen sooner by looking
for the warning signs of a process excursion.

When we consider a rare phenomenon to be unknow-
able or unknown, we are referring to the presence or absence
of a conceptual model to describe that particular phenomenon
(i.e., the incapability of our theories to provide meaning to
the rare event we observe and measure) [8]. From a mathe-
matical point of view, if we define a probability distribution
function (PDF) as a mathematical description of a random
phenomenon in terms of the probabilities of outcomes, then
three situations may arise [8]:
• When a PDF is completely specified (i.e., both outcomes
and probabilities are known), the situation is referred to
as known. For example, the PDF for the unavailability of
generating units (namely the forced outage rate (FOR))
is known. In these situations, the law of large num-
bers (LLN) and the central limit theorem (CLT) hold
true.

• When probabilities cannot be assigned to at least part of
the space (i.e., outcomes are specified but probabilities
are not), the situation is unknown. Note that gray swans
fall into this category. We do not know the odds of a
gray swan, but we can imagine how a power grid might
be affected by one.

• When even the outcomes cannot be identified in
advance, the situation is unknowable. Note that unknow-
able events enter the domain of unknown once they
occur. Retrospectively, black swans belong to this
category.

It is worth noting that there is not always a bright line
that separates black swans from gray swans. Although we
may easily put some events at one, or the other, end of the
spectrum, personal perspectives cause individuals to disagree
on whether a high-impact event is a black or gray swan [6].
Additionally, developments in science and technology may
transform some events from black to gray swans.

Since the historical data of known situations are available
(e.g., the fault rate in transmission lines), they can be char-
acterized by probabilistic methods. On the other hand, there

are no (or few) statistical data available about unknown situa-
tions. In this case, we can describe the event with possibilistic
approaches using a fuzzy membership function. The possibil-
ity theory is a mathematical theory for dealing with certain
types of uncertainty and is an alternative to the probability
theory. This theory is widely used when there are no historical
data available for a phenomenon, i.e., HR events in this
paper [9] (see also [10], [11] for more details on fuzzy sets
and fuzzy decision making).

III. RISK AND UNCERTAINTY: A DIFFERENT
INTERPRETATION
The need to address black and gray swans has attracted
new attention to an old idea about risk from decades ago,
known as ‘‘Knightian uncertainty’’ [12]. FrankKnight clearly
distinguished risk from uncertainty, especially when we have
imperfect knowledge about an event. According to Knight’s
idea, risk refers to known situations, where both the out-
comes and the odds are specified. Uncertainty, on the other
hand, relates to unknown situations, where we are unable to
set accurate odds for the outcomes. It goes without saying
that gray swans (as ‘‘unknown’’ situations) are equivalent
to Knight’s definition of uncertainty (see Fig. 1). It seems
that in real-world examples, the majority of events are
highly complicated and that forecasting always pertains to
‘‘uncertainty,’’ not ‘‘risk.’’ In this context, risk should be
applied to a highly-controlled environment, such as a pure
game of chance in a casino, whereas uncertainty could be
applied to almost everything else. (see [13], [14] for uncer-
tainty in knowledge and ignorance hierarchy.)

FIGURE 1. Tripartite distinction between known, unknown, and
unknowable.

Knight’s theory about risk and uncertainty could facilitate
analyzing the impact of gray swans on power systems. Recent
major blackouts around the world may partially stem from
imperfect risk assessments conducted by independent system
operators (ISO). Perhaps ISOs regarded their risk assess-
ments as precise while operating in conditions of Knightian
uncertainty.

Typically, it is infeasible to estimate the likelihood of rare
events (the rarer the event, the fuzzier the odds) [7]. Studying
the grid’s recorded history cannot produce accurate estimates
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of future probabilities since the history might not contain
a single rare event (e.g., a 100-year flood is not likely to
show up in 10 years of historical data) [6]. Therefore, we
cannot rely on accurate probability estimates to cope with
these incidents. Knight’s perspective on risk and uncertainty
eliminates the need to understand the probabilities of a rare
event; rather, we can focus on the effects of an event if
it occurs. We do not know the odds of an earthquake, but
we can imagine how a microgrid might be affected by one.
In this sense, Knightian uncertainty is not merely a quasi-
philosophical outlook; the objective perception of Knightian
uncertainty is a pressing practical problem.

More generally, resilience engineering provides the fun-
damental prerequisites for studying black and gray swans
(see [15] for a detailed comparison between resilience engi-
neering and risk assessment). Note also that although it is
difficult to determine accurate estimates of rare event proba-
bilities, information from domain experts, Bayesian statistical
methods, and Monte Carlo simulations can help determine
interval estimates for their possibilities [6], [16], [17].

IV. CLASSIFICATION OF HR EVENTS
HR events can be divided into four major categories based
on their origins and impacts on power systems: technical
cascading failures, extreme natural events, cyber and physical
attacks, and space weather [18].

A. TECHNICAL CASCADING FAILURES
The north American Electric Reliability Corporation (NERC)
defines cascading failure as ‘‘the uncontrolled successive
loss of system elements triggered by an incident at any
location’’ [19]. In practice, power systems are designed and
operated so that they can withstand credible (e.g., N-1) con-
tingencies. However, other possible failures, such as hidden
failures in relays or errors in situational awareness, may trig-
ger a sequence of outages and finally lead to a cascading fail-
ure. The U.S.-Canadian blackout on August 14, 2003 is one
of the recent cascading failures that caused enormous social
and economic damages. This incident affected approximately
50 million people in eight U.S. states and two provinces
of Canada. During this event, over 400 transmission lines,
531 generation units, and 261 power plants tripped out.
The main causes of the blackout were declared as: limited
understanding of the system, inadequate level of situational
awareness, deficient vegetation management (tree trimming),
and failure in state estimator (SE) and real-time contingency
analysis software (RCAS) [20].

A cascading failure can be analyzed and studied in two
main phases (e.g., different time-scales): slow cascade and
fast cascade [21]. In the slow cascade phase, the failure
spreads over a lengthy period of time (from several minutes
up to several hours). The system operators usually cannot
prevent the cascading in this phase. The reason is that they are
hardly aware of the damaging consequences of the failures
occurred during this phase. During the fast cascade phase,
the power system becomes unstable. The main problems

emerging in this phase include transmission line overloads,
voltage collapse, frequency oscillation, dynamic instability,
and inappropriate under frequency load shedding [22]. It is
almost impossible for operators to manually stop the cascad-
ing during this phase since the short time period between
each sequential event ranges from only milliseconds to tens
of seconds.

In particular, changes in the power demand can lead to
a cascading failure. In general, these changes can be cate-
gorized into two groups: i) small and gradual changes and
ii) large and sudden changes. To handle the first group, power
systems are equipped with several load-frequency control
loops (including governors and AVRs) which compensate for
the gradual changes in the demand. Regarding the second
group, sudden and large changes in the demand would trigger
under frequency load shedding (UFLS) relays where ade-
quate loads will be curtailed to match the generation. Either
of these cases can lead to cascading failures (the first group
can lead to a slow cascade while the second one can lead to a
fast cascade).

B. EXTREME NATURAL EVENTS
Extreme natural events such as floods, windstorms,
hurricanes, tornados, tsunamis, and earthquakes have increas-
ingly affected power systems in recent years. Among the
most severe ones, the 2005 Hurricane Katrina blackouts,
the 2012 Hurricane Sandy blackouts, and the 2011 Japan
Earthquake blackouts can be stated [23]. It is expected that
weather-related events will occur more often and with greater
severity, mainly due to global warming and climate change.
The adverse impacts of extreme natural events include flood-
ing of power plants and substations (in the case of floods
and tsunamis), the collapse of overhead transmission towers
and distribution poles, the falling of trees on distribution
lines (in the case of hurricanes, windstorms, and tornados),
extensive damage to power plants, substations, and control
buildings (in the case of earthquakes), etc. [23]. Extreme
natural events might be seen sooner from seconds to several
hours prior to the event depending on the event type and
forecast models used for event prediction [23], [24].

C. CYBER AND PHYSICAL ATTACKS
Modern electricity grids, as interdependent cyber-physical
systems, are prone to excessive risks from both cyber and
physical aspects. Cyber-attacks are divided into seven groups
based on the end goal of attackers: i) bad measurement
injection (Man-in-the-middle (MITM) attack) [25], ii) bad
command injection (manipulating command signals),
iii) control center impersonation attack, iv) communication
delay attack [26], [27], v) unresponsive command attack,
vi) disabled RTU (denial of services (DoS) attack), and
vii) coordinated cyber-attack [28]–[30]. For instance, in the
coordinated cyber-attack on the Ukraine power grid, attackers
gained access to the distribution management system (DMS)
at two distribution centers. Subsequently, they opened
breakers in 30 substations. Attackers also carried out
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a DoS attack to prevent customers from reporting the
outage [5].

On the other hand, power systems have been perpetu-
ally threatened with intentional physically malicious acts,
and nothing precludes future attempts [31]. A notable
example of such attacks is on power substations in 1996,
which was aimed at cutting off London’s power supply.
In addition, an attack on a substation in California on
April 16, 2013 resulted in damaging 17 giant transformers
and 27 days repair time [32].

D. SPACE WEATHER EVENTS
Recently, threats imposed by space weather (or solar storms)
have attracted attention in scientific communities. Quasi-DC
electric currents (geomagnetically induced currents or GICs)
may be injected into power grids as a result of severe geo-
magnetic storms. Geomagnetic storms are created when large
eruptions of material from the Sun, known as coronal mass
ejections (CMEs), pass over the Earth. Quasi-DC currents
can disrupt the normal operation of critical grid components
such as transformers and shunt reactors. Large-scale outages
may occur if a few transformers are damaged by these cur-
rents [18]. In March 1989, a strong solar storm caused a
half-cycle transformer saturation which generated harmonics
that improperly tripped out five power lines, knocking out
nearly 10GWof generating capacity and collapsing the entire
network in a minute [33]. The warning time of geomagnetic
storms might vary from 30 minutes to several hours prior to
the occurrence, based on the observations and measurements
from magnetometers and data received from satellites. Real-
time monitoring of Quasi-DC currents can be achieved using
ground magnetic field recordings. In this context, a short-
term forecast is based on the rate of change of a geomagnetic
field (dB/dt), which is the main cause of Quasi-DC
currents [33].

V. POWER SYSTEM RESILIENCE: BACKGROUND
AND DEFINITION
Overlooking HR events is tempting because the likelihood
of each event is both small and unknown [6]. Power sys-
tems, nonetheless, are vulnerable to a plethora of HR events,
and occurrence of gray swans in the future is certain. Fur-
thermore, even if a power system mitigates all of the gray
swans, an unknowable black swan can still lead to immense
damaging consequences.

Resilience is a concept that reflects how an infrastructural
system can moderate the consequences of black and gray
swans. A clear definition for this concept in power grids
could pave the way for building more resilient systems. The
word ‘‘resilience’’ is derived from the Latin word ‘‘resilire,’’
which means ‘‘the ability to spring back or rebound’’ [34].
In 2009, ASIS International defined resilience as ‘‘the ability
of an organization to resist being affected by an event or the
ability to return to an acceptable level of performance in
an acceptable period of time after being affected by an
event’’ [35]. In 2010, the National Infrastructure Advisory

Council (NIAC) offered a broader definition for infrastruc-
ture resilience: ‘‘the ability to reduce the magnitude and/or
duration of disruptive events. The effectiveness of a resilient
infrastructure or enterprise depends upon its ability to antici-
pate, absorb, adapt to, and/or rapidly recover from a poten-
tially disruptive event’’ [36]. Many other definitions have
been developed for resilience in economic systems [37],
social systems [38], organizational systems [39], complex
systems [40], [41], etc. (see [42] for more definitions in
various fields); however, the majority of definitions are com-
prised of the following common themes: avoidance, survival,
and recovery.

The NIAC resilience definition is acknowledged by the
NERC to be used in power systems [43]. However, it should
be specifically tailored in the context of power systems.
Moreover, some of the terms and concepts defined by
NIAC already exist in power system terminology. The dif-
ferences, therefore, should be clarified to avoid any possible
misunderstanding. These issues will be elaborately discussed
in the following sections.

VI. MEASURING THE RESILIENCE IN THE SYSTEM LEVEL
A. PRELIMINARIES
Generally, the resilience of power grids can be studied
at two levels: component level and system level [44].
Component level studies primarily focus on either individual
physical or cyber components in a power network. Recent
developments in the design and implementation of such
components have considerably improved their performance,
thereby possessing an acceptable level of resilience [44].
However, the power grid is made up of many parts, whose
interactions are complex and hard to compute. In order to cap-
ture both physical and cyber interdependencies of these com-
ponents, power experts have made extensive efforts to study
the resilience in the system level [34]. Indeed, researchers
have found it more vital to study the power grid’s macro-
scopic resilience rather than to dissect an individual compo-
nent’s resilience.

Technically speaking, defining appropriate system level
resilience metrics enables authorities to perform analytical
assessments, take different preventive measures, and in gen-
eral, produce potential cost-effective solutions for encounter-
ing HR events [36], [43]. In order to measure the resilience
in a holistic way, three key aspects must be taken into
account [45]: measuring the ‘‘resilience of what, to what and,
under what conditions.’’

As the main damaging consequences of HR events emerge
in the distribution systems level, the answer to the first ques-
tion is usually distribution networks rather than transmission
systems [46]. Note that without loss of generality, a resilience
metric can also be proposed in the transmission level. Regard-
ing the second question, the resilience metric can be defined
for either a black swan or gray swan. The key point is that
having a conceptual model of the event enables the system
operator to take effective measures to reduce the damaging
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impacts of a catastrophe on the grid. Axiomatically, grey
swans fall into these types of events. In this category of
events, we can implement a set of resilience improvement
measures before the contingency takes place. On the other
hand, for black swans, the level of system resilience can be
determined merely after the occurrence of the event.

The third aspect that should be considered in defining a
resilience metric is the operating point of the power grid
in question at instant of occurrence of the event. For the
sake of providing further explanation, the resilience of a
power system in the peak load condition may be different
from the resilience of the same system in the light load
condition [34]. Fig. 2 illustrates a conceptual model for mea-
suring the resilience level of a power network.

FIGURE 2. A conceptual model for measuring the resilience level of a
power system.

B. DIFFERENT PHASES OF RESILIENCE
Analyzing power system performance in response to
HR events helps us describe the temporal phases of the power
system resilience. A typical power system performance as
a function of time following a disturbance is illustrated
in Fig. 3. In this figure, the vertical axis shows the perfor-
mance of the system, which can be defined by various met-
rics, such as the availability of critical facilities, the number
of people served, the amount of flow or services delivered,
and the level of economic activity [47]. Each of the aforemen-
tioned performance metrics represents a different dimension
of the resilience. In the horizontal axis, the resilience eval-
uation begins att0, an HR event occurs at te, the specified

FIGURE 3. Performance of power system following an HR incident.

performance index is degraded at td and reaches some mini-
mum point at tm. Subsequently, the recovery process begins
at tm, and the performance index is elevated until a local
saturation point at tir . The recovery of the infrastructure fur-
ther improves the performance, and the system returns to an
acceptable operating state at tr . As can be seen, the temporal
process of the system response to a severe incident can be
divided into three phases: avoidance, survival, and recovery.

1) AVOIDANCE PHASE
This phase runs from t0 to td . Specifically, t0 is the instant
when we become certain about the occurrence of the event
(albeit with an accepted confidence level) and get prepared
for taking proactive measures. Subsequently, the event occurs
at te; however, depending on the type and severity of the
event, the system performance does not necessarily degrade
immediately. Indeed, the system performance is temporarily
(i.e., [te, td ]) preserved within the permissible range. The
avoidance phase can be divided into two sub-intervals. The
first sub-interval, which is called preparedness and proactive
management, runs from t0 to te. The length of this sub-interval
might be zero for some HR events, like an earthquake, but
minutes to hours for some others, like tornados. The second
sub-interval, i.e., from te to td , is called robustness. The
robustness of an electricity grid depends upon the structure of
the system, its control and protection schemes, and the nature
of the HR event. To clarify, the robustness of a power network
with overhead lines ismore threatened by tornados rather than
floods. On the other hand, floods can affect the robustness of
a power network with underground cables much more than
tornados.

The time interval [t0, td ] allows the system operators to
anticipate possible damage and take positive steps toward
reducing the impacts of HR events on the system following
the occurrence of the event (i.e., te). For example, changing
the operating point of the system (i.e., resilience-constrained
optimal power flow) is a primary measure that can be imple-
mented during the avoidance phase.

2) SURVIVAL PHASE
This phase, which runs from td to tm, shows a significant
performance reduction over a short period of time. The con-
trol and protection schemes and infrastructures are mainly
in charge of this phase to maintain the system performance
as high as possible. Hence, improving current protection and
control mechanisms can effectively enhance the resilience of
the system in the survival phase. For instance, recent devel-
opments in enhancing load shedding schemes have resulted
in a lower amount of load curtailments encountering severe
and unexpected disturbances [48], [49]. Such schemes can
effectively maintain the system stability while dropping the
minimum amount of loads.

3) RECOVERY PHASE
This phase is indicated in Fig. 3 between time tm and tr .
In this phase, the system operator aims to restore the grid’s
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performance to the permissible range and recover the dam-
aged infrastructures to a normal condition. Accordingly,
the recovery phase consists of two main sub-intervals: sys-
tem restoration (i.e., [tm, tri]) and infrastructural recovery
(i.e., [tri, tr ]). In the system restoration sub-interval, the net-
work loads are re-energized as expeditiously as possible.
In the infrastructure recovery phase, the damaged infrastruc-
ture is repaired and the network returns to a normal condition.
Deploying fast system restoration schemes can substantially
improve this aspect of system resilience [50], [51].

A detailed explanation about resilience improvement
strategies will be provided in Section IX.

C. GENERAL FORM OF THE RESILIENCE METRIC
A suitable metric for evaluating the resilience of a power
network should represent the performance of the system fol-
lowing an HR event. Meanwhile, temporal aspects should be
reflected in the metric since the performance of an actual
system changes considerably over time. Unlike routine out-
ages, HR power outages may not be properly measured
by reliability metrics which emphasize the probability and
the frequency of power outages as well as the amount of
load or energy not served. Although reliability indices can
offer human operators with additional insight on the abnor-
mal behavior of power systems, the static nature of these
indices make them unsuitable for measuring the spatiotempo-
ral impacts of HR events on power grid. Newmetrics are thus
in essence for assessing the power system resilience. In addi-
tion, among applicable metrics for resilience assessment in
the literature, a few of them suggested normalized metrics
(varying between 0 and 1). Employing normalized metrics
provides a comparable means for assessing the resilience in
various operating conditions and power systems [52]. The
ideal and real response of a power system to an incident is
depicted in Fig. 3 with dash and solid trajectories, respec-
tively. Based on the aforementioned properties, the general
form of the resilience metric can be defined as [53]:

R =

∫ tr
t0
P (t) dt∫ tr
t0
P0dt

=

∫ tr
t0
P (t) dt

P0 (tr − t0)
(1)

where R is the resilience metric and indicates how much our
grid is resilient against a specific HR event. For the sake of
comparison, the metric is per-unitized in such a way that it
is bounded in the range [0, 1]. It goes without saying that
limits of integration could be redefined to calculate the metric
for a specific phase of performance (i.e., avoidance, survival,
and recovery). Further, P(.) denotes the performance index
function, as defined in Fig. 3.

Another suitable metric which can be used for effec-
tively measuring the resilience of a power grid is resilience
triangle [13], [54]–[56], which is illustrated in Fig. 3
(blue triangle). As can be seen, this metric represents a metric
of both the loss of performance of a system after an event
and the amount of time it takes for the power grid to return
to acceptable performance levels. Resilience improvement

measures are generally designed to reduce the resilience tri-
angle size by decreasing the performance degradation during
an event (vertical axis) and/or reducing recovery time (hori-
zontal axis). The metric can be generalized and represented
in the mathematical form as follows:

Rtriangle =

tr∫
t0
[P0 − P (t)]dt

tr∫
t0
P0dt

=

tr∫
t0
[P0 − P (t)]dt

P0 (tr − t0)
(2)

Similar to the first metric, the resilience triangle metric is
per-unitized in the range [0, 1]. However, in this metric as
opposed to the first one, zero denotes a fully resilient system,
whereas one represents a totally non-resilient system.

VII. OPERATING STATES OF A POWER SYSTEM: THE
IMPACT OF RESILIENCE
A. TRADITIONAL VIEW
Two sets of constraints govern power system operation:
equality (or load flow) constraints, denoted byE; and inequal-
ity (or limit) constraints, denoted by I. The equality con-
straints state that all of the customers must be served at
all times, while the inequality constraints express that the
system variables (e.g., voltage magnitudes) must always be
kept within certain limits. Based on these two generic sets
of equations, power system conditions are characterized into
five operating states, as depicted in Fig. 4. In terms of notation
in this figure, a bar or line over the letters E and I denotes
the violation of the corresponding constraints. It is worth
recalling the definition of each operating state [57]:

FIGURE 4. Power system operating states and transitions between
them [57].

1) Secure: A power system is said to be in a secure
state whenever all constraints are satisfied. Further, in this
state, there are adequate margins (from both generation and
transmission points of view) such that the power system
will remain intact even after a single ‘‘credible’’ contingency
occurs. Indeed, an adequate level of security is guaranteed in
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this state. In the secure state shown in Fig. 4, Es and Is denote
the fulfillment of equality and inequality constraints under all
credible contingency scenarios.
2) Alert: If the security level drops under a given threshold

(i.e., when there is a reduction in reserve margins), the power
system enters the alert state. In this state, despite the fact
that both the equality and inequality sets of constraints are
satisfied, some disturbances could cause the violation of some
inequality constraints (i.e., frequency, voltage, line currents,
etc. will not stay in their permissible range). Consequently,
system operators can analyze trouble spots and take appro-
priate preventive (pre-contingency) actions to increase the
system security and bring the system back to the secure state.
3) Emergency: If a severe disturbance occurs before a pre-

ventive action can be taken, the system enters the emergency
state. In this state, the set of load flow equations is satisfied,
but some of the limit constraints are violated. Here, corrective
actions should be taken in order to eliminate the violations
and restore the system to at least the alert state.
4) In-extremis:The corrective actions are doomed to failure

if they are not taken in time, and/or if the disturbance is
severe enough to overstress the system (specifically in case of
HR events). The system then falls into the in-extremis state
where both equality and inequality constraints are violated.
Power system operators would take heroic actions to save the
system from a total collapse.
5) Restorative: Finally, once the collapse is halted or fol-

lowing a total collapse, the system is said to be in a restorative
state. This state is characterized by feasible operation of the
power system equipment but with portions of the load not
being served and/or with loss of system integrity. Depending
on the current circumstances, the system could then transit to
either the alert state or to the secure state.

B. RESILIENCY-ORIENTED VIEW
The traditional operating states (which are designed for cred-
ible contingencies) are no longer adequate or relevant under
HR events. However, once an HR event occurs, power sys-
tems would take a similar path, as depicted in Fig. 4. The
resilience-driven operating states of the system following an
HR incident are depicted in Fig. 5.

From a resilience-oriented viewpoint, power system con-
ditions are described in terms of two additional sets of con-
straints: loose equality constraints, E∗, and loose inequality
constraints, I∗. The former, i.e., E∗, describes a condition
where portions of the load are not being served with the aim
of helping the system deal with an HR event. Such conditions
could be achieved by emergency demand response programs
or conservation voltage reduction (CVR). On the other hand,
loose inequality constraints, I∗, pertain to a condition where a
wider range of operation is temporarily allowed. For instance,
according to ANSI C84.1, distribution utilities may use loose
voltage limitations (i.e., 107V-127V) in case of emergency,
instead of the normal range (i.e., 114V-126V).

Accordingly, resilience-driven states of a power system are
described below:

FIGURE 5. Resilience-driven operating states of power systems following
an HR incident.

1) Normal Operation: In this state, there are no
alerts or declared forecasts on the possibility of an HR event,
and all equality and inequality constraints are satisfied. This
state resembles the secure state in the traditional view.
2) Proactive management: As mentioned earlier,

HR events might be seen sooner by looking for the warning
signs of a process excursion. In other words, warning signs
will increase the contingent possibility of such events (pos-
sibility is a function of time). For example, tornadoes and
earthquakes may be foreseen several hours before they occur.
The instant when the possibility of HR events increases is
considered to be equal to t0 in Figs. 3 and 5. At this instant,
the system enters the avoidance phase. Note that the length
of the period [t0,te] (i.e., when the system is in the proactive
management state) may vary from a few seconds (e.g., for
cyber-attacks) to several hours (e.g., for some weather inci-
dents). All constraints (E and I) are satisfied in this state;
however, the system will enter the robust condition state if
the predicted HR event occurs. Here, system operators can
analyze the approaching event and take appropriate proactive
actions to increase the level of preparedness.
3) Robust condition: In this state, the system is confronted

with the event; however, its performance has not significantly
degraded. Here, loose equality and inequality constraints
(i.e., E∗ and I∗) govern the system. The performance of
the system in this state is highly dependent on the level of
reinforcement (hardening strategies) previously implemented
in the planning phase. Further, appropriate corrective mea-
sures are effective if they are taken in a timely manner. If the
system continues operating with no significant degradation
(even with loose constraints), it can then return to the nor-
mal operation state. Otherwise, it enters the survival state
at td .
4) Survival: In this state, the system is significantly

degraded and bothE∗ and I∗ constraints are violated. Similar
to the in-extremis state, power system operators would take
heroic actions to save the system from a total collapse.
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5) Recovery: Once the system degradation stops, the sys-
tem enters the recovery state. Similar to the restorative state
(Fig. 4), the main goal of the system operator in this step is
to return the system to its pre-event condition. This process is
implemented step-by-step with portions of the load not being
served and/or with loss of system integrity.

C. THE CONCEPT OF RESILIENCE: A DEEPER LOOK
For an electricity grid, reliability, security, stability, and
resilience are pertinent concepts. Reliability reflects the
probability of satisfactory system performance over a long
period of time and under a given condition. Reliability can
be inferred as the time average performance of the sys-
tem. A certain level of reliability could usually be achieved
through planning-oriented measures. In contrast to reliability,
resilience is associated with the time-varying condition of
the system over a short period of time and for the most part,
a specified level of resilience could be attained via operation-
oriented actions.

The concepts of security and resilience are similar to each
other with only a few subtle differences. Security refers to
the degree of risk in the system’s ability to withstand credible
contingencies without having any load shedding. Both con-
cepts are related to the time-varying performance evaluation
of the system in the operation condition. As the first and fore-
most difference, security is assessed for a system associated
with a set of credible contingencies; however, resilience is
measured in the network for an HR incident. Furthermore,
in order to determine the resilience level of a grid to an
HR event, a full cycle, including avoidance, survival, and
recovery phases, should be passed (see Fig. 5). However, the
network security level for a contingency can be calculated if
the state of the system remains in or exits from the secure
state (see Fig. 4). To clarify, if the state of the system after
a contingency remains in the secure state, the security level
of the network would be one; otherwise, it would be zero for
that event. Stability is an important factor in security, which
deals with the continuing operation of the system following
a disturbance. It is axiomatic that when a system is secure,
it may not be resilient. The reason is that the concept of
security is defined for credible contingencies, but resilience
is associated with HR incidents.

Finally, note that the terms vulnerability and resilience
are subtly related. Vulnerability is the predisposition that
deteriorates if an HR event occurs. In fact, vulnerabilities are
specific features or conditions of the network which make it
susceptible to threats.

VIII. RESILIENCE ASSESSMENT: HOW RESILIENT ARE
THE POWER NETWORKS?
The main goal of this section is to develop a framework for
determining the level of resilience in a power system. Note
that addressing this question is a prerequisite for accurately
identifying the trouble spots (i.e., vulnerabilities) and taking
effective measures for elevating the resilience of the grid.
HR events cause widespread damage to individual assets and

components. Thus, a component-based approach is used to
evaluate the performance of the system facing an HR event.
Fig. 6 illustrates the proposed seven-stage resilience assess-
ment framework. Specifically, the first three stages in this
figure aim to define a resilience metric, characterize the
HR event, and model the potential impacts of the event on
the grid operation.

FIGURE 6. Resilience assessment process of a power system in response
to an HR event.

During the next three stages (i.e., stages 4, 5, and 6),
we attempt to simulate the behavior of the system in response
to the designated HR event. Here, the two crucial points
are: i) simulating the HR event and its spatiotemporal effects
(from both physical and cyber perspectives) on the system,
and ii) simulating the proactive, corrective, and restorative
measures that can be taken (based on currently available
resources and technologies) in response to the event. Accord-
ingly, the performance curve is acquired. In practice, it is
difficult, if not impossible, to acquire the real performance
of the system in Fig. 3. To overcome this hurdle, we attempt
to acquire a linear approximation of system performance,
as shown in Fig. 7. This approximation facilitates the sim-
ulations since it requires only eight points, mainly denoting
the beginning and the end of the avoidance, survival, and
recovery phases. In the last stage, the pre-specified resilience
metric is calculated, and accordingly, potential improvement
measures are assessed. Further details on each of the afore-
mentioned stages are provided in the following sections.

A. STAGE 1: DEFINE A RESILIENCE METRIC
The initial step toward resilience assessment is to define an
appropriate resilience metric. As mentioned in Section VI,
the metric defined in (1) would assess the resilience by
evaluating the system performance in each sequential phase
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FIGURE 7. Eight-point linear approximation of system performance in
response to an HR event.

of the system temporal behavior (i.e., avoidance, survival,
and recovery) following the given HR event. Note that the
devised resilience metric provides normalized values so that
the resilience of a power grid under different HR events could
be compared [58].

In order to calculate the resilience metric (1), an appro-
priate performance index ought to be defined. As previously
mentioned, the performance index can be a technical index,
such as the availability of critical facilities and the amount
of load shedding. In some cases, the defined performance
index goes beyond the system’s technical characteristics and
assesses the social welfare (e.g., the level of economic activ-
ity). Therefore, expert groups including stakeholders, indus-
try managers and specialists, and policy makers of energy
infrastructures should work on this aspect and decide to
choose the ultimate performance index to be applied in their
analysis [59].

B. STAGE 2: CHARACTERIZE THE THREAT
In this stage, the causes, effects, and physical (and/or cyber)
aspects of the analyzed HR event are modeled. Note that
Knight’s idea obviates the need to have the probability of the
event. Furthermore, black swans cannot be characterized in
this stage (because they are unknowable), andwe can evaluate
the network resilience against them after their occurrence.
Different gray swans, on the other hand, can be characterized
as follows:
1) Extreme Natural and Space Weather Events: These

types of events can be modeled using either a recorded
(representing historical data from past events) or a predicted
(projecting potential threats) event profile. In the former
approach, the required historical data is provided by climate
models (CMs), geophysical models (GMs), or real measure-
ments from multiple weather or seismic stations [60].

In order to forecast an event profile, two main meth-
ods are introduced in the literature. If the data is provided
by CMs or GMs, parametric modeling is used and the
model parameters can be modified based on expert knowl-
edge or real measurements. On the other hand, if the data is
provided by real measurements, power law [61] and extreme

value theory (EVT) [62] can be employed. In statistics,
the power law states that a relative change in one quantity
results in a proportional relative change in the other quantity,
and this law can be used to describe gray swans. Moreover,
EVT assesses the possibility of events that are more extreme
than any other previously observed events (i.e., black and
gray swans) [8]. In practice, natural events can be forecasted
via analysis tools such as UKCP09 (developed by the Met
Office, UK) [63] or Hazus (developed by Federal Emergency
Management Agency, US) [64].
2) Technical Cascading Failures: A large number of

methodologies have been proposed in the literature to model
technical cascading failures. These methods can be classified
into five groups [22]:
• Topological Models: Generally, cascading failures occur
in all complex networks. Therefore, researchers made
extensive efforts to adopt the complex network cas-
cading failure analysis tools in power systems. The
approaches in this group are relatively simple in imple-
mentation and analysis. Modified topological models
and maximum flow models are among the approaches
classified in this group [65], [66].

• Scenario-Based Models: Due to the significant level
of uncertainties that initiate and exacerbate cascad-
ing failures and also the difficulty of simulating some
factors such as human misoperation, scenario-based
simulation tools are widely used in modeling and char-
acterizing such events. PRACTICE models and Markov
chain models are used as scenario-based models in the
literature [67], [68].

• High-Level Statistical Models: Aside from the accu-
racy of common analysis tools, the computation burden
should be considered an important factor in predict-
ing the real-time propagation of a blackout. High-level
statistical models ignore the detailed mechanisms of
the cascading failure. Therefore, the simulation speed
of these methods substantially increases. Such mod-
els provide an overall view of the event with tractable
approaches such as CASCADE models and Branching
process models [69], [70].

• Dynamic Simulation Models: These models consider
the dynamic behavior of the power system with
a high resolution of details during the cascading
failure. Due to the high accuracy of the dynamic
simulation models, they usually have a heavy com-
putational burden. Existing dynamic simulation meth-
ods consist of OPA models, Manchester models,
COSMIC models, multi-timescale quasi-dynamic mod-
els, ASSESS models, TRELSS models, and dynamic
PRA models [71]–[76].

• Other Models: Other models including potential cascad-
ing models (PCM), hidden failure models, and historical
data-based models, are also used in the literature to
characterize technical cascading failures [77]–[79]. The
main advantage of these methods is to effectively predict
the potential cascading failures.
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3) Cyber and Physical Attacks: Cyber and physical attacks
can be analyzed with interdependent models, including com-
plex network-based models and flocking-based hierarchical
cyber-physical models.
• Complex Network-Based Interdependent Models: These
models are widely used in the literature to characterize
cyber-attacks. Interdependent networks cover a wide
range of emerging networks in future complex sys-
tems, including electric power systems, communication
networks, and electrified transportation networks [80].
A fundamental network-based interdependent model
based on topological models is proposed in [81]. The
disadvantage of this model is that it excludes the elec-
trical property of the power system. To overcome this
drawback, an efficient approach considering the power
grid and the supporting control and communication
network (CCN) is developed in [82]. In this model,
substations, generators, and routers are involved. The
authors in [83] proposed a comprehensive methodology
that models the power system mesh structure and bidi-
rectional links including data uploading and command
downloading channels. These communication links con-
nect cyber network nodes as well as a corresponding
physical node, in power grids.

• Flocking-Based Hierarchical Cyber-Physical Models:
References [64] and [65] propose a hierarchical cyber-
physical multi-agent model of a smart grid based on the
flocking theory. This model considers dynamic nodes,
PMUs, and local cyber controllers. The frequency, phase
angle, and other related parameters are involved in the
generators, which are regarded as physical parts. More-
over, PMUs and local controllers serve as cyber ele-
ments. The model concentrates on control strategies for
robustness and resilience of a coupling system.

C. STAGE 3: DEFINE AND APPLY DAMAGE SCENARIOS
Themain goal of this stage is to identify damage scenarios for
components and system modules when the system is affected
by the approaching event. Thus, this stage gives a component
view of adverse impacts of the identified threat. In other
words, the status of components (on service or out of service)
is estimated when influenced by the threat. For extreme nat-
ural events and space weather phenomena, fragility curves of
components should be convolved with the threat pattern to
extract vulnerable components and the extent of their vulner-
ability. For instance, overhead transmission and distribution
lines are susceptible to windstorms, hurricanes, typhoons,
and earthquakes, while power plants and substations are
susceptible to heavy floods and earthquakes. In addition,
power transformers are susceptible to space weather phenom-
ena and Quasi-DC currents. Fragility curves can be derived
empirically, experimentally, and analytically using expert
judges, or through a combination of these methods [86].
A fragility curve specifies the failure probability of a compo-
nent conditioned on the impact of a continuous range of threat
intensities. In practice, a threshold value is compromised for

each component as the failure probability over which the
component is considered out of service.

In contrast to extreme natural events and space weather
phenomena, damages incurred by cyber-attacks, physical
attacks, and technical cascading failures are not represented
by fragility curves. Damages incurred by these events depend
on the threat identified, which differs from one case to
another. Once the event is characterized throughmethods pre-
sented in stage 2, the damage status of each asset (including
physical components and software applications and proce-
dures) is recognized. Once the component view is accom-
plished, sub-system models (including system configuration,
available components, services, resources, and infrastruc-
tures, etc.) are obtained. The result of this stage will specifi-
cally be used as a hint for the operator to perform a proactive
management as will be discussed in the next stage.

D. STAGE 4: PERFORM PROACTIVE MANAGEMENT
In this stage, proactive management is performed to control
the HR event by preparing for possible future problems or act-
ing in anticipation of future problems. As mentioned in
Section VI, proactive grid management is particularly per-
formed during the avoidance phase with the goal of elevating
the level of preparedness and mitigating the forecasted dam-
aging consequence of HR events (see Fig. 3). The component
and sub-system views obtained in the previous stage are
helpful hints to understand how the power system should be
prepared and operated prior to the event to mitigate possible
damages at the onset of event. For instance, knowing that a
substation is at the risk of outage due to a possible threat
by flooding, the system operator may decide on preparing a
mobile substation at the location under consideration prior
to the event. In this circumstance, increasing the system
scheduled reserve may be another solution to enhance the
system preparedness against the characterized threat. The
areas of proactive grid management are: 1) decision support
systems (DSSs); 2) synchrophasor solutions; 3) symbiotic
integration of synchrophasors with fast-acting controls [87].
Particularly, the authors in [88] have proposed a proactive
management scheme in microgrids in order to elevate the
level of preparedness in the face of HR events.

E. STAGE 5: FIND THE SYSTEM DEGRADATION
This stage is devised to give a system view (rather than a
component view in stage 3) of adverse impacts imposed by
an HR event. At first, the power system pre-event model is
built using network-related data such as network single line
diagram, load profile, critical loads and load supply priority,
and available generation resources.

Regarding extreme natural events and space weather phe-
nomena, the next step is convolving (mapping) the event
profile characterized in stage 2 with the fragility curves
of components. To do this, analytical and simulation-
based techniques have been presented in the literature [24].
Analytical methods are usually suitable for small-scale
networks due to their simplicity and low computational
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burden while simulation-based methods are preferred for
large-scale networks with high complexity. Among the ana-
lytical methods, Markov process is the most popular one in
the literature [89]–[91]. Markov process models the step-
by-step degradation of power system by making sequential
chains representing the time-dependent evolution of the event
impacts on the power system. Optimal power flow (OPF)
algorithms are applied at each chain to find out the system
degradation at the corresponding time instant. Scenario-based
methods are also applicable to perform analytical calcula-
tions. If the number of vulnerable components is M , then
2M anticipated damage scenarios (or a range of damage
outcomes when incorporating uncertainty) are defined. Then,
OPF algorithms are applied to the event-affected network in
each scenario to realize the system status in defined scenarios
at each time step during the event. The expected value of the
questioned performance indicator (e.g., load supplied) will
then be calculated for each time instant. Monte Carlo simula-
tion (MCS) is the dominant approach among the simulation-
based methods. Sequential MCS-based time-series enable the
representation of events in a chronological order as they occur
in reality in different locations of the system [23]. At each
time instant, the event profile is convolved (mapped) with
fragility curves of components and the procedure is taken
for a large number of iterations. At each iteration, the failure
probability of the component is compared with a uniformly
distributed random number r∼U(0,1). If the failure proba-
bility of the component is greater than r , the component
is considered damaged. The OPF algorithms can then be
performed on the event-affected power system. Considering
a large number of iterations, the expected value of the ques-
tioned performance indicator will then be obtained for the
time instant under study [60].

Regarding technical cascading failures, the system degra-
dation is obtained as the event is characterized (in stage 2).
This is mainly due to the fact that the power system model
is incorporated into the problem when identifying cascading
failures. Indeed, the output of methods introduced in stage 2
(to characterize technical cascading failures) provides further
information about the time-dependent performance of the
power system [92].

In order to model the system degradation under cyber
and physical attacks, attacker-defender-planner models are
usually applied. In these models, the power system is ana-
lyzed iteratively under the budget constraints associated
with attacker and defender. At each iteration, the impact
of the event on the power system model is identified
through methods discussed in stage 2. Then, an OPF is
solved to discover the power system performance under
associated constraints for both defender and attacker
sides [5], [28], [93].

F. STAGE 6: RECOVER THE EVENT-AFFECTED SYSTEM
Despite all the efforts to save the system, blackouts are
inevitable on many occasions, and consequently, power
system resilience highly depends on the recovery process

which is performed subsequent to the system survival phase
(i.e., tm in Fig. 3). This process itself includes the system
restoration process that is carried out immediately after the
survival phase, and the infrastructural recovery process that is
performed by the repair crew in a longer time horizon, even
days or weeks after the event. System operators can decide
on appropriate restoration strategies based on the real-time
system status and available resources. Moreover, microgrids
would expedite the restoration process since they enable a
simultaneously two-sided process, i.e., a downward process
from the transmission grid and an upward process from the
distribution level [2].

Although the restoration process can elevate the level of
system performance, often the system does not return to
the initial point prior to the event. It is mainly due to the
significant loss of components during the HR events.
The uncertainty of repair time depends on the severity of the
event in addition to the quality of service (QoS) provided
by the repair crew. Thus, appropriate possibilistic models
should be employed to represent the mean time to repair
(MTTR) for each failed component. The efficiency of the
infrastructure recovery is also dependent on the availability
and responsibility of interdependent infrastructures (such as
gas and water networks, transportation systems, communica-
tion systems, etc.). Thus, a proper model should be devised
to address the interdependence of power systems and other
critical infrastructures. A more detailed explanation of the
recovery process can be found in [50].

G. STAGE 7: EVALUATE THE RESILIENCE LEVEL
Using the resilience metric defined in stage 1, the level of
resilience will be determined by the end of stage 6. Note that
potential impacts of extreme weather events on the power
systemmay be represented through probabilistic methods due
to convolution of fragility curves with the event profile as
discussed in stage 5. In this circumstance, the expected value
of the performance index is calculated as the weighted sum of
the performance index in all scenarios and the probability
of each scenario is used as the associated weight of that
scenario. Doing so for all time slots, the temporal variation
of the expected performance index is obtained from which
the resilience metric could be computed. It could thus be
inferred that the resilience metric evaluates the expected
behavior of power system against the extreme weather event.
The specified metric in (1) conveys information about each
phase of resilience (i.e., avoidance, survival, and recovery)
in addition to the power system resilience as a whole. This
metric provides the operator with the necessary informa-
tion about the current status of resilience in the system and
facilitates the assessment of alternatives for improvements.
Such alternatives include, but are not limited to, infrastructure
improvements, policy or operational revisions, and additional
resources for recovery. The challenges and opportunities of
possible practical measures for improving the grid resilience
will be discussed thoroughly in the next section of this
paper.
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IX. RESILIENCE IMPROVEMENT
A. POTENTIAL AREAS OF RESILIENCE IMPROVEMENT:
WHAT ACTIONS DO WE NEED TO IMPROVE RESILIENCE?
As mentioned earlier, the alarming rate of HR events (includ-
ing black and gray swans) recalls the necessity of employing
practical measures to cope with their adverse impacts. Note
that the term ‘‘alarming rate’’ may imply a paradox because
HR events are inherently classified as ‘‘rare’’ events. To clar-
ify this, we should emphasize that although the number of
HR events has increased on an unprecedented scale, they
are still considered to be rare in comparison with credible
(e.g., N-1) contingencies. Additionally, power system oper-
ators usually do not consider HR events in their analyses
and studies, mainly due to their rareness as well as their
unknown (or even unknowable) nature. In this section, we aim
to propose a set of practical methods to incorporate these
events in power system studies.

In the previous section, we presented a general framework
for assessing the resilience of the grid, and in this section,
we aim to identify potential areas of resilience improvement
and then investigate practical measures associated with each
area.

Fig. 8 presents a general view of resilience-improvement
process, potential areas of resilience improvement, and the
pertinent requirements of each area. According to this figure,
from a short-term operation perspective, resilience improve-
ments can be performed in three intervals: prior to, during,
and after an HR event. Robustness is the ability of power
system to keep operating while being stressed by the envis-
aged event. A power system mainly benefits from a degree of
robustness due to inherent strength of components and hard-
ening measures taken with the aim of reinforcing the grid.
In addition, prior to an upcoming HR event (in the avoidance
phase), proactive measures are taken to enhance the system
robustness against the predicted event. The goal in this stage
is to anticipate and absorb shocks and keep operating or to
stay standing in face of the upcoming event [94]. During the
event (in the survival phase), the system is degraded and cor-
rective measures are taken to cope with the event and soften
the system downgrade. Resourcefulness (the ability to align

FIGURE 8. Different areas of resilience enhancement.

technical and human facilities in an efficient manner) and
redundancy (the capability to start up or employ substitutes
and alternative solutions) are the most important require-
ments of power system in the survival phase. Finally, after
the HR event, rapidity (the ability of power system to quickly
get back to normal state through restorative measures) is the
key requirement of the recovery phase.

From a long-term perspective, resilience improvement
could be achieved by learning new lessons from previous
events with the goal of revising plans, reinforcing the grid,
modifying procedures, and introducing new tools and tech-
nologies. In addition to lessons learned from previous events,
long-term planning studies can also be performed to find out
impacts of possible future events on the power system which
in turn results in identifying a set of planning-oriented mea-
sures against the HR event under study. As shown in Fig. 8,
post-event learning acts as a feedback from previous lessons
or predicted impacts of possible future events to operation-
oriented measures with the aim of improving the robust-
ness, preparedness, redundancy, resourcefulness, and rapidity
capabilities before the next catastrophe [43].

B. RESILIENCE IMPROVEMENT STRATEGIES
1) CLASSIFICATION
Fig. 9 represents a general classification of resilience
improvement measures. As discussed in the previous section,
based on possible time-scales for analyzing power system
resilience, improvement measures can be divided into two
main groups: planning-oriented measures and operation-
oriented measures. Planning-oriented measures are intended
for i) reinforcing the infrastructure assets through hard-
ening measures, ii) devising the facilities required for
efficient implementation of operation-oriented measures,
and iii) maintenance scheduling of equipment and opti-
mal allocation of resources. On the other hand, operation-
oriented measures refer to adaptive and intelligent control
strategies which are utilized for dealing with HR events.

FIGURE 9. A General classification of resilience improvement measures.
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Operation-oriented measures also cover the activities con-
ducted during system restoration and infrastructure recovery.

From an action-based perspective, resilience improve-
ment measures are divided into preventive, corrective, and
restorative categories based on their functionality. Preven-
tive measures aim to reduce the risk of failure for compo-
nents, procedures, and applications prior to the event (in the
avoidance phase). Corrective measures focus on revising the
system performance during the event (in the survival phase)
while restorative measures intend to restore the system per-
formance to its pre-event status after the event (in the recovery
phase).

2) OPERATION-ORIENTED MEASURES
Fig. 10 illustrates the mechanism of action of different
operation-oriented measures before, during, and after an
HR event. As mentioned earlier in Section V, HR events
are predictable, from a few seconds to several hours before
the event by looking for the warning signs of a process
excursion. The instant at which the possibility of an HR event
increases (i.e., t0), the power system enters the avoidance
phase. Developing appropriate models for an approaching
event and analyzing its potential impacts on the system are
two important tasks that can improve the preparedness and
robustness of the system in this phase. Indeed, predicting
the systems’ status during and after a progressing HR event
helps the system operator proactively anticipate and absorb
possible shocks by taking some operation-oriented preven-
tive measures (OPMs). For instance, increasing the sched-
uled reserve, generation rescheduling, CVR, and manning
of normally unmanned substations are some examples of
OPMs. In general, OPMs would change the operating point
of the system (see Fig. 2), and as a consequence, the per-
formance degradation will be reduced in the survival phase
and the restoration process will be accelerated in the recovery
phase [94]–[96]. For instance, in a power system with a high

FIGURE 10. Effectiveness of operation-oriented measures.

penetration of wind farms, the initial degradation in the sys-
tem’s performance in face of awindstormmay occurwhen the
wind speed reaches the cut-out speed of wind turbines. Thus,
the system operator could proactively perform a generation
rescheduling excluding wind turbines to compensate for the
lost generation as an OPM. In this way, the degradation will
be postponed to stronger windstorms that affect the overhead
transmission and distribution lines. As another viable OPM,
the authors in [88] proposed a proactive management scheme
in microgrids in order to enhance the system’s preparedness
for unintentional islanding events.

As the power system enters the survival phase at td , control
and protection schemes should be activated as operation-
oriented corrective measures (OCMs) in order to preserve the
power system functionality as much as possible. The main
purpose of OCMs is to keep the power system from further
cascading outages and total collapse. Advanced visualization
and situational awareness are essential prerequisites for active
interaction with the system as the event unfolds. Load shed-
ding and controlled islanding are among the important OCMs
usually implemented in this phase.

Once the system performance settles at a minimum level
at tm, the recovery process commences. As shown in Fig. 10,
the recovery process is comprised of four temporal stages.
In the first stage, namely the ‘‘restoration preparation’’ stage,
the post-event system status is evaluated, a target level for
system performance is defined, a strategy for rebuilding the
network is selected, the system is sectionalized into a few
subsystems (in the case of widespread blackouts), and steps
are taken to supply the critical loads with the initial sources of
power that are available in each subsystem [97]. Depending
on the severity of the HR event, the target performance level
may not be similar to the pre-event level, but it is important
that it is clearly defined in advance to avoid missteps during
the restoration process [98].

In the second stage (i.e., system and load restoration),
the main goal is reintegration of the power network, as a
means to achieving the ultimate objective of load restoration.
To this end, skeleton transmission paths are energized, sub-
systems defined in the first stage are resynchronized, base-
load units are prepared for restart, and sufficient load is
restored to maintain the load-generation equilibrium. Note
that the primary objective in this phase is to minimize the
unserved loads, and the size of load pickups will be deter-
mined based on the response rate capabilities of available
generators [50]. The effective system response rate and the
responsive reserve increase with the combined capacity of
the online generators, and load restoration can be accom-
plished in increasingly larger steps [50], [98]. All of the
aforementioned tasks, which are known as operation-oriented
restorative measures (ORMs), require either comprehensive
guidelines that have been developed in advance or online
decision-making tools.

As mentioned earlier, the level of system performance
often does not return to the pre-event level due to poten-
tial damage to critical infrastructure assets. Thus, the last
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two stages of the recovery process are dedicated to infras-
tructure recovery (see Fig. 10). Infrastructure recovery may
take hours, days or even weeks depending on the severity of
the HR event, availability of other critical infrastructures, and
efficiency of the repair crew’s actions. Thus, repair actions
should be optimally planned so that the infrastructure recov-
ery will be fulfilled in a timely manner.

3) PLANNING-ORIENTED MEASURES
Planning-oriented measures include devising or revising pre-
ventive, corrective, and restorative actions in order to improve
the robustness, preparedness, redundancy, resourcefulness,
and rapidity capabilities before the next catastrophe occurs.
Specifically, planning-oriented preventive measures (PPMs)
are intended for foreseeing and granting system requirements
to proactively anticipate HR events and prevent system degra-
dation. Hardening (reinforcing) measures are introduced as
one category of PPMs taken to increase system robustness
against HR events. For instance, elevating substations and
reinforcing transmission and distribution poles are two hard-
ening measures taken against heavy floods and hurricanes,
respectively. Devising OPMs is the second aspect of PPMs.
Successful implementation of OPMs in the avoidance phase
is highly dependent on the quality of long-term PPMs. Plan-
ning software and hardware tools for system condition moni-
toring, demand-side management and load control, and VAR
compensation resources are examples of PPMs required to
improve the functionality of OPMs in the avoidance phase.
The third aspect of PPMs is planning the maintenance and
repair activities of system assets and equipment. In particu-
lar, a substantial number of cascading failures are initiated
from the malfunction of critical software or hardware assets.
Therefore, maintenance and repair activities should be per-
formed in time to avoid sudden failure or malfunction of
critical assets such as transformers, generators, transmission
and distribution lines, insulators, relays and switches, etc.
It is to be noted that real-time monitoring data should be
implemented to proactively detect and resolve possible mal-
functions in critical assets.

Likewise, planning-oriented corrective measures (PCMs)
are taken to equip the system with the tools required for
the implementation of OCMs in the survival phase. Optimal
placement of separation relays, which endows the grid with
structural modularity and enables the deployment of inten-
tional islanding during the survival phase is a pradigm for
PCMs. Moreover, segmentation of the transmission network
into subnetworks connected throughHVDC links to confine a
cascading failure to the originating subsystem [99] and partial
restructuring of the distribution systems intomicrogrids [100]
are among the most important PCMs proposed by the Electric
Power Research Institute (EPRI). Finally, planning-oriented
restorative measures (PRMs) are implemented to improve the
efficiency of ORMs during the process. Optimal allocation
of black start resources and ensuring enough spare parts for
critical assets are examples of PRMs that can expedite the
recovery process.

It should be noted that planning-oriented measures for
improving resilience are different from those of reliability in
two aspects. One is the complexity of modeling HR events
(black or gray swans) in resilience studies while there is less
complexity in modeling credible contingencies in reliabil-
ity studies. The second refers to the fact that the resilience
assessment framework should be accurately accomplished
to assess the impact of each planning-oriented measure on
the temporal process of the system response (see Fig. 6).
In contrast, a long-term average framework is taken into
account in reliability studies.

Table 1 provides a detailed list of improvement
strategies [2], [3], [88], [94]–[96], [101], [102], which are
categorized based on their functionality. It must be stressed
that some of these strategies, which elevate the resilience
in multiple ways, are categorized in a specific class titled
‘‘multifaceted.’’ In the following paragraphs, we will explain
how these strategies fall into the identified categories with
illustrative examples.

TABLE 1. Resilience improvement strategies.

For example, deploying resilience-oriented optimal power
flow falls into the proactive management category. This
approach usually changes the system operating states to a
more conservative point (e.g., more spinning reserve) and
therefore, increases the system preparedness to extreme
events. Indeed, the system operator rescues the power grid
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encountering severe contingencies at the expense of addi-
tional preparation cost (see [88], [94], [96], [103] for numer-
ical studies on proactive management).

Overhead lines are exposed to physical damages dur-
ing the HR events such as extreme weather conditions.
Undergrounding distribution and transmission lines is
a pre-disturbance strategy (i.e., robustness improvement)
which can be effectively used to overcome the afore-
mentioned weakness (see [104] for a detailed analysis of
undergrounding).
Adaptive load shedding and protection schemes play an

important role following the HR events. These methods, if
they are designed and implemented effectively, could sig-
nificantly decrease the performance reduction of the system
after the event occurrence. Thus, they are categorized in
the corrective actions class in the table (see [48], [49] for
numerical studies on adaptive load shedding).
Building mobile generation units and substationswill help

restore the grid to the normal operating conditionmuch faster,
when the generation units/substations are significantly dam-
aged and a considerable amount of time is needed to fix
them. Accordingly, this strategy is classified as a restorative
resilience improvement strategy (see [105] for more details).

Asmentioned earlier, the strategies in themanifested group
can enhance the resilience in multiple ways. For example, let
consider building redundant transmission/distribution routes
to provide greater ability to bypass damaged lines and reduce
the risk of cascading failures. This approach can obviously
improve the robustness of the grid to HR events as it increases
the stability margin of the system. Additionally, existence of
redundant lines in the system makes the restoration process
much faster and easier since the flexibility of the network is
reinforced with this strategy.

It is worth mentioning that for each one of the foregoing
strategies, we need to make a compromise between the cost
of the strategy deployment and the profit resulting from the
resilience enhancement. This is an open research topic which
must be addressed in the future studies.

C. COST-EFFECTIVENESS ANALYSIS OF IMPROVEMENT
STRATEGIES
Planning-oriented measures (mostly recognized with hard-
ening or reinforcing measures, e.g., [60], [93], [106]) are
often technically efficient but are not economically afford-
able. In contrast, operation-oriented measures are often tech-
nically less efficient butmuchmore affordable than hardening
measures. Thus, a cost-benefit study is required as a guide
to take optimal measures in terms of technical and economic
issues. A hybrid approach is usually applied to compromise
the implementation of cost and technical efficiency.

X. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
Recent widespread blackouts throughout the world have shed
light on the fact that electric power networks must not only
guarantee reliability against credible contingencies, but also
enable resilience to HR events such as earthquakes, cyclones,
cyber-attacks, and cascading failures. With this aim in mind,

we first characterized the main features of HR events in order
to specifically identify the events, attackers, or attacks that
can put the system at risk. We then clarified the notion of
resilience in power systems and highlighted its differences
with other well-established concepts, including reliability,
stability, and security. From a resilience-oriented point of
view, we drew a comprehensive picture of the state of the
system, thereby facilitating the decision-making processes
with respect to proactive, corrective, and restorative control
actions. Finally, we proposed a new framework for resilience
assessment, and identified the main resilience improvement
strategies.

Future studies could be conducted on developing appropri-
ate spatiotemporal models for HR events (particularly for a
set of events that have been non-modellable so far). Describ-
ing the interaction of protection and control systems in the
face of HR events is also a promising research direction.
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