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ABSTRACT For the converged use of LTE, WLAN, and visible light communication in indoor scenarios,
fine-grained and intelligent network selection is essential for ensuring high user quality of experience.
To tackle the challenges associated with dynamic environments and complicated service requirements,
we propose a context-aware solution for indoor network selection. Specifically, three-level contextual
information is revealed and exploited in both the utility and algorithm designs. In particular, the contextual
information about the asymmetric downlink-uplink features of network performance is used to design a fine-
grained utility model. A context-aware learning algorithm sensitive to traffic type-location-time information
is proposed. The time-location dependent periodic changing rule of load statistical distributions is further
used to realize efficient online network selection via knowledge transfer. The simulation results show that
the proposed algorithm can achieve much better performance with faster convergence speed than traditional
reinforcement learning.

INDEX TERMS Indoor network selection, visible light communication, context-awareness, reinforcement
learning, transfer learning.

I. INTRODUCTION
Currently, the proliferation of multimedia applications is
increasing the demand for high data rate wireless services,
which poses a great challenge for the emerging fifth genera-
tion (5G) mobile networks. Meanwhile, a general observation
in [1] has shown that approximately 80 percent of data com-
munication occurs indoors. Thus, improving wireless service
quality for indoor users is an important issue. The converged
use of different wireless networks by dynamically access-
ing LTE, WLAN and Visible Light Communications (VLC)
[2], [3] could be an effective solution for improving indoor
wireless communication quality. LTE is an evolving com-
mercial mobile communication network that provides basic
wireless access. WLAN is today’s most widely used indoor
wireless network. VLC is a newly emerging indoor wireless
access solution. Many researchers agree that the emerging
VLC is a promising solution in the 5G era for its tremendous
value and potential. VLC possessesmultiple advantages, such
as high data rates, huge bandwidth, no electromagnetic inter-
ference and high security [4].

However, the complexity of the involved factors makes
the access network selection challenging. First, as many new
traffic types, such as virtual reality and online ultra-high def-
inition video, emerge, characterizing the network selection
utility becomes more complex. Second, the available wireless
networks with different access technologies and owners show
diversity and uncertainty in their performances due to channel
conditions and user arrival and departure dynamics. Third,
the traffic type is time-varying since user application changes
and network performances may vary across time and loca-
tions. In other words, the optimal network selection choice
varies with the environment and ensuring high user Quality of
Experience (QoE) requires fine-grained, intelligent network
selection methods.

In this paper, a context-aware solution is proposed for
indoor network selection. Specifically, three-level contextual
information is explored to understand the task. On the first
level, the information about the asymmetric downlink-uplink
features of network performance and traffic requirements
is modeled in the utility. On the second level, the traffic
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type-location-time information is used to design a learning
algorithm. Finally, the periodic changing rule of load statis-
tical distributions is used to further assist the learning algo-
rithm. In particular, such information enables us to present
knowledge transfer for reusing learning experiences, provid-
ing an effective and fast algorithm for network selection with
contextual evolution.

Our main contributions are two-fold. First, we propose a
fine-grained network selection model that takes the diverse
and asymmetric downlink-uplink features of network perfor-
mance and traffic requirements into account. Although many
works on network selection, e.g., [5], have considered service
requirements, the utility designs that differentiate uplink and
downlink requirements of different traffic types as proposed
in this paper are rare. Second, we propose a context-aware
learning algorithm. The algorithm is sensitive to traffic type-
location-time information, and thus is able to actively adapt
the contextual evolution. In addition, the idea of transfer
learning [6] is used in network selection. Even though some
works such as [7] have studied the context-aware network
selection, they worked in different ways and did not employ
learning algorithm or knowledge transfer. Compared with
some existing works that use reinforcement learning [9], [10],
the introduction of transfer learning could significantly
enhance the algorithmic performance, which can be found
from the simulation results in Section VI. This method may
provide a new perspective on endowing contextual awareness
in solutions for self-organization and online optimization
related problems [12].

The rest of this paper is organized as follows. We briefly
review some related works in Section II. Then, the system
model and designed traffic utility models will be introduced
in Section III and Section IV, respectively. Next, we detail
the proposed reinforcement learning with knowledge transfer
in V and give related simulation results in Section VI. The
final conclusions are drawn in Section VII.

II. RELATED WORK
The study of network selection in VLC heterogeneous net-
works is still in the infancy but has attracted much attention.
In [13], Bao et al. analyzed the hybrid VLC and femtocell
network and designed a protocol for access and handover con-
trol. In the proposed simple mechanism, the user switches to
a VLC network as long as the user is in the VLC coverage and
the channel gain is larger than a predefined threshold value,
which does not fully consider the users’ real achievable rates.
Rahaim et al. [14] also presented a network handover scheme
that improves the total throughput of a WiFi/VLC hybrid
network, where the VLC is regarded as a compensatory
access and the user will be allocated to the VLC network only
when the WiFi is overloaded. In [15], Wu et al. proposed a
fuzzy-logic based selection algorithm. However, it depends
on preliminary training work. In [16], Wang et al. formu-
lated the problem as a Markov decision process, but their
work mainly focused on how to achieve the optimal trade-
off between energy consumption and delay requirements.

In [17], Liang et al. utilized both analytic hierarchy process
(AHP) and cooperative games (CGs) to propose a AHP-CG
algorithm for VLC heterogeneous networks.

Contextual information has been taken into account in
some network selection methods. Generally, the contextual
information mainly includes the traffic types, user demands,
hardware conditions and so on. In [7], the application types
and hardware conditions are considered in small cell asso-
ciation and the problem is formulated as a matching game
between small cell base stations and users. The exploration
of additional contextual information extracted from users’
devices, such as the typical set of active applications, is pro-
posed in [8]. We consider finer-grained contextual informa-
tion, which is a vector consisting of the user’s traffic type,
location, time and available network set. This could guide
network selection. Specifically, the uplink and downlink
requirements of different traffic types and the diverse uplink
and downlink performances of networks are modeled. The
contextual information about the time-location dependent
network load distribution inspired us to introduce transfer
learning, which enables the reuse of learning experience and
is able to significantly accelerate the learning convergence.
Although reinforcement learning has been used in some
recent works [9]–[11], the idea of reusing learning experience
was not found. Therefore, to the best of our knowledge, this
work is the first to introduce reinforcement learning with
knowledge transfer into network selection.

III. SYSTEM MODEL
We consider an indoor heterogeneous wireless access envi-
ronment that consists of N networks N = {1, 2, . . . ,N }
of LTE, WLAN and VLC. Fig. 1 shows an example of
the considered network. For simplicity, we use the term
‘‘network’’ to represent a base station (BS) in the LTE or an
access point (AP) in the WLAN and VLC. We assume that a
user is located in the overlapping area ofN wireless networks.
In a slotted system with the epoch duration of l seconds,
the user can dynamically change its access network, but

FIGURE 1. The system model of an indoor VLC/RF heterogeneous wireless
network.
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only one access network can be accessed at any given time
slot.

We use throughput as the main performance metric of
the networks. Many other performance metrics could be
involved, which is beyond the focus of this paper. The max-
imal instantaneous rate of a user that is determined by the
SNR (signal to noise ratio) according to the Shannon formula
constitutes the upper bound of its throughput. Meanwhile,
the multi-user access behavior determines the real-time net-
work load distribution and thus affects the achieved through-
put of each user in the network. Therefore, the achieved
throughput 2(i, n) of user i in network n is a function of
the instantaneous rate R and the network load Kn (the total
number of users in network n)2(i, n) = f (R,Kn) for a given
slot. The function f (·) could be modeled depending on the
specific network. In the following, the uplink and downlink
throughput models of LTE, WLAN, and VLC are given.

A. LTE
The OFDMA is the downlink multiple access technology
of LTE. According to the model in [5], the throughput under
weighted-proportional fairness can be expressed as

2DL (i, n) =
ωiRn→i

Wk
(1)

where ωi is user i’s weight, Wk =
∑
i∈Kn

ωi is the sum of

weights of users, Kn is the set of users in network n and
Kn = |Kn|, Rn→i is the instantaneous downlink rate of user i.

In the uplink, LTE uses the SC-FDMA based MAC pro-
tocol with fair subcarrier sharing. Hence, the throughput of
user i is roughly dependent on the total number of users
sharing the same network,

2UL (i, n) =
Rn←i

Kn
(2)

where Rn←i is the instantaneous uplink rate of user i

B. WLAN
In 802.11 WLAN MAC protocols, the distributed coordi-
nation function (DCF) leads to a fair access opportunity to
uplink users. Hence, the low rate user capturing the channel
will use it for a long time, thus penalizing high rate users. The
uplink throughput of a WiFi user can be expressed as

2UL (i, n) =
L∑

j∈Kn

L
Rn←i

(3)

Here, L is the packet size. The throughput that a user can
obtain on the downlink is related to the scheduling mecha-
nism of the access point. According to [19], when a round-
robin(RR) scheme is used, then the downlink throughput can
also be derived by replacing Rn←i with Rn→i in formula (3).

C. VLC
We consider an all-optical VLC network. Downstream data
transmission and illumination are combined. Currently, there

is no common view on the MAC protocol specified for VLC.
In most existing works, it is assumed that the system uses
TDMA with RR scheduling. Thus, if user i is assigned to the
n-th VLC AP, the achieved throughput becomes [20]

2DL (i, n) =
Rn→i

2 · Kn
(4)

Note that the intensity modulation with direct detection
(IM/DD) is used in VLC and only real-valued signals can
be transmitted to receivers. Thus, at least half of the sub-
carriers must be used to realize the Hermitian conjugate of
the complex-valued symbol after modulation. Consequently,
the formula is divided by 2.

Using visible light in uplink may not be practical, since it
would constrain equipment power and users’ psychological
feelings. Referring to [21], we use infrared in the uplink.
The main limitation of the infrared link is its low power
transmission, which often leads to a low data transmission
rate (up to 4 Mbps or 1.152 Mbps in [18]). Since visible light
and infrared light exhibit very similar qualitative behavior,
the uplink throughput model could also be derived by replac-
ing Rn→i with Rn←i in formula (4).

IV. UTILITY FRAMEWORK DESIGN
Considering the diverse features of various traffic types,
we propose a general utility model with differentiatec
uplink and downlink performance requirements. Note that we
mainly focus on the throughput, but this model can be easily
extended to incorporate many other performance metrics.
The achieved utility u (2UL,2DL) is designed from a novel
perspective.

A. UPLINK-DOMINATED TRAFFIC
For traffic such as sending files or backing up files on the
cloud, the uplink throughput is the main factor affecting the
performance. The downlink throughput is negligible since it
is just for transmitting some control and feedback messages
(no less than a small threshold, e.g., 20). As an example,
it can be defined using a similar utility representing file
transfer.

u (2UL,2DL) = I {2DL ≥ 20} λlog (β ·2UL) (5)

where I {x} = 1 when x = 1, and otherwise I {x} = 0.
I {2DL ≥ 20} is the minimal downlink throughput require-
ment and λlog (β ·2UL) models the utility-throughput
function [5].

B. DOWNLINK-DOMINATED TRAFFIC
On the contrary, downloading files and watching online
videos mainly utilize the downlink throughput and can be
classified as downlink dominant traffic. Since most existing
works focus on this traffic type, the utility u(2DL) can be eas-
ily derived by explicitly indicating the downlink throughput
2DL in existing utilitymodels. For instance, the file download
utility can use the above model by replacing 2UL with 2DL.
Video traffic shows a threshold effect on throughput. Then,
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a piecewise function of the downlink throughput plus the
basic uplink throughput requirement is

u (2UL,2DL)

=


0 2DL ≤ 21
c (2DL −21)

22 −21
I {2UL ≥ 20} 21 < 2DL < 22

cI {2UL ≥ 20} 2DL ≥ 22

(6)

where c is a constant, and 21 and 22 are two throughput
thresholds determined by the traffic requirements.

C. UPLINK-DOWNLINK SYMMETRIC TRAFFIC
Video calls and video conference traffic have high require-
ments on both the downlink and uplink throughput. Either
uplink or downlink throughput can be the bottleneck. We can
replace 2DL with 2min = min (2UL,2DL) in formula (6) to
get a utility function.

V. PROPOSED SOLUTION
A. LEARNING PROBLEM FORMULATION
Due to channel fading and the shadowing effect, the instan-
taneous rates Rn←i(t) and Rn→i(t) are time-varying. More-
over, the network load Kn is a random variable since
the active user number in a network is dynamic. Conse-
quently, the achieved throughput 2(i, n) and the resulting
u (2UL,2DL) are dynamic and random variables. Hence, it is
reasonable to select the network that provides the best average
performance. However, since the user has no prior knowledge
of the average performance of the available networks, he has
to learn the optimal selection from the interaction with the
environment. Mathematically, this learning problem can be
formed to select a network selection policyπ∗ that maximizes
the long term average reward. In other words, it selects a
series of actions {a (1), a (2), · · ·} that can maximize the total
expected return as

V ∗ = maxE

{
∞∑
t=0

γ tu [2UL (a (t)) ,2DL (a (t))]

}
(7)

where γ ∈ (0, 1) represents the discount factor that
reflects future returns relative to their current importance.
u [2UL (a (t)) ,2DL (a (t))] is the instant reward received at
time t , and 2UL (a (t)) and 2UL (a (t)) are the instant uplink
and downlink throughput, respectively.

B. REINFORCEMENT LEARNING BASICS
The problem mentioned above can be regarded as a large-
scale constrained dynamic optimization problem embedded
in a stochastic environment. Thus, reinforcement learning is
one of the effective ways to find a solution. Among many
learning algorithms, Jiang et al. [23] pointed out that Q learn-
ing is the most suitable for the small cell learning problem.
In Q learning algorithm, the controller (learner) has to learn
how to optimize its decision through historical experience
by repeatedly interacting with the controlled environment in
a manner of sensing, selecting an action, and obtaining a

reward. Finally, the agent learns an optimal policy to maxi-
mize the total expected return as (7) over a time period.
Equation (7) can be rewritten in the form of Bellman

equation [22]. Obtaining the optimal policy π∗ requires solv-
ing Bellman’s optimality criterion:

V ∗ = V π
∗

= max
a∈Ns

[u(t)+ γV ∗] (8)

For a policy π , define the Q-value corresponding to an
action as:

Qπ [a(t)] = u(t)+ γV π [a(t + 1)] (9)

where a(t+1) is the action at time t+1. The optimal Q-value
Q∗(a(t)) is defined as

Q∗[a(t)] = Qπ
∗

[a(t)] = u(t)+ γV ∗[a(t)] (10)

Then, (8) can be rewritten as

V ∗[a(t)] = max
a∈N

[Qπ
∗

[a(t)]] (11)

Thus, Q∗(a(t)) can be expressed as

Q∗(a(t)) = u(t)+ γ [maxQ∗(m)
m∈N

] (12)

where m is the optional action in the action set N . The
Q learning algorithm finds the value ofQ∗(a(t)) in an iterative
manner at each t by updating the Q-value as follows

Q [a (t)] = (1− α)Q [a (t)]+ α
[
u (t)+ γ max

m∈N
Q (m)

]
(13)

where, α is the learning parameter. A Q learning agent tries
an action, and then evaluates the consequences of the action
through the sum of the immediate reward and the future
reward. By trying one action at a time and decreasing the
learning rate to zero in a suitable way, then as t →∞,Q(a(t))
converges toQ∗(a(t)) with a probability of 1. It learns the best
action that maximizes the long-term discounted rewards.

C. REINFORCEMENT LEARNING WITH KNOWLEDGE
TRANSFER
However, the standard Q learning algorithm may show slow
convergence speed and poor performance due to the explo-
ration.When the available strategy set is relatively large, there
will be significant random exploration costs on bad strategies.
Nevertheless, the idea of transfer learning [6] provides a fea-
sible way to enhance the Q learning algorithm. The transfer
learning transfers knowledge learned in certain source-tasks
and uses it to improve the efficiency of machine learning
in a related target-task apart from existing data/samples,
as illustrated in Fig. 2. For reinforcement learning, the trans-
fer learning enables us to accelerate the algorithm’s conver-
gence by using some knowledge or contextual information.
One straightforward and effective transfer method is to set
the initial solution in the target task based on a source task.
In this way, the starting-point of the learning process could
be much closer to the final target-task solution, compared to
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FIGURE 2. The transfer learning framework in machine learning.

the standard reinforcement learning starting at fully randomly
searching.

The next concern is how to define the source-task and
target-task and map the two tasks. Fortunately, we notice that
the following observations may be useful.
Observation 1 (Not All Networks Are Inherently Suitable

for All Traffic Types): There may be mismatches between
the asymmetric downlink/uplink network performance and
traffic requirements. For instance, VLC itself has poor uplink
throughput due to the inherent limitations that we have men-
tioned. Thus, it is not suitable for the trafficwith strict require-
ment on uplink performance.
Observation 2 (Not All Networks Are Preferred by the

User for All Scenarios): The user may prefer some certain
networks. For instance, if the user frequently changes his/her
posture or moves around the room, the smartphone could
not maintain stable VLC access, and thus VLC may not be
preferred. For fee consideration, the user may not want the
LTE access due to its relatively high fees.
Observation 3 (Network Load Statistical Distribution

Is Time-Location Dependent): Recent literature [24] has
revealed that the traffic/load shows the spatial and temporary
distribution law. In other words, there is periodic changing
rule with the time of the load statistical distribution for a
given location. This periodic changing rule regarding the load
dynamics of networks may be used. For example, the load
statistical distributions at a specific location at the same dura-
tion on different weekdays are generally the same.

With these observations, we propose the Q learning algo-
rithm with knowledge transfer as shown in Algorithm 1.
To this end, we introduce a vector (s,N ∗, i) to represent the
traffic type-location-time contextual information, where s ∈
S, N ∗ ⊆ N and i ∈ I are the current traffic type, available
network set and time period index, respectively. S is the set
of traffic types, e.g., the three types defined in Section IV,
and N is the maximal available network set as introduced in
Section III. Note that since the available networks may vary
across different locations, we use the available network set
to indicate the ‘‘location’’ instead of exact coordinates. This
type of location label is an efficient location discrimination
method tailored for network selection. One day is divided into
several time periods. For example, the daytime of weekdays
from 8:00 am to 5:00 pm could be divided into 9 periods
each corresponding to 1 hour duration. The load statistical

Algorithm 1 Q Learning With Knowledge Transfer
1: Inputs: the discount factor γ , the learning parameter α,

two initial exploration probabilities ε′ and ε′′, the stored
learning record database D.
% Initiation Stage: two initiation cases. If there is past
learning experience, the stored Q table could be used.

2: if Current context (s,N ∗, i) has corresponding learning
record in the database then

3: Initialize Q table with previously learned value Q =
D
[
Q(s,N ∗,i)

]
and set ε = ε′.

4: else
5: Initialize Q table with Q = 0 and set ε = ε′′.
6: end if

% Loop Stage: algorithm and context update.
7: loop
8: For each slot t , based on the traffic type, select network

a (t) from the refined action set Ns ⊆ N ∗ as follows
9: •With probability ε, choose an action at random;
10: • Else, choose a (t) = maxm∈Ns Q (m).
11: Receive the reward u (t).

Q [a (t)] = (1− α)Q [a (t)]

+α

[
u (t)+ γ max

m∈N
Q (m)

]
12: Update Parameters: In each iteration, the learning rate

and the exploration probability could be gradually
decreased in order to meet the convergence require-
ments.

13: Update (s,N ∗, i).
14: if (s,N ∗, i) has changed to a different

(̂
s, N̂ ∗ ,̂ i

)
then

15: Store the learned Q-value as D
[
Q(s,N ∗,i)

]
= Q

16: Go to 2nd line and start with the new context(̂
s, N̂ ∗ ,̂ i

)
.

17: end if
18: end loop

distributions of all networks are assumed to remain
unchanged in each time period.

Specifically, observations 1 and 2 enable us to decrease
the size of action set according to the traffic type and user
preferences. That is, some network choices can be removed
in the Q learning action set if they are not suitable. This is
realized by selecting the traffic type-dependent action set,
using the refined action set Ns ⊆ N ∗ and the Q vector
Q = [Q (1) ,Q (2) , . . . ,Q (|Ns|)] as shown in the 8th line
of the algorithm. Observation 3 actually indicates that the
load statistical distribution at the same time period and the
same location across different weekdays are approximately
the same. Thus, we can reuse the past learned experiences.
Specifically, the past learning experience that shares the same
context (s,N ∗, i)with the current learning task is the source-
task and the current learning task is the target-task. Hence,
the starting-point of the current learning process could be ini-
tiated by the results derived from the corresponding source-
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task, as shown in Fig. 3. In the algorithm, the context-specific
learning experience in terms of Q tables Q(s,N ∗,i) is stored
in a database. Once it is found that there is already some
learning record for current context (s,N ∗, i), the learned Q
table will be used for initiation. Otherwise, the Q table is
initiated with a 0 vector, as shown in the 1st to 5th lines of the
algorithm. Accordingly, the initial exploration probability is
ε′ < ε′′. In the loop, the algorithm updates the Q table and
also detects the context change. Once the context varies due
to the change of traffic type, available network set or time
period, the learned experience in terms of the Q table will
be stored and followed by a restart of the algorithm with
the new context

(̂
s, N̂ ∗ ,̂ i

)
. This process realizes the context-

dependent learning and knowledge transfer.

FIGURE 3. The transfer learning in the proposed algorithm. The
source-task and the target-task are mapped according
to the context vector.

We make several remarks on the algorithm. Firstly,
the introduction of knowledge transfer mainly modifies the
Q table according to contexts and has no change to the
learning framework, thus, the convergence of the transferred
reinforcement learning still holds [25]. Secondly, there is
a concern about the division of time periods in the algo-
rithm. Given the fixed traffic type location variation pattern,
the resolution of time periods affects the performance and
convergence of the proposed algorithm. Apparently, a larger
time period length indicates a smaller context vector space
and a longer learning experience length T for each context
vector. However, this may experience varying load statistical
distributions and thus incur negative learning experiences.
A shorter time period length could provide more fine-grained
contextual differentiation and a larger context vector space,
which indirectly reduces the sample number in reusing expe-
rience for each context vector. Therefore, the division of time
period should be carefully evaluated according to the evo-
lution law of network load statistical distributions. Thirdly,
although the size of saved Q tables in the database will grows
linearly as the increase of experienced contexts or situations,
the storage complexity of the algorithm is very limited due
to: the number of typical context is small, e.g., home, office
and playground, and the stored information (context vector
and Q table) is very limited for each context. Fourthly, thanks
to the learning experience reuse, the proposed algorithm can

greatly cut down the exploration frequency, that is, the visit
of random selection behavior in 9th line of the algorithm is
restrained. Thus, the effect of ‘‘ping-pong’’ and associated
handoff cost is greatly reduced, compared with the standard
reinforcement learning. The negative effects can be further
alleviated by carefully choosing the slot duration and resort-
ing to some multi-path concurrent transmission protocols,
such as the stream control transmission protocol that is able
to provide multi-homing and redundant paths facilitating
smooth network handoff with low-cost. Finally, the context
vector can be easily extended to include other factors if a finer
context resolution is needed, such as user’s activity descrip-
tion, age, preference and some other user profiles. In addition,
different users may share their learning experience to further
improve the learning efficiency if their have common context
vectors.

VI. SIMULATION RESULTS
A. SIMULATION SETUP
We consider an indoor scenario composed of one LTE small
cell, two WLAN access points and one VLC access point.
In the LTE, WLAN and VLC standards, the user achieved
instantaneous rate is discrete, which is determined by the
user’s location and varies with the fading effect over time.
Following a similar idea in reference [26], we make a set
of discrete achievable peak rates R1,k < R2,k < · · · <

RMk ,k for each network k , whereMk is the maximum number
of achievable rates in network k . The data rate dynamic
ranges of the LTE small cell and WLAN are set by referring
to some measured data from the ‘‘Speedtest’’ app. Specifi-
cally, the dynamic ranges of downlink date rates of the LTE,
WLAN and VLC are [4000 kbps, 7000 kbps], [3000 kbps,
10000kbps] and [8000 kbps, 13000 kbps], and their dynamic
ranges of uplink date rates are [500 kbps, 6000 kbps],
[3000 kbps, 9000 kbps], and [80 kbps, 120 kbps], respec-
tively. The maximal number of active users in a network is 8.
The slot duration is assumed to be 1 minute. We adjust the
actual numbers of active users and the data rate dynamic
ranges of the four networks to create network performance
diversity. Some other parameters are listed in Tab. 1. The
simulation listed below is based on the Monte-Carlo method
averaged over 500 times.

TABLE 1. Parameter set.

B. RESULTS
In this subsection, we first run the proposed algorithm to
assess its convergence and compare it with several existing
algorithms in static contexts. Then, we consider another sce-
nario where the learning algorithms may not converge in time
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FIGURE 4. Q values in different traffic types. (a) Uplink-dominated traffic. (b) Downlink-dominated traffic. (c) Uplink-downlink symmetric traffic.

due to the context evolution and check the advantage of the
knowledge transfer.

1) CONVERGENCE AND PERFORMANCE COMPARISON
WITH STATIC CONTEXT
Since Q-value is a key parameter indicating the conver-
gence of Q learning, Fig.4 shows the convergence behav-
ior of average Q-values of the proposed algorithm for the
three traffic types. The algorithm initiates with the average
Q values learned after the 200-th slot iteration of the stan-
dard Q learning algorithm and the exploration probability
ε′ = 0.1. We can see that after a period of learning, all
Q-values finally converge to some stable and diverse values.
Importantly, for the uplink-dominated traffic (VLC is not
considered due to its low uplink data rate), the Q-values have
experienced a dramatic change in which the largest Q-value
shifted from LTE to WLAN2. Nevertheless, we found that
the phenomenon actually reflects the slower convergence,
partly because the log utility leads to quite small gaps among
different data rate samples. The following average reward
result shows that it could also converge to a stable state.

Fig. 5 to Fig. 7 show the performance comparisons of sev-
eral algorithms for the three traffic types. Since observations 1
and 2 have revealed that the uplink of VLC could hardly
support the high uplink performance requirement, we can
remove VLC to obtain the Q learning algorithm with the
refined action set. The reuse of learning experience revealed
by observation 3 is called Q learning with experience. The
last one is the proposed Q learning with knowledge transfer
algorithm (i.e., Q learning with refined action set, learning
experience and ε′ = 0.1). We can observe the following:
i) The proposed Q learning with knowledge transfer algo-
rithm converges much faster than the other algorithms (It con-
verges even at the beginning, except for the uplink-dominated
traffic type.) Furthermore, it achieves the largest average
reward in all cases; ii) The Q learning with experience and
the standard Q learning converge to nearly the same average
reward, but the former converges much faster owing to the
reusing of learned Q-values; iii) Compared with the standard
Q learning, the Q learning with refined action set for uplink-
dominated traffic could obtain better performance on both

FIGURE 5. Performance comparison of different algorithms with
uplink-dominated traffic.

FIGURE 6. Performance comparison of different algorithms with
downlink-dominated traffic.

the convergence and final average reward. However, it has
a slower convergence speed than the Q learning with experi-
ence. These results indicate that the reuse of learned Q-value
and the action set reduction could improve the algorithm’s
convergence speed and achieved performance, respectively.
The relatively small exploration probability ε′ could further
increase the average rewards in the proposed algorithm.

We also present the convergence results of the pro-
posed algorithm with different learning experience lengths.

VOLUME 6, 2018 33281



Z. Du et al.: Context-Aware Indoor VLC/RF Heterogeneous Network Selection: Reinforcement Learning

FIGURE 7. Performance comparison of different algorithms with
uplink-downlink symmetric traffic.

FIGURE 8. Convergence behaviors with different learning experience
lengths.

As shown in Fig. 8, when the learning experience length T
(the number of slots to derive the averaged Q-values for
reusing, grows from 60 to 220, the algorithm’s convergence
speed becomes faster.

2) PERFORMANCE COMPARISON WITH CONTEXT
EVOLUTION
We consider a practical scenario where the context may
evolve and thus the learning algorithms may have insuf-
ficient time to converge. We assume that the traffic type
s in (s,N ∗, i) evolves in the order ‘‘uplink-dominated →
downlink-dominated → uplink-downlink symmetric →
uplink-dominated → downlink-dominated → uplink-
downlink symmetric’’ and each traffic type lasts for 50 slots.
Moreover, the time periods i in (s,N ∗, i) are different for
the first 150 slots and the second 150 slots. In other words,
we generate different performances (data rates and user
number distributions) of all networks for the two ranges.
In addition to the proposed algorithm, the standard Q learning
algorithm is not sensitive to the context change and thus does
not restart itself. The dynamic Q learning will restart with
all-0 Q-values once the context changes.

Fig. 9 and Fig. 10 show the related results with differ-
ent exploration probabilities. We can see in Fig. 9 that the

FIGURE 9. Performance comparison with context evolution. (ε′′ = 0.3 and
ε′′ = 0.1).

FIGURE 10. Performance comparison with context evolution. (ε′′ = 0.1).

FIGURE 11. The advantage of learning experience accumulation.

proposed algorithmwith ε′ = 0.3 and ε′ = 0.1 are both better
than the other two algorithms in all contexts. However, when
the exploration probabilities are 0.1 for all cases, the proposed
algorithm seems to have the same performance with the other
algorithms during the first time period (1st to 50th slots
and 100th to 150th slots). We infer that the algorithm did
not converge, which constrained its performance improve-
ment. To verify this point, we run the proposed algorithm
to further accumulate learning experience. That is, as the
algorithm progresses, the latest Q-values will be updated in
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the learning record database D (as stated in line 15 of the
algorithm pseudocode). Fig. 11 shows that after the second
learning process, the proposed algorithm achieves significant
performance improvement during the range of 100th to 150th
slots. It also shows performance gains during the range of
the 1st to the 50th slots in the sixth learning process. The
result confirms that the accumulation and reuse of learning
experience in terms of Q-values could provide satisfactory
outcomes, even with short learning time in scenarios with
long convergence durations.

VII. CONCLUSION
In this paper, we studied the context-aware indoor network
selection problem. We first formulated the network selection
by differentiating the asymmetric downlink-uplink features
of traffic requirements and network performance as a learning
problem. On this basis, we exploited the time-location depen-
dent load distribution to propose a reinforcement learning
with knowledge transfer based algorithm. The simulation
results revealed that the introduction of transfer learning
could significantly improve both the convergence speed
and performance of reinforcement learning based network
algorithms.
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