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ABSTRACT This paper proposed a novel hybrid optimization algorithm, particle swarm optimization-
artificial bee colony (PSO-ABC), based on the PSO and ABC algorithms. The ABC algorithm can offset
defects in the PSO algorithm that easily fall into a local optimization; combining the algorithms can improve
the optimization ability of the PSO algorithm to a certain extent. Therefore, this paper applied the PSO-ABC
hybrid algorithm and the finite-element method to systematically optimize the mechanical performance
of the disc rotor of a bike and verified the numerical computation model via the wireless sensor network
technology. The experimental test was completed with wireless sensor network technologies. To verify
the optimized effects of the proposed PSO-ABC hybrid algorithm after parameter selection, the algorithm
was compared with the traditional PSO and ABC models. The PSO, ABC, and PSO-ABC models adopted
the same population to conduct a multi-objective optimization for vibration accelerations of the disc rotor.
Comparing the results from these models proved that the proposed PSO-ABC method is superior for the
optimization of vibration characteristics of the disc rotors.

INDEX TERMS PSO algorithm, ABC algorithm, PSO-ABC hybrid algorithm, WSN technology, multi-

objective optimization.

I. INTRODUCTION

In recent years, with increasing severity to problems such as
traffic jams, energy shortages and environmental pollution,
as well as the population’s increasing desire for recreation and
entertainment, bikes have gained more attention for devel-
opment because of their small footprint, high flexibility and
convenience, low cost, economic efficiency and durability,
and ease of repair [1]-[5]. Bikes belong to a product category
with very high requirements for dynamic performance and
comfort. Vibration can cause physiological effects for a rider,
which can then affect riding safety and bike operability and
can reduce the service life of bike parts. Therefore, it is
necessary to research and control vibration characteristics
during bike riding to improve comfort and to increase the
service life of bike parts.

Recently, research on the vibrations and dynamics of bikes
has obtained significant achievements. Liu et al. [6] applied
the finite element method to damaged mountain bikes and
found that the stress concentration positions of a frame
were consistent with the damage; the study further proposed

three improvement proposals and compared the improvement
results. Xiang et al. [7] adopted an experimental method to
compare vibration characteristics of mountain bikes whose
rear suspension was equipped with different types of dampers
under different frequencies of harmonic excitation; the study
found that a spring damper had good damping effects within
a certain frequency scope. Nakae et al. [8] examined squeal
and chatter phenomena generated experimentally in moun-
tain bike disc brakes and found that there are two kinds of
frictional self-excited vibrations in bike disc brakes: squeal
(with frequency of 1000 Hz) and chatter (with frequency
of 500 Hz). Covill et al. [9] outlined an FE model using
beam elements to represent a standard road bicycle frame.
The model simulates two standard loading conditions to
understand the vertical compliance and the lateral stiffness
characteristics of 82 bicycle frames from the bicycle geom-
etry project to compare these characteristics with an opti-
mized solution for these conditions. Based on the analysis
of the dynamics of bikes, He et al. [10] proposed two weak-
coupling dynamical sub-models, namely, a stability model
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and a vibration model, to describe bike motion under compli-
cated road conditions. In combination with problems encoun-
tered in bikes use, such as structure, dynamics and vibra-
tion, Huang ef al. [11] integrated ISIGHT with multidisci-
plinary optimization and selected a Nonlinear Programming
by Quadratic Lagrangian (NLPQL) method for gradient opti-
mization; the optimization results showed that the total mass
of a bike frame should be decreased by 8.31% based on
constraint condition satisfaction to achieve benefits from a
lightweight frame. To discuss the dynamic performance of a
bike main frame, Du et al. [12] applied ANSYS to analyze
its elastic modal characteristics; the results showed that the
finite element computation results were consistent with the
experimental testing results. Combined with the vibration
characteristics of the frame, modal sensitivity analysis tech-
nologies were applied to research the effects of bike frame
wall thickness on the first-order modal frequency of bikes.
Improving comfort in road bicycle design is a paramount
concern for cyclists, who are affected by the vibrations caused
by contact with the road surface. Therefore, Lépine et al. [13]
presented two different laboratory techniques for studying
road bike vibration. Caya et al. [14] investigated the influ-
ence of the dynamic behavior of a brake hood force trans-
ducer on measurement accuracy. However, most published
references failed to conduct systematic research on and opti-
mize the vibration of bike parts, and the results of numerical
simulations were not experimentally verified. With regards
to a few references that researched the optimization of bike
vibration characteristics, the applied optimization algorithms
were fairly traditional and could easily result in local extreme
values, meaning the obtained results were not optimal.

With the function optimization of low-dimensional space,
PSO is a quick solution that produces high-quality results.
Nevertheless, once the dimensions of the function increase,
PSO’s optimization performance decreases sharply and could
result in local extreme values, leading to a decrease in con-
vergence accuracy and difficulty converging to a globally
optimal solution; however, because of advantages such as few
control parameters, easy achievement and concise compu-
tation, the method has been widely applied. ABC has out-
standing capacity with balanced exploration and exploitation;
however, due to the impact of evolution methods and selection
strategies, the algorithm could easily result in local optima
in rapid convergence. To overcome the defects of PSO and
ABC (that each algorithm could easily result in local opti-
mization when used separately), this paper proposed a novel
hybrid optimization algorithm, PSO-ABC, based on PSO and
ABC. The ABC algorithm can offset the defects of the PSO
algorithm, which easily results in local optima. Combining
the two could improve the optimization ability of the PSO
algorithm to some extent. Therefore, this paper applied the
PSO-ABC hybrid algorithm to systematically optimize bike
vibration characteristics and to verify the accuracy of the
numerical computation models generated via experimenta-
tion. The detailed contents in this paper are as listed: the sec-
ond section introduced the finite element model of the bike,
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the third section has verified the numerical model using the
wireless sensor network, and the other sections introduced the
optimization process for the bike.

Il. ESTABLISHMENT AND MODAL COMPUTATION OF
THE FINITE ELEMENT MODEL

Bikes have complicated structures composed of many parts,
most of which are revolving or thin-wall parts. Therefore,
shell elements could be used to establish a finite element
model. Fig. 1 shows a simplified geometric model of an
actual bike. The model neglects some details. For example,
some parts in the handle have been neglected, and the seat
cover has been also neglected; thus, the modeling time could
be reduced, and convergence failure could be avoided in
numerical computations.

FIGURE 1. Simplified geometric model of a bike.

While developing a finite element model of a bike,
the quantity of model elements has an obvious effect on
the computational results and computational scale. In gen-
eral, a higher number of elements leads to higher com-
putation accuracy and an increase in the computational
scale [15]-[20]. Therefore, impacts of the computational
results and computational scale should be considered com-
prehensively to determine element quantity. ANSYS software
can conduct rational mesh division of a complicated model,
can find mistakes in mesh division, can control the size of
local elements and can refine the mesh in key analysis areas.
Through multiple division experiments, the mesh shape and
size could be determined. To reduce computational complex-
ity, the model should be simplified. It is necessary to ensure
that basic attributes of the model, such as mass and rotation
inertia, do not vary obviously before and after the simplifica-
tion. Thus, structural simplification can be controlled within
an allowable error scope.

The imbedded Mesh-Tool in ANSYS was used to assign
element types, material attributes and element thicknesses for
each bike part. To divide meshes rationally and effectively,
the mesh size was set to the basic size (20 mm), according
to an actual model. LESIZE was used to control some key
lines. Mapped and Sweep were the first choice for mesh
division manners. For a complicated model, Boolean calcu-
lations, such as “divide,” could be used to divide the original
model into regular shapes. Connections between each ele-
ment assembly part play a crucial role in load transfer and
degrees of freedom; thus, the mesh density is slightly higher
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in some parts compared to others. After mesh division of each
module, it is necessary to couple and constrain their degrees
of freedom through equivalent replacement according to the
connections of the actual structure. Different shell elements
were simulated by node coupling. Shell elements and solid
elements were simulated by MPC. The imbedded contact pair
toolin ANSYS, Contact Manager, was applied. Regarding the
node-face contact pairs, the default target element was TAR-
GET170, and the default contact element was CONTA175.
Regarding the face-face contact pairs, the default target ele-
ment was TARGET170, and the default contact element was
CONTA174. Finally, the finite element model of the bike
was obtained, as shown in Fig. 2. The model contained
56902 elements and 69026 nodes. In the finite element model,
the density of the stainless-steel material was 7900 kg/m?,
its elasticity modulus was 210 GPa, and its Poisson’s ratio
was 0.3; the density of the rubber material was 1.5 kg/m>,
its elasticity modulus was 7.8 GPa, and its Poisson’s ratio
was 0.47.

© (d

FIGURE 2. Zoomed mesh drawings of an area of the bike. (a) Rear gears
and disc rotor. (b) Crank. (c) Pedal. (d) Handlebars.

Structural modal analysis is the foundation of other dynam-
ical analyses [21]-[23] and is a linear analysis. In the ANSYS
software, it is used to determine natural frequency and vibra-
tional modes of a structure. To solve for the natural char-
acteristics of the bike, the modal parameters were obtained
through modal analysis based on modal theories. In modal
computation, vibration shapes of the bike could be obtained
with a gradual approach at first. The Lance partition method is
amodal extraction method with many functions, but it is most
commonly used and applicable to general situations. In addi-
tion, other methods have unique advantages. For example,
the downsizing method would have higher computation effi-
ciency than other methods after defining the main degree of
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FIGURE 3. Natural vibration shapes of the top 9 orders of a bike.
(a) First order. (b) Second order. (c) Third order. (d) Fourth order.

(e) Fifth order. (f) Sixth order. (g) Seventh order. (h) Eighth order.

(i) Ninth order.

freedom of the bike (although the selection of the main degree
of freedom requires careful consideration). Different methods
are based on different algorithms. The Lance partition method
is based on the Lance algorithm, whose calculation involves
vector recursion and whose accuracy and computational effi-
ciency could satisfy actual engineering requirements. Regard-
ing large and symmetric models, the addition of a sparse
equation could simplify the computational process. Because
bikes are large and have similar front and rear structures, this
paper selected this method for computation. Fig. 3 shows
the top 9 orders of the natural vibration shapes of the bike
obtained based on the Lance algorithm. The bike had many
parts; therefore, most modal shapes were reflected in different
partial structures of the bike. In addition, we can find that a
series of bike vibrations appeared mainly at the front and rear
wheels, and the disc rotor structure of rear wheel had obvious
vibration.

Ill. EXPERIMENTAL VERIFICATION OF VIBRATION

CHARACTERISTICS OF A BIKE USING WSN TECHNOLOGY
Some published papers concerning bike excitation loads
obtained the excitation loads at the bike saddle. The excitation
load was applied to the center of the saddle of the bike finite
element model so that vibration acceleration responses of the
bike could be computed. However, the computation model
of bike vibrational responses is very complicated. Without
experimental verification, the reliability of computational
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results may not be guaranteed. In addition, to increase the
accuracy of the computational model, vibrational responses
of multiple points on the bike should be verified. If a bike
keeps running, a traditional wired sensor can be used to
measure vibrational responses at multiple points on the bike,
resulting in data lines that will be too long. Data lines between
different sensors may be interweaved, thus influencing exper-
imental testing and results. With rapid development and
gradual maturity of communication technology, embedded
computation technology and sensor technology, people have
developed various microsensors with perception, computa-
tion capacity and communication capacity. A wireless sensor
network (WSN) consisting of many microsensors has gained
many attention [24]-[26]. Hence, multi-point vibrational
responses of bikes can be tested with WSN technology. WSN
integrates sensor technology, embedded computation tech-
nology, distributed information processing technology and
communication technology [27]-[30]. It can assist in real-
time monitoring, sensing and collection of information in var-
ious environments, monitor objects in a network distribution
area and process the information. In this way, detailed and
accurate information can be obtained and sent to users who
need it. At present, WSN technology has been successfully
applied to environmental monitoring, medical care, intelli-
gent building and intelligent traffic, etc., as shown in Fig. 4.

FIGURE 4. The application of the wireless sensor network technologies.

The WSN system architecture used in this paper is shown
in Fig. 5. This system is comprised of distributed wireless
sensor node groups, sink nodes, a base station, transmission
media and a network user side. The nodes are manually
arranged on the bike. The sensor node network is taken as the
core. In the sensing area, sensor nodes constitute the network;
sensed information is sent to sink nodes. With the sink link,
data in the entire area can be transmitted to the network user
side for processing. During the experiment, the bike kept
running. To verify the accuracy of the FE model, 10 sensor
nodes were arranged in total. 5 sensor nodes were connected
to 1 sink node; hence, 2 sink nodes were needed. These 2 sink
nodes were connected to 1 base station. The base station
transmitted the received data to the server and sed the Internet
for subsequent data storage and analysis.

Computed and experimental RMS values at 10 monitoring
points were extracted for comparison, as shown in Table 1.
It is shown in the table that point 9 had the maximum
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FIGURE 5. Experimental test of vibration accelerations of a bike using
WSN technologies.

TABLE 1. Comparison of experimental results and numerical simulation
of vibration accelerations.

Positions Experimental test Numerical simulation Relative
(m/s?) (m/s?) errors

Point 1 20.8 19.7 -5.23%
Point 2 16.5 17.1 3.64%
Point 3 17.9 18.7 4.47%
Point 4 17.2 17.8 3.49%
Point 5 83 79 -4.82%
Point 6 21.6 20.6 -4.63%
Point 7 19.1 19.9 4.19%
Point 8 232 22.1 -4.74%
Point 9 273 28.8 5.49%
Point 10 26.1 25.5 -2.30%

vibration acceleration response, while that of the rear wheel
disk ranked second. The disk does not have the maximum
vibrational response, but the disk is connected to the bike
gear, so running safety and comfort of the bike will be influ-
enced greatly, which can reduce the bike’s service life. Hence,
the vibrational response RMS value at this point was taken as
the optimization objective. In addition, through extraction of
the vibrational response curve of the disk, it was found that
the difference between the maximum and minimum values
of the vibration acceleration was quite large. Hence, riding
comfort would be seriously affected and service life would
be reduced. Hence, in this paper, with the exception of the
vibrational response RMS value of the point taken as the opti-
mization objective, the maximum difference in vibrational
responses was taken as another optimization objective and the
research became a multi-objective optimization issue.
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IV. NUMERICAL OPTIMIZATION OF VIBRATION
CHARACTERISTICS OF THE DISC ROTOR

The design variable of this paper is the thickness of all the
parts connected to disc rotor. In this way, the structure does
not need to be redesigned—only the thickness needs to be
changed during the processing of the optimized part. The
disc rotor has very large vibration accelerations, wherein
the difference between the maximum and minimum vibra-
tion accelerations was very large. Therefore, the root-mean-
square value and the maximum difference of the vibration
accelerations are taken as optimization objectives and set as
min(f). The following mathematic model was set:

min(f) = f(x1, x2, X3, X4)
min(f2) = f(x1, x2, X3, X4) €))
<y <X i=1,23,4

where f] is the root-mean-square value of vibration accel-
erations of the disc rotor, f, is the maximum difference of
vibration accelerations of the disc rotor, x; is a design variable,
xi(l) is the lower limit of the design variable and xl.(“) is the
upper limit of the design variable.

Particle Swarm Optimization (PSO) is a random evolution
algorithm based on swarm intelligence. This algorithm was
proposed based on social behavior rules of bird, fish and
human groups. The algorithm has drawn extensive attention
within academia in recent years because of its quick conver-
gence, fewer set parameters and simple implementation. PSO
has been widely applied in function optimization, neural net-
work training, mode classification, fuzzy system control and
other engineering fields [31]-[36]. Traditional PSO achieves
quick solutions and high-quality function optimization in
low-dimensional space. However, once dimensions of the
function increase, its optimization performance decreases
sharply and it could easily result in local extreme values.
As a result, convergence accuracy decreases and conver-
gence to global optima would be difficult. The Artificial Bee
Colony (ABC) algorithm is a random optimization algorithm
based on swarm intelligence. The algorithm simulates honey
collection behaviors of bee swarms. Bees conduct different
activities according to labor division. Bee swarm information
is shared and exchanged so that optimal solutions of problems
could be found. At present, research and applications of ABC
remains in the initial stage; however, it has drawn attention
of scholars because of its advantages, such as few control
parameters, easy implementation and concise computation.
ABC has been successfully applied to problems in engineer-
ing fields, such as numerical optimization of functions and
artificial neural network training [37]-[44]. The ABC effec-
tively balances the abilities of exploration and exploitation;
however, due to the effects of evolution modes and selection
strategies, the algorithm could easily result in local optima
during rapid convergence. To overcome the defect that PSO
and ABC algorithms could easily result in local optima when
separately applied to global optimization problems, this paper
proposes a novel hybrid optimization algorithm based on

32894

PSO and ABC. The ABC algorithm could offset the issue of
the PSO algorithm easily resulting in local optima. Through
combination of these two algorithms, the optimization ability
of the PSO algorithm could be enhanced to some extent.
Therefore, PSO and ABC are mixed in parallel. A popu-
lation is divided into 2 sub-populations. For each iteration,
the ABC algorithm is applied to one sub-population to find
the optimal solution and the PSO algorithm is applied to
the other to find its optimal solution. The optimal solutions
obtained for the two methods are compared and the global
optimal solution is selected; the optimal solution is the global
optimal solution in the iteration. The hybrid algorithm adopts
the local and global search abilities of the ABC algorithm.
Through continuous comparison, selection and abandoning
of solutions, the search scope is reduced and the defect of
the PSO algorithm (that it can result in local optima) can be
overcame.

The optimal model is solved by the PSO-ABC hybrid
algorithm. Specific processes are shown in Fig. 6.

With continuous maturing of commercial software,
effective transmission parameter interfaces are set between
different software. The commercial software could be inte-
grated into ISIGHT software in a seamless manner and
parameters could be analyzed in ISIGHT. Through mod-
ification of design parameters, a product model could be
modified. With such automatic manner, complicated and
repeated tasks in traditional design, such as continuous mod-
ification and checking, could be reduced and some tedious
and complicated computations could be avoided. The method
integrates the design processes to form a uniform frame
and automatically operates simulation software and modifies
parameter data. Based on the working principle, ISIGHT
achieves full-course digitalization and automation of optimal
design. During optimization with the ISIGHT optimization
software, the PSO-ABC optimization algorithm proposed in
this paper is implanted via ISIGHT secondary development.
The ISIGHT software would modify all the integrated input
parameters of the software, call solution software to solve
them, read response results and judge if the response results
are optimal. If the optimal solution is achieved, the opti-
mization program will stop and the optimization will end.
Otherwise, the parameters will be modified and responses
will be solved and read again. Such a process is repeated
and cycled continuously until an ideal target function value
is obtained.

To further verify the validity of the PSO-ABC algorithm
after parameter selection, the algorithm was compared with
traditional PSO and ABC models. PSO, ABC and PSO-ABC
models adopted the same population to conduct a multi-
objective optimization for vibration accelerations of the
disc rotor. The iteration processes of the three optimization
algorithms are shown in Fig. 7. The ending condition of the
iterations of the three algorithms was the reaching of a set
proceeding generation. As shown in Fig. 7 that, the error con-
vergence values were 0.145, 0.215 and 0.085, respectively,
when iterations of PSO, ABC and PSO-ABC were conducted
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FIGURE 6. Specific processes of the PSO-ABC hybrid algorithm.

to the 70t generation, wherein all the values were not smaller value (0.01). At this generation, errors of the PSO and ABC
than the set error critical value (0.01). When iterations were models were 0.135 and 0.095, respectively—far exceeding
conducted to the 198t generation, the error of the PSO-ABC the critical error. When the iterations were conducted to 70t-
model was 0.009, which was smaller than the set critical error 360t generations, the PSO model resulted in local extreme

VOLUME 6, 2018 32895



IEEE Access

Z. Han et al.: Numerical Improvement for the Mechanical Performance of Bikes

0.8
=—#— PSO method
0.7
06 ABC method
a —+—PSO-ABC method
205
5
204 4
.2
03
~
0.2 4
01 w
0 T ¥

J
0 120 24 360 480 600 720
Number of iterations

FIGURE 7. The iteration results of the three algorithms.

values and jumped from the local extreme values after long-
term iterations. When the iterations were conducted to the
500" generation, the PSO model converged and the error was
0.12, which still exceeded the set critical error. When the
iterations were conducted to the 370" generation, the ABC
model converged and the error was 0.025, which exceeded
the critical error. When iterations of the PSO-ABC model
were conducted to the 198t generation, the predicted error
was smaller than the set critical error, the optimization accu-
racy improved and the time was reduced. To present optimal
iterations of the three algorithms more visually, the root-
mean-square value and the maximum difference of vibra-
tion accelerations were taken as horizontal and longitudinal
coordinates respectively and a population figure of the disc
rotor was obtained. The results are shown in Fig. 8. It is
shown in Fig. 8 that performance of most individuals was
better than performance of the original individuals during
optimization. The maximum difference of original vibration
accelerations was 68 m/s” and its root-mean-square value of
vibration accelerations was 25.5 m/s?>. During optimization
using the traditional PSO method, the maximum difference of
vibration accelerations was 59 m/s” and the root-mean-square
value of vibration accelerations was 22.5 m/s2; the maximum
difference of vibration accelerations decreased by 13.2%
and the root-mean-square value of vibration accelerations
decreased by 11.7%. During optimization using the ABC
method, the maximum difference of vibration accelerations
was 59.5 m/s” and the root-mean-square value of vibration
accelerations was 22.3 m/s2; the maximum difference of
vibration accelerations decreased by 12.5% and the root-
mean-square value of vibration accelerations decreased by
12.5%. During optimization using the PSO-ABC method,
the maximum difference of vibration accelerations was
50.5 m/s? and the root-mean-square of vibration accelera-
tions was 19.3 m/s?; the maximum difference of vibration
accelerations decreased by 25.7% and the root-mean-square
of vibration accelerations decreased by 24.3%. Therefore,
the PSO-ABC method is superior to the other two algorithms
for the optimization of vibration characteristics of disc rotors.

A geometric model was re-established according to opti-
mization parameters of the disc rotor, and the correspond-
ing vibration acceleration computation model was obtained.
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TABLE 2. Key iteration points of three kinds of optimization models.

Three kinds of Number of Number of
L . . Errors . . Errors
optimization models iterations iterations
PSO model 70 0.145 720 0.120
ABC model 70 0.215 720 0.025
PSO-ABC model 70 0.085 198 0.009
28
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FIGURE 8. Bee swarm mutation processes of the three algorithms.
(a) PSO method. (b) ABC method. (c) PSO-ABC method.

After computational optimization, the results of the disc rotor
were compared with the original results, as shown in Table 3.
It is shown in the table that the RMS value of the opti-
mized disk vibrational responses was 19.5, which decreased
by 23.5% from the original value; therefore, the optimiza-
tion effect was significant. During optimization, vibrational
response RMS values of some points increased, especially
Point 5; however, the increase in amplitude was not very
large. Vibrational responses of most points were improved.
In addition, the maximum difference of optimized disk
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TABLE 3. Comparison of original results and optimized results of
vibration accelerations.

Positions Original values Optimized values Optimized
(m/s?) (m/s?) effects
Point 1 19.7 20.2 2.54%
Point 2 17.1 16.7 -2.34%
Point 3 18.7 17.9 -4.28%
Point 4 17.8 18.2 2.25%
Point 5 7.9 8.3 5.06%
Point 6 20.6 19.8 -3.88%
Point 7 19.9 19.1 -4.02%
Point 8 22.1 22.6 2.26%
Point 9 28.8 282 -2.08%
Point 10 25.5 19.5 -23.50%

vibrational responses was 50.5. The original value was 68.
The relative decrease in amplitude was 25.74%. Therefore,
the PSO-ABC multi-objective optimization algorithm pro-
posed in this paper is superior to the traditional algorithms
at improving bike vibration characteristics.

V. CONCLUSIONS

The bike had many parts; therefore, most modal shapes were
reflected in different partial structures of the bike. In addition,
found that a series of bike vibrations mainly appeared at the
front and rear wheels, whereas the disc rotor structure of the
rear wheel had obvious vibration. Vibration accelerations had
consistently changing trends in the experimental test and the
numerical simulation, whereas the accelerations did not differ
substantially. Therefore, the numerical computation model
established in the paper is feasible. Based on the verified
model, the vibration characteristics of bikes were optimized
by the proposed PSO-ABC algorithm. To further verify the
validity of the PSO-ABC algorithm after parameter selection,
the algorithm was compared with traditional PSO and ABC
models. The PSO, ABC and PSO-ABC models adopted the
same population to conduct a multi-objective optimization for
vibration accelerations of the disc rotor. When iterations of
the PSO-ABC model were conducted in the 132" generation,
the predicted error (0.001) was smaller than the set criti-
cal error, whereas the optimization accuracy was improved,
and the time was reduced compared to the other two algo-
rithms. Vibration accelerations of the optimized disc rotor
were improved obviously. The maximum absolute value of
vibration accelerations was 49.1 m/s2, and the maximum
absolute value of the vibration accelerations of the original
structures was 59.0 m/s2. Therefore, the PSO-ABC method
was superior for the optimization of vibration characteristics
of the disc rotor. In the future, we will try to compare this
study with those more advanced algorithms to optimize the
vibration performance of the bike further.
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