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ABSTRACT With larger scale wind farm being connected to the power grid, the high-precision wind power
prediction has become an important means which can ensure the safe operation of power system. The large
fluctuations or abnormal data which exist in the local wind power sequences may lead to the phenomenon
of over-iterative decomposition of the classical empirical mode decomposition (EMD). In response to this
defect, first, the raw wind power sequences are decomposed using improved EMD with introducing the
weight function and modifying the mean judgment condition in the classical EMD. Then, the reconstruction
strategy based on run-test analysis is proposed based on the fluctuation characteristics of the decomposed
components. Finally, the ultra-short-term prediction of the high-frequency item, the middle-frequency item,
the low-frequency item, and the trend item in the reconstruction sequences are performed according to
different prediction methods. The wind power data of three wind farms in northeast China were selected
for forecasting analysis. The analysis shows that compared with other classical prediction methods, this
method can effectively improve the prediction accuracy and verify the effectiveness of the proposed method.

INDEX TERMS Wind power, ultra-short-term multistep prediction, improved EMD, run length analysis.

I. INTRODUCTION
Wind power, as a type of renewable energy with strong eco-
nomic competitiveness, will play a key role in the future to
meet the growing energy needs in the world [1], [2]. In recent
years, with the continuous expansion of the scale of wind
farms and the increase of penetration power and installed
capacity, the impact of wind power on the safe operation
of power grids has become increasingly apparent [3]. Due
to the intermittency and randomness characteristic of wind
power, the large-scale wind power access to the grid which
has caused many problems to the grid dispatching operation
and increased the burden of grid frequency modulation [4].
Accurate and effective wind power prediction is the key to
realizing conventional and large-scale wind power combined
to the grid. It can make the power dispatcher timely adjust the
scheduling plan and the control scheme of the wind turbines
to reduce the reserve capacity and the operating cost of the
power system, and ensure the stable operation of the power
system and the reliability of the power supply [5], [6].

According to the different demand of power system for
wind power combined to the grid, the prediction scale of wind
power can be divided into medium and long-term prediction,
short-term prediction and ultra-short-term prediction [7]–[9].
The forecasting cycle of themedium and long-term prediction
is based on weekly, monthly or yearly. It is mainly used
for regular maintenance and commissioning of wind farms,
as well as the feasibility analysis of wind farm construction.
The short-term prediction is based on a variety of numerical
weather prediction (NWP) information to establish the fore-
casting model of wind power, then forecast tens of hours to
several days of wind power. It is used to satisfy the demand
of wind power price bidding and the reasonable dispatching
of grid. The ultra-short-term prediction mainly utilizes the
measured historical data of wind power and wind speed to
establish the model, then rolling to predict the wind power
at interval of 15 minutes in the next four hours, which is
helpful to control the operating state of wind turbine in
real-time.
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The strong randomness and volatility of wind leads to
large amplitude and frequent fluctuation of wind power,
which makes power prediction difficult [10]. In this paper,
we focus on improving the prediction accuracy of ultra-
short-term wind power. In recent years, many scholars have
put forward many prediction models based on historical
measured data of wind power and wind speed around the
problem of how to improve the ultra-short-term prediction
accuracy of wind power [11]. The ultra-short-term multi-
step wind power prediction is a real-time prediction based
on time sequences. The commonly used methods in terms
of the ultra-short-term multi-step wind power prediction can
be divided into two major categories, one of which is the
use of historical wind power data to build a combined math-
ematical model based on intelligent algorithms to forecast
the target power. However, this kind of forecasting method
does not directly study the structure of the data itself and
simply obtains the predicted result by simulating the iteration
through a large amount of historical data [12]. Commonly
used prediction methods include least square method [13],
autoregressive moving average (ARMA) [14], support vector
machine (SVM) [15], Kalman filtering [16], and artificial
neural network (ANN) [17]. A single prediction model is
unable to satisfy the need of prediction accuracy, so the com-
bined prediction models are the general trend [18]. Another
type of forecasting method, firstly, analyzes and decomposes
the historical wind power data to obtain the sub-sequences
with periodic or strong regularity, and then performs the
forecasting models on each sub-sequence. Finally, the tar-
get wind power is obtained by accumulating each forecast
result. Giorgi et al.[19] introduced a combined forecasting
method based on wavelet decomposition with least-squares
support vector machine and artificial neural network to pre-
dict wind power. Zhang et al. [20] performed short-termwind
power forecasting using a hybrid EMD-SVMmodel. Wu and
Peng [21] proposed a hybrid wind power generation forecast-
ing model which was combined the ensemble empirical mode
decomposition with least squares support vector machine
(LS-SVM). The simulation results revealed, overall, the pro-
posed model outperformed the other single or hybrid models.
Cui et al. [22] put forward a combining method of atomic
sparse decomposition and artificial neural network to forecast
short-term wind power. The atomic sparse decomposition
(ASD), wavelet decomposition (WD) and empirical mode
decomposition (EMD) all decompose the non-stationary the
time series of wind power into multiple stationary compo-
nents, and then the prediction models for each component
are established, respectively. The atomic sparse decomposi-
tion is greatly affected by the choice of atom library. The
wavelet decomposition has the difficulty of choosing wavelet
bases and decomposition scales. However, the empirical
mode decomposition overcomes the shortcomings of both,
which has a maturity self-adaptive decomposition ability and
does not need to preset the prior knowledge of the basis
function for transformation [23]. EMD can theoretically be
applied to any type of time series decomposition and has very

obvious advantages for processing non-stationary and non-
linear data [24]. The above method is to directly predict the
components obtained by empirical mode decomposition, but
the process of adaptively superposing the prediction results
can introduce multiple random errors increase the workload
of the prediction. In addition, when there is a wide range of
fluctuations in the historical wind power or sudden surge in
the value of abnormal data, the classical EMD may have an
over-iteration in the decomposition process of the local data,
which has a negative impact on the prediction result. In [25],
Safari et al. proposed a novel decomposition approach to take
the chaotic nature of wind power time series into account
and to improve the accuracy of wind power prediction. For
the IMF component obtained after Ensemble EMD (EEMD),
there will be abnormal data of extremely rapid changes with
low amplitudes. The chaotic time series analysis is used
to determine which IMF components are chaotic, and then
singular spectrum analysis (SSA) is applied to eliminate
extremely rapid changes with low amplitudes. Thus several
steps ahead wind power prediction with higher accuracy can
be realized.

In view of the shortcomings of the abovemethods, an ultra-
short-termmulti-stepwind power predictionmethod based on
improved EMD and reconstruction method using run-length
analysis is proposed. It is the first time that the historical wind
power sequences are decomposed by the improved EMD
and get a number of intrinsic mode functions (IMFs), then
we use the reconstruction method using run-length analysis
to analyze the fluctuation features of IMFs and reconstruct
the components with similar fluctuation. Finally, the ultra-
short-term multi-step prediction of the high-frequency item,
the middle-frequency item, the low-frequency item and the
trend item in the reconstruction sequences are performed by
different prediction methods. In this paper, the measured his-
torical data of three wind farms are used to test the proposed
method and multi-day prediction are carried out for a certain
wind farm. The results of the experimental show that the
proposed method in this paper has higher prediction accuracy
than the general method in the ultra-short-term multi-step
prediction and shows good prediction performance.

The remainder of this paper is organized as follows.
Section II describes introduces the implementation process
of improved EMD and the reconstruction method using
the run-length analysis. Section III establish the proposed
model for ultra-short-term multi-step wind power prediction.
Section IV presents the evaluation criteria of the results.
Experiments are undertaken to evaluate the performance of
the proposed model in Section V. Finally, the conclusions are
drawn in Section VI.

II. METHODOLOGY
A. EMD
EMD is an adaptive time series decomposition technique
proposed by Huang et al. [26]. After a complex time-series
is decomposed by EMD, a finite series of intrinsic mode
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functions (IMFs) and one trend component (denoted as Res.)
can be obtained [27]. Each IMF is independent of each other
and contains an oscillation mode. The basic principle of the
EMD is to use the sifting process (SP) to adaptively select the
oscillation mode of the time series. The IMFs must satisfy the
following two conditions: (1) in the whole time range of the
function, the number of local extreme points and over zero
must be equal, or the maximum difference is one; and (2) the
mean value of the two envelopes formed by the local maxima
and local minima, respectively, is zero at any points.

Given the original time series x(t), the procedures of EMD
are show as follows:

1) After all the local maximum and minimum points are
determined, apply cubic spline interpolation to obtain the
upper envelope xH (t) and lower envelope xL(t). The mean
value m(t) of two envelopes is calculated:

m(t) =
xH (t)+ xL(t)

2
(1)

2) Suppose x1(t) is the difference between m(t) and the
original x(t). Identify whether x1(t) satisfies the two con-
ditions of IMF. If it conforms, it can be considered as the
first IMF and expressed in c1(t). Otherwise, repeat the above
procedure until it meets the two conditions. Calculate the dif-
ference r1(t) between the original time series x(t) and c1(t):

x1(t) = x(t)− m(t) (2)

r1(t) = x(t)− c1(t) (3)

3) Let r1(t) be the new time series and continue with steps
(1)–(2). The termination condition of the sifting process is
that the standard deviation (SD) is less than the limit value:

SD =
τ∑
t=0

[∣∣c1(i−1)(t)− c1i(t)∣∣2
c21(i−1)(t)

]
, i = 1, 2, · · · (4)

where the reference value of SD is generally set between
0.2–0.3. In addition, if rn(t) is a non-oscillatory monotonic
function or less than the predetermined value.

4) Stated thus, the sifting process above will be repeated n
times and the original time series x(t) can be reconstructed as
follows:

x(t) =
n∑
i=1

ci(t)+ rn(t) (5)

where ci(t) represents the IMFs, and rn(t) is the trend com-
ponent.

B. IMPROVED EMD
Since the termination threshold of the sifting process is too
low, as long as the mean of two envelopes in the local area
is not small enough the entire signal will be over-iterated
when the local signal is better approximated in the classical
EMD [28]. Therefore, it has the drawback of contaminating
other parts of the signal. In practice, the sifting process of
the classical EMD is aimed at the entire data sequences, but
it is impractical to decompose all the data in wind power

prediction because there is a wide range of fluctuations in the
historical wind power or sudden surge in the value of abnor-
mal data. As it has been already mentioned, the phenomenon
of over-iteration will occur in the decomposition process.

Here, based on above two shortcomings, the classical EMD
is improved in two aspects using the improved strategy pro-
posed byG. Rilling and Flandrin [29], and the improved EMD
(IEMD) was obtained. In the first aspect, the termination
criteria (standard deviation criteria, SD) for the sifting process
of the classical EMD is improved. Propose a mode amplitude
a(t) and the evaluation function σ (t):

a(t) =
xH (t)− xL(t)

2
(6)

σ (t) =

∣∣∣∣m(t)a(t)

∣∣∣∣ (7)

where the evaluation of how small is the amplitude of the
mean value m(t) has to be done in comparison with the mode
amplitude a(t).
Introduce a new criterion based on two thresholds θ1 and

θ2, aimed at guaranteeing globally small fluctuations in the
mean while taking into account locally large excursions. The
termination criteria of the sifting process satisfy the following
conditions: the sifting is iterated until σ (t) < θ1 for some
prescribed fraction (1−α) of the total duration, while σ (t) <
θ2 for the remaining fraction. One can typically set α ≈ 0.05,
θ1 ≈ 0.05 and θ2 ≈ 0.05. This improvement appropriately
relaxes the threshold of the termination criterion, which not
only reflected the partial deviation, but also reduced the risk
of excessive decomposition caused by over-iteration.

In the second aspect, the sifting process has been improved
for the areas of the data where large fluctuations or abnormal
data appear. These local areas in the raw data are individually
identified and segregated and are additionally iterated. Here,
to avoid excessive decompositionwe introduce aweight func-
tion ω(t):

ω(t) =

{
1, σ (t) > θ1

0, σ (t) ≤ θ1
(8)

For the time points where σ (t) > θ1, let (2) be x1(t) =
x(t)− ω(t)m(t); it softly decay to 0 outside those points.

C. RECONSTRUCTION METHOD USING
RUN-LENGTH ANALYSIS
The principle of run-length analysis is defined as: the intrin-
sic mode function (IMF) corresponds to the time series
{X (t), t = 1, 2, · · · ,N }, N is the number of sample time

series, and the mean of the sample is X̄ = 1
N

N∑
t=1

X (t). Each

value in the time series is tagged using the mean value X̄ as a
standard, the timing symbol St is defined as:

St =

{
1, X (t) > X̄
0, X (t) ≤ X̄

(9)
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where St consists of a series of randomly arranged 0 or
1 sequences that are independent of each other. Each succes-
sive piece of the same sign (0 or 1) is defined as a run-length
and finally the number of runs included in each IMF can be
calculated. The size of the number of run-length for each
IMF can reflect the degree of fluctuation of the component
sequences. The more runs, the more violent fluctuations;
conversely, the more stable fluctuations [30], [31].

According to this characteristics of run-length, the run-
length analysis and IEMD are combined to propose the recon-
struction idea of wind power sequences which is shown as
follows:

1) The raw wind power sequences are decomposed by
IEMD to obtain n IMF and one trend component.

2) The number of run-length for each component sample
is calculated as {Mi, i = 1, 2, · · · , n}, which is theoretically
equal to the maximum number of samples of the wind power
sequences. Then calculate the mean of the total number of

run-length as M̄ = 1
n

n∑
i=1

Mi.

3) The IMFs and one trend component are reconstructed
according to the number of run-length for each component
sample and M̄ . The component is reconstructed by comparing
the size of M̄ and the number of run-length for the IMF
and the trend component. In this paper, the trend component
obtained by IEMD is directly classified as the trend item and
the first IMF is considered as the high frequency term; IMFs
which lower than M̄ are considered as low-frequency terms,
and the rest are divided into middle-frequency terms.

It can be seen from the above that the sample size of
wind power and the number of IMFs determine the result of
reconstruction. Therefore, this method has certain objectivity.

III. PREDICTION MODEL BASED ON IEMD AND
RUN-LENGTH ANALYSIS
In view of the fact that the existing single prediction method
has already reached the bottleneck to the improvement of the
prediction accuracy and the utility of the single prediction
model is more insufficient for such a fluctuating and inter-
mittent strong sequence of wind power. Based on the above
analysis, IEMD can extract sub-sequences with different fre-
quencies from a set of sequences, while the sub-sequences
show the characteristics of volatility tend to be more regular.
Therefore, we propose an ultra-short-term multi-step wind
power prediction model based on IEMD and reconstruction
method using run-length analysis which will be abbreviated
as IEMD-R (IEMD-Run-length) model.

The number of IMFs varies depending on the fluctuations
in the data. IEMD can adaptively decompose the non-linear
and non-stationary raw wind power into stationary compo-
nents with different time scales. It reduces the mutual influ-
ence and interference between different feature information
and makes the prediction of stationary components more
accurate. Predicting each IMF individually will increase the
workload of the forecasting. At the same time, because all
prediction methods have some errors, it will inevitably lead

to the superposition of forecasting errors. According to the
above analysis, forecasting the reconstructed IMF can not
only reduce the prediction time, but also reduce the prediction
error and meet the engineering requirements to the greatest
extent.

The magnitude of the prediction error has a strong correla-
tion with the fluctuation of wind power [32], [33]. The sim-
plest linear prediction model can get a good prediction result
when the wind power fluctuates more moderately, while
which shows a big shortage for thewind powerwithmore vio-
lent fluctuation. This shows that different forecasting models
have different data types. Therefore, in the IEMD-R model,
different prediction methods are used to predict the high-
frequency item, middle-frequency item, low-frequency item
and trend item after reconstruction. At present, the model of
the ultra-short-term multi-step wind power prediction can be
divided into one multi-step prediction and rolling multi-step
prediction. One multi-step prediction refers to the one-time
backward prediction of multiple time points starting from
the prediction start moment. The rolling multi-step prediction
is essentially the multiple single-step prediction [34]. If the
higher accurate prediction is obtained at each step, the degree
to which the backward prediction deviates from the true
wind power is expected to decrease. In the process of rolling
multistep wind power prediction, the prediction value at time
t is introduced into the input data of the prediction model,
and the first data of the input data is discarded and then the
prediction of time t+1 is performed. And so on, when all the
steps of the multistep prediction are completed, the measured
wind power are reintroduced into the next cycle. In this
paper, according to the relevant provisions of National Energy
Board of China on wind power prediction [35], we conducted
the rolling multi-step wind power prediction of four hours
ahead of schedule, the specific prediction process is shown
in Fig.1.

If the accuracy of the prediction results of each step is
high, the accuracy of the final prediction result will be higher.
Therefore, the IEMD-R model in this paper adopts the idea
of the rolling multi-step prediction, which is constructed as
illustrated in Fig. 2. The prediction process of the single-day
is as follows:
Step 1:Thewind power series of length is decomposed into

IMFs and one trend component. Calculate the run-length of
each IMF and themean run-length for all IMFs. The IMFs and
Res. are reconstructed by the reconstruction method using
run-length analysis.
Step 2: The reconstructed high-frequency item, middle-

frequency item, low-frequency item and trend item are nor-
malized and then predicted according to different forecasting
methods. Artificial neural network (ANN) has good self-
learning and self-adaptive ability, which can still give more
accurate prediction results for the more volatile data types
and has good fault tolerance. Therefore, it is suitable for the
prediction of high-frequency item. Support vector machine
(SVM) is fast in learning and good in generalization per-
formance. Different kernel functions can be set for different
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FIGURE 1. Illustration of the process of one time rolling multi-step wind power prediction.

FIGURE 2. The model structure of ultra-short-term multi-step prediction
in the single-day.

prediction data, which is very suitable for the prediction of
middle-frequency item, low-frequency item and trend item.
Step 3: The prediction results of each prediction model are

adaptively superposed to obtain the final single-step predic-
tion result x as follows:

x =
4∑
i=1

xi (10)

where {x1, x2, x3, x4} are the single-step prediction results
of the high-frequency item, middle-frequency item, low-
frequency item and trend item.
Step 4: Add the final single-step prediction result t to the

input data of the prediction model to form a new sequence
X (t + 1). Take X (2) ∼ X (t + 1) as the new input data and
the steps (1)–(4) are repeated until all the steps of one time
rolling multi-step prediction is completed.
Step 5: After completing the first five steps, the measured

power data until the prediction point t + 1 is introduced
and a new input data is established, and the steps (1)–(5)
are repeated until the rolling completion of the 96 multi-step
prediction to stop.

IV. EVALUATION CRITERIA OF PREDICTION
PERFORMANCE
It is the primary issue to determine which prediction model
outperforms the other models, and the accuracy of the pro-
posed approach is evaluated according to the standard of error
analysis of wind power forecasting which is set by Chinese
government. Three criteria were employed for model evalua-
tion and model comparison: the normalized root mean square
error (NRMSE), the daily mean accuracy percent (DMAP),
and the dailymean qualified percent (DMQP). The evaluation
standard of error requires that the ultra-short-term multi-step
prediction error of wind farm power should not exceed 15%,
that is, the accuracy of DMAP should be greater than 85%
and the NRMSE of all-day forecasting result should be less
than 20%. These three error indexes are defined as follows:

NRMSE =

√√√√ 1
96×16

96∑
i=1

16∑
k=1

(
PkMi − P

k
Pi

C

)2

×100% (11)

R1i =

1−
√√√√ 1

16

16∑
k=1

(
PkMi − P

k
Pi

C
)2

× 100% (12)

RC =
1
96

96∑
i=1

R1i (13)
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Bki =


1,

∣∣PkMi − PkPi∣∣
C

< 0.15

0,

∣∣PkMi − PkPi∣∣
C

≥ 0.15
(14)

where k is the number of forecasts each time, i is the number
of forecasts in a day, and respectively, PkMi and P

k
Pi repre-

sent the measured and prediction value at the k moment of
the i prediction process. The accuracy percent of multi-step
prediction at the i prediction process is represented as R1i,
RC represents the mean daily accuracy percent. And Bki is a
measure of whether each wind power forecasting meets the
standard, the qualified percent of multi-step prediction at the
i prediction process is denoted by R2i, RQ represents the mean
daily qualified percent, and the installed capacity of wind
farm is denoted by C .

V. CASE STUDY
A. DATA SETS
This paper collects the historical wind power data of three
wind farms located inNortheast China in fromAugust 1 to 30,
2012 as the experimental data samples. The sampling interval
of the data samples is 15 minutes. The installed capacity of
the three wind farms is shown in Table 1:

TABLE 1. Installed capacity of wind farms.

B. EXAMPLE ANALYSIS
The model of this paper is tested with an example of the wind
farm A with installed capacity of 265.5MW. The historical
wind power sequences from August 1 to 30, 2012 (2880 sam-
pling points) is shown in Fig. 3.

The sample points (1632) of the first 17 days are taken
as the training samples, and the remaining sampling points
(1248) are used as the test samples as the test samples. In this
paper, the input of the wind power prediction model is set
to 960, and the output is one data. After 16 steps of rolling
prediction, we get the 4h prediction results, and update the
real data in real time, so the matrix in 96 rows and 16 columns
of prediction results is obtained in all day. With the pre-
diction starting point 1460 as an example, the wind power
of 1461–1476 points is predicted. Fig. 4 shows the historical
wind power sequences of a set of 960 points (501–1460) in
the input data.

IEMD is applied to decompose the training sample into
seven independent IMFs and one trend component Res. and
the results are shown in Fig. 5. As can be seen from the
decomposition diagram, for wind power such a highly ran-
dom and fluctuating time sequence, its waveform still shows
the characteristics of strong volatility after the process of
IEMD. However, the IMFs are no longer irregular fluctua-
tions. The fluctuations of IMFs are gradually reflected in a

FIGURE 3. Historical wind power sequences of wind farm A.

FIGURE 4. A set of input samples of wind farm A.

FIGURE 5. The IEMD results of a set of input samples of wind farm A.

periodic pattern, which is more stable than the raw sequences
and the low-frequency sequences also shows a stable feature.

The run-length of each IMF is calculated respectively.
The results are shown in Table 2. The total number of
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TABLE 2. The Run-length of Each IMF.

TABLE 3. The prediction results of different models (a).

TABLE 4. The prediction results of different models (b).

FIGURE 6. The rolling prediction results of five models at a certain point.

run-length for IMFs is 557, and themean value is about 79.57.
After normalizing each component, IMF1 is used as a high-
frequency item according to the reconstruction method using
run-length analysis that is proposed in this paper and ANN is
used to predict it; IMF2 is used as an middle-frequency item
and SVM1 is used to predict it; IMF3- IMF7 are used as a
low-frequency item, and using SVM2 to predict it; the Res.
as the trend item and using SVM3 for prediction. Here, The
ANN prediction model is tested by a large number of data,

and one hidden layers are selected. The number of neurons
is set to 300. The transfer function of the hidden layer is the
Sigmoid function. In view of the different characteristics of
the middle-frequency item and low frequency item, the opti-
mal parameters and kernel functions are selected, and SVM
suitable for itself is established respectively. Aiming at the
middle-frequency item with larger frequency and complex-
ity, this paper uses radial basis kernel function (RBF) with
strong generalization ability and good nonlinear sequences
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TABLE 5. The prediction results of different wind farms.

effect to predict. The polynomial kernel function is used to
predict the low-frequent item that changes steadily. The trend
item is predicted using the linear kernel function, and other
parameters can be determined by cross-validation. Finally,
the forecasting results of each item are superimposed as a
prediction result of the raw wind power.

In order to validate the effectiveness of the proposed
method, the IEMD-R model (denoted as M1) and three
classical prediction models are used to predict the same
wind power. The forecasting results of three days are shown
in Tables 3–4. In the tables, the EMD-R model (M2) indi-
cates that the wind power sequences are directly decomposed
by EMD and restructured using run-length analysis. The
EMD model (M3) indicates that the wind power sequences
are decomposed by EMD, and the artificial neural net-
work (ANN) is used to predict each component sequences.
TheANNmodel (M4) is a traditional artificial neural network
method which predict the wind power directly without the
process of empirical mode decomposition. The persistence
model (M5) is a benchmark model for ultra-short-term wind
power prediction, which is expressed as PM.

From the results in Tables 3–4, we can see that the three
evaluation indexes of M1 are superior to other methods and
the prediction results of three prediction days of M1 and
M2 all satisfy the evaluation index. However, the prediction
results of the second prediction days of M3-5 did not satisfy
the demand of the evaluation index. Here, the second day of
the five prediction models has the highest error and the worst
effect due to the large drop in the forecasting accuracy of wind
power on that day, but the DMAP of M1 increased by 0.41%,
3.2%, 10.26% and 7.29%, respectively, compared with the
other four models.

The prediction result of M5 is better than that of M4,
which shows that the persistence model has better predic-
tion accuracy than the single ANN prediction model. It is
worth stressing the fact that the accuracy of hybrid forecast-
ing model outperformed the single prediction method. The
DMAP and DMQP of M3 are all higher than M4 and the
NRMSE of M3 is also small, which shows that the decom-
position can effectively reduce the impact of volatility on the
prediction results and improve the prediction accuracy. The
DMAP of M2 is over 2% higher than M3, which indicates
that the reconstruction strategy has a certain improvement
in the DMAP of the prediction results. Compared with the
M2, the DMAP of M1 is improved by 1%, which shows that

TABLE 6. The prediction results of different wind power output.

the IEMD model can improve the large-scale fluctuation of
local signals or the abnormal data with sudden increase of
numerical value. Fig. 6 shows the rolling prediction results
of five methods at a certain point. It can also be seen from the
Fig. 6 that the proposed model in this paper is superior to the
other four models.

In order to further verify the adaptability of the proposed
method, other two wind farms with different installed capac-
ity are selected to predict the wind power. The prediction
results are shown in Table 5. It should be emphasized that
the prediction date here is for the whole data set instead of
the test set. As can be seen from Table 5, three wind farms
with different installed capacity simultaneously are used the
IEMD-R, EMD-R, EMD,ANN and PMmodels to prediction.
The proposed method is superior to the other models in the
DMAP, the DMQP and NRMSE, which shows that the recon-
struction strategy using run-length analysis can improve the
accuracy of wind power prediction. In summary, the proposed
method in this paper has some practical value.

Under the condition of low wind power output, the same
model will achieve good prediction effect. However, in the
case of high wind power output, the prediction accuracy may
be reduced and cannot satisfy the stipulated requirements.
In this paper, wind farm A is selected as the research object
and the ultra-short-term multi-step wind power prediction is
carried out in wind power with high output, middle output
and low output, respectively. The prediction results are shown
in Table 6. As demonstrated in Table 6, as the output of
wind power increases, the two indicators of the DMAP and
DMQP gradually deteriorate, which shows that the output of
wind turbine affects the prediction accuracy of wind power.
However, the DMAP of the proposed method can reach more
than 87% even under the condition of high wind power
output, which shows that the proposed method has strong
generalization ability and can content the power prediction
under various conditions.
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FIGURE 7. The rolling prediction results of different wind power output at
a certain point.

One prediction result is selected randomly, as shown
in Fig. 7. It is obvious from the figure that in the case of high
wind power output, the forecasting results of the proposed
method is not good at low and middle wind power output.
This is a common phenomenon that the prediction accuracy
is decreased due to the obvious fluctuation of wind power.
How to improve the accuracy of the time-series prediction
with obvious volatility is still a difficult problem and needs
further study.

VI. CONCLUSION
A conclusion section is not required. Although a conclusion
may review the main points of the paper, do not replicate
the abstract as the conclusion. A conclusion might elabo-
rate on the importance of the work or suggest applications
and extensions. Considering the randomness, volatility and
intermittency of wind power sequences, this paper proposes
ultra-short-term multi-step wind power prediction based on
improved EMD and reconstruction method using run-length
analysis. Different prediction methods are used to predict
the reconstructed sequences of IMFs. In this paper, we com-
pared the prediction results of three wind farms with different
installed capacities and studied the prediction effect of wind
turbines under different output conditions. Major conclusions
are summarized as follows: (a) compared with the EMD-R,
EMD, ANN and PM models, the IMED-R model proposed
in this paper has greatly improved the daily mean accuracy
percent. In the case of high wind power output, the proposed
model can still have a higher accuracy, reflecting the superi-
ority of the IEMD-Rmodel; (b) the DMAP of IEMD-Rmodel
is 1% higher than that of the EMD-Rmodel, which shows that
the improvement of EMD has a certain effect; (c) the DMAP
of the EMD-Rmodel than the EMDmodel increased by more
than 2%, reflecting the need for reconstruction method using
run-length analysis; (d) the DMAP of the EMD model to the
ANN model is improved by 1% ∼ 5% according to the dif-
ferent forecasting days, which indicates that the forecasting

strategy of wind power decomposition before the prediction is
helpful to improve the prediction accuracy. In addition, with
the development of the intelligent algorithms, there will be
more advanced models applied to predict the low accuracy
of high wind power output prediction, which is our study
direction in the future.
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