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ABSTRACT For continuous improvement of productivity, accurate, stable, and reliable control of tempera-
ture and humidity is important in industrial production. Accurate prediction of air temperature and humidity
can improve the predictability and stability of air conditioning control systems. In this paper, based on the
cloud database of industry settings, an improved prediction model based on backpropagation (BP) neural
networks was established to forecast indoor air temperature (IT) and relative humidity (IH) every 10 min and
6-72 h in advance. The experimental building was in Chongging, a typical humid, hot-summer, and cold-
winter area in China. The test data were used to determine the optimal parameters of the neural network
model. The experimental results showed that the IT and IH predictions by our model have strong correlations
with the actual data, with the coefficients of determination being 0.9897 and 0.9778, respectively. Compared
with other literature, our model was more effective in temperature prediction. The presented method can be
used for the prediction and control of the indoor temperature and relative humidity in industrial production.

INDEX TERMS Back propagation neural networks, cloud database, indoor temperature prediction, indoor

relative humidity prediction.

I. INTRODUCTION

The control of temperature and humidity plays an extremely
important role in the production process of industries such
as food production [1], [2], tobacco processing [3], [4], and
biological product manufacturing [5], [6], which directly
affects the quality of products. Sometimes it is even related to
the safety of the equipment and human. Accurate indoor air
temperature and humidity prediction in industrial buildings
can reduce energy consumption and improve the stability
of the air conditioning control system. An effective way to
evaluate indoor temperature and humidity parameters is to
use building energy simulation tool. Although the simulation
tools can achieve accurate simulation requirements, it is based
on the premise of collecting all kinds of detailed parame-
ters of the building such as the change in weather condi-
tions, structures of the building, geographic location, and
energy produced by lights and equipment loadings [7], [8].
The collection of these parameters takes time and effort,
and not all data are available. In addition, the establishment
of these models often requires expert knowledge and the

calculation is time-consuming, which becomes an obstacle
when using mainstream building energy analysis software.
In terms of certain predictions, several techniques existing
in the literature indicate that nonlinear models are better
than linear ones [9]. Since the neural network can infinitely
approximate any continuous function, it has been widely
applied in various building predictions. Kreider [10] first
introduced the method of artificial neural network into
the prediction of energy consumption of HVAC equipment
in building systems. Kwok et al. [11] and Leung et al. [12]
used indoor occupant room rate and hourly usage area as
input parameters to the artificial neural network predic-
tion process. According to the relevant parameters of the
experimental building and the meteorological data of the
building area, the load of the building was predicted. Results
showed that the building physical parameters and meteoro-
logical input parameters had a great influence on the accu-
racy of building load forecasting. Pandey et al. [13] used an
artificial neural network to forecast indoor room tempera-
ture by using three different roof passive cooling methods.
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Lu and Viljanen [14] designed four neural network models
developed by nonlinear autoregressive with external input
model and genetic algorithm to forecast indoor tempera-
ture (IT) and relative humidity (IH). The coefficients of deter-
mination are 0.996 for indoor air temperature and 0.994 for
relative humidity. Yigit and Ertunc [15] developed a feed
forward neural network to forecast the air temperature and
humidity at the outlet of a wire-on-tube type heat exchanger.
The experimental results showed that the average relative
error of outlet air temperature was less than 1%, and the error
of outlet humidity was less than 2%.

Although much research was carried out in this area, little
studies have been done in the literature to predict both temper-
ature and relative humidity simultaneously. Ozbalta et al. [16]
trained several neural network models to predict the average
daily indoor air temperature and relative humidity values
in an education building in Izmir, Turkey. The coefficients
of determination between the simulated and experimental
results of indoor temperature and relative humidity were
calculated as 0.94 and 0.96, respectively. Mba et al. [17] used
artificial neural networks for hourly prediction and forecasted
indoor temperature and relative humidity 24 hours and one
month ahead. However, predictions with shorter prediction
time horizon (e.g., a few minutes) are needed to provide
guidance for industrial production.

Accordingly, we used the indoor and outdoor air tempera-
ture and relative humidity as information in a tobacco factory
warehouse in the humid, hot-summer, and cold-winter area
in Chongqing. The data are collected every 10 minutes from
the sensors and uploaded to the cloud. The data are stored,
processed, and displayed in the cloud database. An improved
prediction model based on BP neural networks is proposed
to forecast indoor temperature and relative humidity 6 hours,
24 hours, and 72 hours in advance. The results are compared
with other research work to verify the effectiveness of our
model. This method can provide theoretical and technical
support for indoor temperature and relative humidity predic-
tion and control strategies for air conditioning systems.

Il. METHODOLOGY

A. EXPERIMENTAL BUILDING AND DATA ACQUISITION
The study was conducted in a tobacco industrial building
in Chongging, a typical city in the hot-summer and cold-
winter zone in China. The annual average relative humidity
is between 70%-80%, which belongs to high humidity
areas. The indoor air temperature and relative humidity
were measured at the planned warehouse, shown in Fig. 1.
The length and width of the building are 48.2 m and 34.4 m,
respectively. The ceiling height is 2.8 m. The whole building
is divided into two areas, which are connected by a door with
4.4 m x 3.2 m size.

The quality of tobacco is affected by the distribution of air
flows, relative humidity and temperature [4]. If the building
environment is unstable, such as the rapid changes of temper-
ature and humidity, the quality of tobacco leaves will be
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FIGURE 1. The plan of cigarettes factory NO.5 Warehouse.

greatly reduced. Thus it is essential to find the stable areas
to store tobacco. Computational fluid dynamics (CFD) tech-
nology has become an important calculation method and is
increasingly applied in the field of architecture [17]-[19].
We established the CFD model to obtain the temperature and
humidity distribution characteristics of the indoor building
environment. The KM algorithm was used to cluster and
analyze the standardized data. Then the relatively stable envi-
ronmental areas were obtained. Sensors used to obtain the
experimental data were set in these areas.

In this work, the selected temperature and humidity
sensor is SHT15, manufactured by the Sensirion. It is a
composite single-chip sensor that integrates temperature and
humidity measurement with calibrated digital signal output.
It has the advantages of strong anti-interference and quick
response. The characteristics of the sensor are presented
in Table 1 below.

TABLE 1. Characteristics of temperature and relative humidity sensors.

Parameter Range Accuracy Resolution
Temperature ( °C ) -40~123.8 10.3 0.01
Relative humidity ( %RH ) 0-100 +3 0.03

Fig. 2 shows the position of some sensors in the experi-
mental space. According to the requirements of the tobacco
factory, the installation height of the sensors are 1.6 m

FIGURE 2. Data acquisition system.
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FIGURE 3. Experimental average data for one year.

from the ground and are fixed on the pillar or the wall.
The indoor air temperature and relative humidity data are
simultaneously recorded every 10 minutes. Since the cloud
sever has higher computation capacity and storage [20], these
data are uploaded to the cloud. The cloud database could
aggregate, back up, and process the sensing data updated
from different cloudlets [21]. The data are collected from
January 2017 to January 2018 and are shown in Fig. 3
below.

B. ESTABLISHMENT OF THE PREDICTION MODEL

Some researchers proposed Back Propagation (BP) neural
network to make predictions [22]-[24]. It is a multi-layer
feed-forward neural network trained according to the error
reverse propagation algorithm, which is widely applied
in function approximation, classification, pattern recognition,
as well as data compression and prediction. A three-layer BP
neural network structure is displayed in Fig. 4.
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FIGURE 4. Three-layer BP neural network structure.

The original BP neural network model can accurately fore-
cast the next data. However, in industrial production process,
the phenomenon of large time lags in temperature and
humidity is widespread, and one set of forecasted data is not
enough to support the decision of the air-conditioning system.
Therefore, we establish an improved prediction model based
on BP neural networks by importing the predictive data into
the training samples to extend the prediction time and the
model can forecast more data.
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In the improved prediction model, the indoor and outdoor
temperature and relative humidity data collected in real-
time are selected as input variables to the training samples.
The output variables are the forecasted indoor tempera-
ture and relative humidity, which is obtainable by training
the samples. As time goes on, new measurement data are
collected, and they are updated into the training samples
at the same time. With the increase of sample size, the
prediction accuracy of neural network will increase, but it will
increase the complexity of the network and the simulation
time. For time series prediction, training time is an impor-
tant parameter. When the training time is too long or even
exceeds the predicted time horizon, the model is meaning-
less. Thus, in our model, the size of the training sample
is fixed, as displayed in [25, Fig. 5]. The above improved
model can predict indoor temperature and relative humidity
accurately for a long period and update the training samples in
real-time.
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FIGURE 5. Improved prediction model.

C. MODEL EVALUATION CRITERIA

Various statistical indicators are put forward to check the
predictive performance of the model [26]-[28]. In our study,
the results of the model were analyzed by the coefficient of
determination (R?), the mean square error (MSE) and the
mean absolute error (MAE). The coefficient of determination
can well measure the degree of proximity between the actual
data and the predicted values. R?, MAE, and MSE can be
evaluated as:

RP=1- (1
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Where y; is the measured value, p; is the predicted output.
When the R? value equals to 1 and the MSE value verges on 0,
the performance of this model is outstanding.

Ill. RESULTS AND DISCUSSION

Based on the data recorded by the cloud database in 2017,
the indoor relative humidity and temperature can be predicted
simultaneously every 10 minutes, 6 hours, and 24 hours
in advance. Matlab was used to train the improved prediction
model. As explained by Kapetanakis et al. [29], the selection
of input variables will affect the accuracy and complexity of
prediction models under different climate conditions. In order
to obtain better results, we compared the prediction effect
of several different input variables. Table 2 lists the different
input variables in the established BP neural network, where
OT(k), OH(k), IT(k), and IH(k) are the vector of values
of outdoor temperature, outdoor relative humidity, indoor
temperature and indoor relative humidity at time k, respec-
tively. The training samples are the last 10000 data pairs.
The number of network layers is 3 and the precision is set
as 0.001.

TABLE 2. Input and output variables for each model.

Models Inputs Outputs Description
M oo a0 G oron)
R ey T

y(&),y(k-1),....y(k-11) y(K)=[IT(k);IH(k)]
M3 Lmaden), k-1 YD u(k)=0T(k)

A. DETERMINATION OF OPTIMAL PARAMETERS

So far, there is no justifiable method to identify hidden
neurons in mathematics. It is generally started from the
minimum number of the elements [30]. As the number
of neurons continues to increase, retraining of BP neural
network will continue until the satisfactory results appear,
the number of hidden neurons at this time is considered to
be optimal. In order to find the optimal parameters under
different neural network structures, we conducted a set of
tests. Table 3 shows the MSE of the testing data for different
neural network structures.

From the table we see that when the number of hidden
layer network nodes is 20, the model M1 has the minimum
MSE, whereas for model M2 and M3, the values are 15. Anal-
ysis shows that the number of hidden layer network nodes
drawn between 15 and 20 is more appropriate. The minimum
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TABLE 3. Testing results for different models.

TABLE 4. Mes and mae in different experiments.

. Mean square error (MSE)
Hidden neurons Ml M2 M3
5 0.29 0.25 0.47
10 0.40 0.38 0.42
15 0.34 0.22 0.33
20 0.17 0.30 0.36
25 0.22 0.41 0.48
30 0.24 0.43 0.50

MSE is 0.17 in M1. This model may be the optimal
approximate model in industrial buildings. The training
model was used to estimate the number of hidden network
nodes, then the optimal parameter is selected for the actual
test.

B. ANALYSIS OF PREDICTION EFFECT

Based on the analysis above, in order to test the short-term
and long-term ability of the model to predict the IT and
IH, we randomly selected some sets of data from the cloud
database. These data are not in the training set. The prediction
periods are 6 hours, 24 hours, and 72 hours, respectively.
Fig. 6-8 displays the comparison of the predicted data and the
actual values for indoor air temperature and indoor air relative
humidity. The mean absolute error and mean square error of
each experiment are listed in Table 4.
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FIGURE 6. Comparison of experimental data and predicted values of IT
and IH for 6 hours prediction.
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Forecast  Type of Ml M2 M3
time error IT IH IT IH IT H
6h MES 0.07 0.59 0.05 1.32 0.13 0.93
MAE 0.01 0.40 0.01 1.98 0.02 2.11
2 MES 0.22 2.27 0.23 2.60 0.16 2.79
MAE 0.06 6.58 0.08 9.41 0.03 10.35
agh MES 0.25 1.52 0.22 2.13 0.22 2.51
MAE 0.09 3.89 0.11 6.90 0.07 9.47
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FIGURE 7. Comparison of experimental data and predicted values of IT
and IH for 24 hours prediction.

Fig. 6 presents the evolution of the predicted values and
experimental values of different model structures. The results
show that there is a strong similarity between the model we
proposed and the actual experiment. The MAE for M1, M2,
and M3 are 0.07, 0.05, and 0.13 in temperature and 0.59, 1.32,
and 0.93 in relative humidity, which supports that predicting
6 hours in advance is reliable. Compared with M2 and M3,
MI has a better prediction.

Fig. 7-8 displays the comparison between simulated values
and predicted data of the three models. The average of MAE
and MSE of the models are 0.217 and 0.074 respectively
in temperature. This indicates that it is feasible and effective
to predict the temperature 24 hours and 72 hours in advance.
However, analysis of the figures shows a poor relationship
between experimental date and predicted values in indoor
air relative humidity. The deviation between experimental
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FIGURE 8. Comparison of experimental data and predicted values of IT
and IH for 72 hours prediction.

data and neural network predictions is very high for relative
humidity and cannot be ignored. This may be due to the
fact that indoor relative humidity is affected by more factors
than the indoor temperature, especially in this study, some
important information, such as heating power and ventilation
rate is not available, which makes the indoor relative humidity
much more difficult to predict [14].

Based on the above experiments, the models obtained can
accurately forecast indoor air temperature in an industrial
building in Chongqing, 72 hours in advance. However, indoor
relative humidity can only be predicted for several hours
in advance. The accuracy for indoor relative humidity predic-
tion needs to be improved.

Combining the data in Table 4, we find that M1 has the
best predictive effect of the three models. It seems that more
input variables can improve prediction accuracy. Although
the experimental buildings are all in a humid region, the result
is different from the experimental conclusion obtained by
Mba et al. [17]. This may be due to the differences in neural
network structures, building types, and climate environment,
etc.

Fig. 9 displays the regression lines between actual and
predicted values of M1 (The regression lines of M2 and
M3 are presented in the Appendix). The ITm, ITs, IHm, and
IHs are the measured and simulated values of indoor temper-
ature and indoor relative humidity, respectively. The coeftfi-
cient of determination R” is calculated so as to intuitively
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FIGURE 9. Regression lines between measured values and values
predicted 6 h, 24 h, and 72 h ahead of M1.

judge the degree of fit. As the R” value verges on 1, the model
is more successful.

For 6 hours prediction, the coefficient of determination
for model M1 is 0.9897 and 0.9778, respectively, which
are both higher than M2 and M3. It shows that M1 can
better predict indoor temperature and relative humidity simul-
taneously 6 hours later. When it comes to predict indoor
temperature 24h and 72h in advance, the mean coefficients
of determination are 0.9521, 0.942, and 0.9687 respectively.
According to the results, M3 is the most effective model for
predicting indoor air temperature. For 24 hours and 72 hours
ahead prediction of relative humidity, the mean determina-
tion coefficients of the three models are 0.6902, 0.5566,
and 0.4793 respectively. The results indicate that the best
approximation of indoor relative humidity is given by M1,
but the coefficient of determination is terrible compared to
indoor air temperature. Thus, it should be improved in further
work. Interestingly, we find that in all cases, the coefficient
of determination of the indoor air temperature is higher than
the relative humidity in model M1, which indicates that
in comparison with the relative humidity, the predicted value
of indoor temperature can better adapt to the actual measured
value.

To conclude, for 6 hours ahead prediction, in the
subtropical monsoon humid climate in Chongqing, the best
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FIGURE 10. Regression lines between measured values and values
predicted 6 h, 24 h, and 72 h ahead of M2.

TABLE 5. Average determining coefficient of different models.

One day ahead prediction One week ahead prediction

Model IT H IT H
Mba L’ 0.970 0.694 0.970 0.764
model
Our model 0.974 0.917 0.862 0.714

approximate model to forecast indoor temperature and rela-
tive humidity in industrial buildings is M 1. For 24 hours and
72 hours prediction in advance, M3 is the best approximate
model for indoor air temperature. Besides, some other factors,
such as the time efficiency [31], stability [32] and reliability
guarantee [33] of the model, will also affect the choice of the
optimal model.

C. COMPARISON WITH OTHER LITERATURE

In humid areas, the latest study was done by Mba et al. [17].
Authors used artificial neural networks for hourly predic-
tion and forecasted indoor temperature and relative humidity
24 hours and one week ahead in a modern house. For compar-
ison with their models, we also took hourly data form the
cloud as a database and used our model to do the same exper-
iment. The experimental results are shown in Table 5. Results
show that our model is better at predicting temperature, but
the relative humidity is not good.
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FIGURE 11. Regression lines between measured values and values
predicted 6 h, 24 h, and 72 h ahead of M3.

IV. CONCLUSION

This paper proposes an improved model based on BP
neural networks to simultaneously forecast indoor relative
humidity and air temperature every 10 minutes, 6 hours,
24 hours, and 72 hours in advance in a tobacco factory
warehouse in Chongqing. Compared with other studies, our
models enable shorter prediction horizons and better temper-
ature predictions. Compared with traditional temperature
and humidity prediction models, the neural network predic-
tion model based on cloud database does not require data
such as wind speed, solar radiation, thermodynamic prop-
erties of building materials, window-wall ratio, etc. This
greatly reduces the complexity of the model and avoids
many constraints. Another advantage of the model is its fast
calculation speed and continuous learning from actual data.
The experimental results indicate that our model can predict
indoor air temperature and relative humidity 6 hours ahead
at the same time, and can accurately predict temperature
3 days in advance. The presented model was compared with
other similar methods.

Potential future work includes further reducing the forecast
interval and extending the forecast horizon. Also, the accu-
racy for indoor relative humidity predictions should be
improved.
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