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ABSTRACT Composites are widely used in aeronautical manufacturing. Despite their excellent properties,
composites suffer from barely visible impact damage caused by low-velocity objects. Random impacts need
to be detected and located to alert pilots and engineers of the need for maintenance. Generally, fiber Bragg
grating (FBG) sensors are installed in aerospace composites, and a reference database is established by
recording the reference signals from different impact positions. The random impact is located by comparing
its signal to the reference signals in the database. The performance of current localization algorithms
mainly relies on the repeatability of FBG signals. However, the FBG sensors or their installation structures
may be damaged by repeated impacts during the monitoring process, and the localization accuracy will
decrease. In this paper, a new algorithm is proposed based on the interpolation reference database and fuzzy
evidence theory to realize accurate impact localization under sensor damage. More correlation coefficients
are obtained from the basic reference database by interpolation, and the influence of damaged sensors on
localization results is reduced by fuzzy evidence theory. The proposed algorithm was tested on a carbon
fiber reinforced polymer plate with four surface-attached FBG sensors. A parametric study was conducted
to determine the coefficients of the algorithm. The localization performance was analyzed with both properly
functioning sensors and damaged sensors. The results showed that the localization accuracy was better than
the existing algorithms, especially in the case of sensor damage.

INDEX TERMS Low-velocity impact localization, fiber Bragg grating (FBG), sensor damage, interpolation

reference database, fuzzy evidence theory.

I. INTRODUCTION

Composites are increasingly replacing conventional isotropic
materials for aerospace applications because of their higher
specific stiffness and strength [1]. Specifically, carbon fiber
reinforced polymer (CFRP) plates have been widely used in
the manufacture of aircrafts. The CFRP plates are made of
a number of carbon-fiber fabrics impregnated with polymer.
The fabrics are stacked together with specified orientations
and formed in high temperature and pressure. Meanwhile,
the wide range of applications of composites has raised
concern. Due to the lack of through-thickness reinforce-
ment, the transverse damage resistance of composites is
weak [2], [3]. The damage mechanism of composites is much

more complex than that of conventional isotropic materi-
als [4], [5]. Low- velocity impacts, caused by runway debris,
bird strikes, tool drop, and ground vehicles hitting aircrafts,
can lead to barely visible impact damage (BVID) of the
composites. BVID is hard to detect by visual inspection, and
it may grow over time without being discovered in a timely
manner, ultimately leading to structural failure [6], [7].
There is an increasing demand for designing localization
algorithms to detect and locate low-velocity impacts [8].
With the help of an automated warning system, the local-
ization algorithms can alert pilots and engineers to inspect
and maintain the specific impact position, which is signif-
icant for reducing the risk of structural failures [9], [10].
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The commonly applied localization algorithms are neu-
ral network algorithms [11]-[14], wave propagation
algorithms [15]-[17] and reference database algorithms. The
reference database algorithms have motivated many scholars’
interest because the algorithms could provide acceptable
localization accuracy with a relatively small number of
sensors [18]-[20]. Traditional reference database algorithms
contain three basic steps. First, a certain number of training
points are picked from the monitored region. The reference
database is established by recording the reference signals of
all the picked training points. Then, a random impact that
needs to be located takes place. The algorithm calculates
the correlation between the random impact signal recorded
by one of the sensors and all the reference signals in its
database to evaluate their similarities. The training point with
the maximum correlation coefficient can be found according
to the sensor. Finally, the mean value of the positions obtained
by all the sensors is determined as the impact localization
result of the algorithm.

Fiber Bragg grating (FBG) sensors, a type of fiber optic
sensor, have been recognized as ideal choices for composite
material impact localization applications [21]. A FBG sensor
is made by inscribing grating in an optical fiber. The refractive
index of the grating experiences a periodic modulation, which
makes the fiber act as a band-pass filter. When a broadband
light is injected into the fiber, the grating reflects one specific
wavelength, named the Bragg wavelength. The Bragg wave-
length is determined by the Bragg condition:

A = 2neg A, ey

where nefr is the effective refractive index of the fiber core,
and A is the grating period. FBG sensors have many advan-
tages such as low weight, small size, multiplexing capability
and immunity to electromagnetic interference [22], [23].
Generally, FBG sensors are installed on composites. The
vibration caused by impacts is transferred to the optical
fibers through the installation structure, which can lead to
the wavelength shift of FBG sensors. Several studies have
demonstrated the application of FBG sensors for different
low velocity impact localization algorithms. Park et al. [14]
used the neural network algorithm to detect impact posi-
tions in a composite panel. A series of impact tests were
performed on the designated points. The signals were cap-
tured by FBG sensors to train the neural network. The
positions for unknown impact events were obtained using
the recorded FBG signals and the trained neural network.
Kirkby et al. [24] took into account the velocity variation
of Lamb wave propagation with directions of composite
material and located the impact according to the time of the
wave arriving at FBG sensors. Rezayat et al. [25] measured
vibration data of composite structures with FBG sensors.
Then, the impact forces were localized and reconstructed
according to inverse methods. In particular, the FBG sen-
sors were widely used in reference database algorithms.
Jang et al. [19] presented the feasibility of using FBG sensor
to locate the impact in a CFRP plate based on the
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reference database algorithm. He established a database com-
posed of premeasured reference impact signals at training
points. Impact positions were determined by calculating
the mean-squared value between the random impact signal
and the reference signals. Shrestha er al. [20] investi-
gated the impact localization results obtained with different
FBG sensor arrays and demonstrated that the reference
database algorithm can localize random impact points
on a composite wing with both one-dimensional and
two-dimensional array sensors. Kim e al. [26] introduced
the normalized cross-correlation into the reference database
algorithm. The localization errors were dramatically reduced
owing to the improved method.

The localization accuracy of current algorithms mainly
relies on the repeatability of a random impact signal and
reference signals in the database. It is usually assumed that
the sensing property of FBG sensors would not change over
time. In fact, the FBG sensors or their installation structures
can be damaged as they suffer from repeated impacts during
the monitoring process. Fiber cladding can be broken by
impacts, and therefore some light leaks out of the fiber, which
leads to the variation in reflectance spectrum of FBG sensors.
Besides, the installation structure may crack, and that changes
the propagation characteristic of the vibration waves in the
structure. The degree of damage will increase over time,
which will change the sensing property of the FBG sensors.
As a result, the random impact signal will differ from the
reference signal at the same positions, and the localization
accuracy will decrease. Moreover, the reference database
algorithm determines the random impact position according
to the training point with the maximum correlation coeffi-
cient. As the points are isolated, the localization accuracy of
the algorithms is limited by the interval of the training points.
Therefore, a versatile strategy to realize accurate localizations
under sensor damage is needed to improve the accuracy and
robustness of such impact localization systems. Fuzzy evi-
dence theory is a hybrid theory combining the fuzzy sets with
the evidence theory. The fuzzy sets are good at describing
the uncertainty information caused by incomplete or impre-
cise measurements [27], [28], and the evidence theory is
able to handle the conflicting data during evidence reason-
ing [29], [30]. The hybrid theory provides an opportunity to
deal with instrument failure in engineering practices.

In this paper, a low-velocity impact localization algorithm
based on interpolation reference database and fuzzy evidence
theory is proposed. The interpolation reference database
obtained more correlation coefficients based on the basic
database by the double cubic polynomial interpolation. The
intervals of the reference points are decreased to improve the
localization accuracy. Moreover, the reliability of FBG sen-
sors is assessed by the fuzzy sets. The influence of dam-
aged sensors on the localization results is reduced based on
evidence theory to enhance the robustness of the algorithm.
The content of this paper is organized into five sections.
Details of the proposed algorithm are described in Section 2.
In Section 3, the experimental setup is outlined. A parametric
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study is conducted to achieve the optimum performance of the
proposed algorithms. In Section 4, the experimental results
are discussed. The localization performance of the proposed
algorithm is compared with the performance of other algo-
rithms. Finally, conclusions are summarized in Section 5.

II. IMPACT LOCALIZATION ALGORITHM

The proposed impact localization algorithm consists of two
main processes as shown in Fig. 1. First, the basic reference
database is established by storing reference vectors S,,r. Once
arandom impact takes place, its vector S,,;,g is compared with
reference vectors S,,r to calculate correlation coefficients R.
The discrete R points are interpolated by the double cubic
polynomial. Then, three fuzzy sets Fy, F,, and F4 are estab-
lished, and all the positions are assessed based on their fuzzy
set membership assignments B;(F), B;(F},), and B;(F,4). The
reliability of the FBG sensors is evaluated and data from
different FBG sensors are fused to generate the integrated
membership assignments M (F), M(F,), and M(F,4). The
impact is located according to the evidence theory.

Impact
Localization Process

Interpolation Reference Database

“"Rand. Signal _ Ref. Signals

Basic Reference Database

{ Reference Signal of Training Point 1

| Time-Frequency Conversion

| Reference Signal of Training Point 2
| P P | :

R Between Syq,q and Sy,r , l Reference Signal of Training Point N /

I L -
Double Cubic Polynomial |
| Interpolation:

Interpolated R /

Fuzzy Evidence Theory Fusion
— T T T T T
Fuzzy Set Establishment:

[ Fy,Fu, Fua ]

| Basic Membership Assignments: |
B{(F), B(F.), B(F.) i=1,2,3,4

Evidence Theory Fusion: |

N ME).MENME) )

FIGURE 1. Process of Impact localization algorithm.

A. INTERPOLATION REFERENCE DATABASE

The reference database is established according to the array
configuration of the FBG sensors. The most commonly
used configuration is a rectangle-shaped monitored region
with four FBG sensors at the corners of the rectangle as
shown in Fig. 2. The sensors are attached in the direction
of 45° to provide sufficient sensitivity. Training points are
evenly distributed in the monitored region. The reference
signals are generated by impacting the training points. The
FBG sensors record the reference signals. The initial wave-
lengths are subtracted from the reference signals to elim-
inate the constant component, then signals are converted
from the time domain to the frequency domain by Fourier
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FIGURE 2. The configuration of the rectangle-shaped monitored region.

transformation. The frequency spectrum vectors of the refer-
ence signals are stored in the reference database as S, .

Different from reference signals, the signals caused by
random impacts to be located are random impact signals.
Once a random impact occurs, the signal is converted to
the frequency spectrum vectors, which are defined as Syg;4-
To compare the similarity between Sy4,q and Sy, the corre-
lation coefficient R is calculated according to:

Sref “Srand
= 2)
|Sref [1Sranal

|Srer| and |Srana | are the 2-norms of Syer and Syqnq . R ranges
from —1 to 1. If the random impact signal is similar to the
reference signal, R tends to be 1. A set of R values is generated
in a 2-dimensional plane by repeating the computing process
with all of the reference signals as shown in Fig. 3(a). Values
can be interpolated between the correlation coefficients at
the training points. Thus, more reference points are obtained
by the interpolation between the training points. As a short
running time is important for the localization algorithm, the
double cubic polynomial interpolation is used to balance the
accuracy and the running time.

The double cubic polynomial interpolation uses cubic
polynomials to fit the discrete points along both the x-axis
and the y-axis of a 2-dimensional plane. In a monitored region
with m X n training points, the point at the i-th row and the
J-th column can be represented by (x;, ;). R(x;, y;) is the
R value at the point (x;, y;). First, the interpolation is along
each row of the training points. The interpolation function is
established as:

Fi(x) = a; + bi(x — x;) + ci(x — x;)* + di(x — x;)°

i=1---,n—1(03)

where aj, bi, ci, and d; are the coefficient of the i-th inter-
polation piece. There are n — 1 interpolation pieces for each
row. The interpolation function along each row of training
points can be determined [31]. In this way, m rows of interpo-
lation functions can be obtained as shown in Fig. 3(b). Then,
interpolation along each column is conducted. p columns of
points are evenly inserted into every two adjacent columns.
The R values of inserted points are calculated by substi-
tuting the coordinates into the corresponding interpolation
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FIGURE 3. The process of double cubic polynomial interpolation. (a) Discrete R values in a 2-dimensional
plane. (b) Interpolation along m rows of training points. (c) Interpolation along (np — p + n) columns of
reference points. (d) Interpolation along (mq-q) rows of training points.

function F;j(x). Hence, (np — p + n) columns of interpola-
tion functions can be obtained as shown in Fig. 3(c). Last,
interpolation between adjacent rows is carried out. g rows
of points are evenly inserted into every two adjacent rows,
and ¢ interpolation functions are determined according to R
at the interpolating points. Hence, a total of (mg — g) rows
of interpolation functions can be obtained. Considering the
mrows of interpolation functions in the first step, the number
of reference points increases from m X nto (np — p + n) x
(mg — q + m), where p and ¢ are interpolation coefficients.
The interpolation result is shown in Fig. 3(d).

B. FUZZY EVIDENCE THEORY FUSION
Each FBG sensor obtains a position with the maximum R
according to the interpolation reference database. Current
algorithms regard the mean value of the position coordinates
obtained with four sensors as the final localization result.
However, the sensors or their installation structures can be
damaged by repeated impacts during the monitoring process,
which leads to localization error. Since traditional impact
localization algorithms cannot assess the measurement reli-
ability of sensors, the localization error is brought to the final
result, significantly reducing the localization accuracy.
Fuzzy evidence theory is introduced to fuse the data from
the four sensors. Combining the fuzzy set and the evidence
theory, the hybrid theory could make the correct judgment
based on interference information. First, the fuzzy set is used
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to assess the reliability of the impact signals from FBG sen-
sors. Three fuzzy sets are established. Shocked set F and
non-shocked set F;, are used to indicate whether the impact
belongs to this point. An undetermined set F,; is used to
describe the inconclusive impact signals. The measurement
uncertainty caused by the sensor damage is taken into account
by introducing the undetermined set. The belief degrees of the
three fuzzy sets are described by basic membership assign-
ments B(Fy), B(F,), and B(F,;), which are calculated based
on the values of R as follows:

B(Fy) = (1 + ¢ntf=eny~!
—(R—u)?

B(F,)=e¢ 27 )
B(Fuq) = (1 + e ®=c2)=1,

where parameters u, and o are the mean value and standard
deviation of F,; c; and c; are equal to the R values when
B(F;) = 0.5 and B(F,,4) = 0.5 respectively, which determine
the boundary of the fuzzy set F; and F,4. 1 and 7> indicate
the uncertainty of F and F,4 by influencing their gradients.
There are (np — p+n) x (mg— g+ m) reference points after the
interpolation according to Section II. A. C(znpfp )% (mg—q-+m)
R values can be calculated based on statistical theory. The
maximum, minimum, and average are Rmax, Rmin, and Rayer,
respectively. The standard deviation is Rgg. The parameters
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TABLE 1. Mechanical properties of the CFRP pre-preg.

Elasticity modulus  Elasticity modulus Poisson's Poisson's Poisson's Shear modulus ~ Shear modulus
E; (GPa) Ey, (GPa) coefficient vi3 coefficient v, coefficient vy G2 (GPa) G (GPa)
125 7 0.3 0.016 0.39 32 2.52
should satisfy: reference signals. R decreases and therefore the membership
_R for F,4 is higher. The results of other undamaged sensors are
U = Raver adopted more according to (7) and (8). Hence, the influence
0 =Ru of the damaged sensor on localization results is reduced.
€1 = Rmax ) The fusion process is conducted for all the reference points
¢3 = Runin in the monitored region. Finally, the position with maximal
(1 4+ e~ 0=cy=1 5 0999 :hocked 1stetT r}rllergbter?fhip is identifie.d ats1 the i.mli:a.Ct lét)caliza—
ion result. The data fusion process is shown in Fig. 4.
(1 4 em0=2)=1 > 0,999, P &
The basic memberships are normalized according to:
Ill. EXPERIMENTAL SETUP AND PROCEDURE
m(Fy) A. MATERIALS AND METHODS
(1 4 7Rz~ The experiments were conducted on a 620 mmx500 mm
- —(Ru?® CFRP plate. The plate was made of pre-impregnated unidi-
—71(R—c1))—1 ) 72(R—c2))—1 . . .. .
( }gl)+e ] VY7 te ot 4 (lte ) rectional laminates. The elasticity modulus, Poisson’s coef-
M u ke ficients, and shear modulus of the material are shown
e 252 6) in Table 1. The stacking process adopted for the plate was
= R [45/0/-45/90]4s. The numbers in the square bracket indicate
(1+e nR=c))=l e 207 4 (1  e2R=-c2)~1 the stacking sequence and directions (angles in degree) of the
m(Fuq) carbon-fiber fabrics in CFRP plate, and the subscript 4 means
. (1 4 em2(R=c2))~1 the stacking process defined in the bracket should be repeated
B ® | —(R—u)? ® | four times and the s indicates symmetric arrangement. The
(Ien®B=e)=I+e 207 +(1 + en(R2))~ total thickness of the plate is 4.6 mm.

As different memberships can be obtained with different
sensors for certain random impact positions, evidence theory
is introduced to address the data conflict [32]. The normalized
memberships determined with four FBG sensors are com-
bined to generate the integrated membership M (F') as:

ZF1QF2QF3QF4:F my(F1)ma(F2)m3(F3)ma(F4)
1-K
for F £ (7)
m(F)ma(F2)m3(F3)ma(Fy),

M(F)=

>

F1NF2NF3NF4=0

where F'1, F>, F3, and F4 represent the fuzzy sets for FBG sen-
sor 1 to FBG sensor 4; Fy, F», F3,and F4 canbe Fy, F,, or 4.
F is the result of the intersection operation according to:

FsNFy=Fg

F,NF,=F,

FuNFug=Fu (8)
FsNFug =F;

F,NFyu=F,

F,NF, =0

my(F1), ma(F2), m3(F3), and m4(F4) are the memberships
of F1 to F4. K represents the total conflict between the
results of the 4 sensors. If a sensor is damaged, the ran-
dom impact signal will be significantly different from its
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An aluminum frame fully fixes the edges of the plate. Four
FBG sensors with a grating length of 10 mm were used to
detect the impact signals. The center wavelengths of these
sensors are 1540, 1544, 1549, and 1554 nm, respectively.
The sensors were attached to the undersurface of the com-
posite plate. A commercial high-speed FBG demodulator
Smart-Scan (Smart Fibres Ltd, United Kingdom) was used
to demodulate the FBG sensor signals with 25 kHz sampling
frequency. Low velocity impact was stimulated by an impact
hammer, which is a spring-loaded mechanism. The hammer-
head radius is 22 mm. The impact energy is adjustable with
an accuracy of 0.1 J, and the maximum impact energy is 2J.
The data processing was run on an Intel(R) core(TM)
i7-4510U CPU at 2.6 GHz with 16 GB of RAM memory. The
experimental apparatuses are shown in Fig. 5(a).

First, the training processes were conducted with prop-
erly functioning sensors. The training points have 50 mm
space between two adjacent ones on the 500 mmx450 mm
monitored region. Hence, there are 110 training points num-
bered from 1 to 110. The reference database was established
according to Section II. A. Then, divide the monitored region
equally into four quadrants named as local region 1 to 4. Five
random impact points represented by target coordinates were
chosen randomly on each region as illustrated in Fig. 5(b).
Table 2 shows the coordinates of the 20 random impact
points. The central axis of the hammer was vertically aimed
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FIGURE 4. The data fusion process by fuzzy evidence theory.

at the points. Four FBG sensors recorded impact signals. The
proposed algorithm was run as discussed above.

B. INTERPOLATION COEFFICIENT SETUP
A parametric study was performed to determine the inter-
polation coefficients p and g. The random impact points
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\ 4

Impact Position

ol

X (mm)

from 1 to 20 were used in the study. The average localization
errors were calculated with p and g changing from O to 4 as
shown in Fig. 6.

It can be observed that the average errors are significantly
affected by the interpolation coefficients. With p increasing
from O to 4, the average errors show a downward trend, but
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FIGURE 5. Experimental setup and the random impact points. (a) Experimental apparatuses. (b) Impact targets.

TABLE 2. Target coordinates of 20 random impact points.

Local region  Impact targets x (mm) y (mm)
1 It 01 50.0 0.0

1 It 02 116.6 61.6
1 It 03 49.0 133.2
1 It 04 178.2 172.4
1 1t_05 75.0 224.2
2 It_06 218.8 309.0
2 It 07 125.8 321.7
2 1t 08 37.2 3414
2 It_09 77.5 407.3
2 It_10 165.5 425.4
3 It 11 275.0 4242
3 It 12 401.7 337.8
3 It 13 482.3 328.7
3 It 14 446.8 303.4
3 It 15 342.1 291.0
4 It 16 277.5 171.7
4 It 17 425.8 171.7
4 It 18 326.9 107.5
4 It 19 275.0 75.0
4 It 20 4225 75.0

the trend weakens gradually. When p is fixed, the average
errors decrease with the increase of ¢, but the gradient reduces
gradually. When p and q are larger than 2, the average errors
change little.

The running time of the proposed algorithm with different
interpolation coefficients is shown in Fig. 7. It indicates that
the time rises with the p and g increasing from O to 4. The
maximum time is 28.6 s when p and g are both equal to 4.
The relationship between the time and ¢ is approximately
linear with a specific p. The intervals between adjacent lines
are equal. When p and g are 2, the running time is 15.3 s,
which is acceptable for the aerospace applications of impact
localization algorithms. Hence, p and ¢ are set to be 2 in this

paper.

C. DATA FUSION PARAMETER SETUP
Statistical analysis was conducted for training points to deter-
mine the data fusion parameters. A total of 5,995 R values
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FIGURE 6. The average localization errors for different interpolation
coefficients.

were obtained according to the 110 training points. Rpyax.,
Rumin, Raver, andRgq were 0.91, 0.63, 0.75, and 0.082, respec-
tively. According to (4), u and o were 0.75 and 0.082.
c1 and ¢ were 0.91 and 0.63. 71 and 7> should satisfy 71 > 75
and 7 > 11. To analyze the influence of 71 and 7> on the
uncertainty of Fy and F,4, 71 and 1> were both set to be 20,
40, 80, 160, 320, and 640. Basic membership functions of the
three fuzzy sets are drawn in Fig. 8.

As shown in Fig. 8, the basic membership functions of
the three fuzzy sets overlap each other. F,; is higher than
F, and F; when the R is relatively low. F,, rises to 1 first,
and then decreases to 0 with increasing R. F,4 declines to 0
whereas F rises to 1 when R is close to 1. The gradients of
Fg and F,4 are larger with the enhancement of t; and t3.
Hence, the uncertainty of F; and F,, decreases. When the
71 and 13 exceed 160, Fy and F,; are gradually close to the
non-fuzzy sets with threshold values 0.91 and 0.63. In this
paper, 71 and 1 are set to be 100 and 35. Fig. 9 exhibits
normalized memberships with the determined parameters.
F,4 is dominant when the R is between 0 and 0.64. F,, is
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FIGURE 7. The running time with different interpolation coefficients.
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FIGURE 8. Basic membership functions for different z; and z,.
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g

(0.64,0.5)  (0.90, 0.5)

Nommalized Membership

Correlation Coefficient R

FIGURE 9. Normalized membership with the determined data fusion
parameters.

dominant for R between 0.64 and 0.90, and F is dominant
for R from 0.90 to 1.

IV. RESULTS AND DISCUSSION

A. COMPARISON BETWEEN INTACT SENSOR AND
DAMAGED SENSOR

To analyze the influence of sensor damage on the proposed
algorithm, the FBG sensor 1 was damaged intentionally, and
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Intact sensor ~ Damaged sensor

Normalized Amplitude

FIGURE 10. Frequency spectrum of the signals recorded by the intact
sensor and damaged sensor.

the random impact point 1 was picked as the target point. The
signal recorded before the sensor damage was compared to
the signal recorded after its damage. The frequency spectrum
of the two signals is shown in Fig. 10, and the insets are the
intact and damaged sensors.

As seen in Fig. 10, the frequency of both signals is mainly
concentrated between 1000 and 3000 Hz. However, for the
signal after the sensor damage, the amplitude change is less
distinct, and the intensity weakens remarkably. Moreover,
the R values before the damage were compared with the
R values after the damage for the 110 training points as shown
in Fig. 11.

According to Section III. C, the value range of R is divided
into 3 intervals by F;, Fy,, and F,4. Before the damage,
the maximum R was at training point 2 (50, 0), where it is
precisely coincident with the position of a random impact
point 1, and the value is higher than 0.9 where F; is dominant.
The R values of the other training points are just between
0.64 and 0.9 in which F, is dominant. The proposed algorithm
classifies the training points properly. After the damage, the
R values of all the training points decrease. The position of
the maximum R changes to training point 14 (100, 50), which
is significantly away from the random impact point 1, and
the localization error is 70.7 mm. However, all the R values
are lower than 0.64 where F,; is dominant. Hence, the error
introduced by sensor damage to the final impact localization
is reduced by the proposed algorithm.

B. LOCALIZATION PERFORMANCE WITH DIFFERENT
NUMBERS OF DAMAGED SENSORS
To investigate the performance of the proposed algorithm
with different numbers of damaged sensors, the localiza-
tion experiments were conducted with 0 to 3 damaged sen-
sors successively. The relationships between impact localiza-
tion errors and the number of damaged sensors are shown
in Fig. 12.

When there is only one damaged sensor, the average and
maximum localization errors are 18.9 mm and 30.2 mm.
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Correlation Coefficient R

Number of Training Points

FIGURE 11. The R values of the 110 training points before and after the damage.

Localization Error (mm)

Number of Damaged Sensors

FIGURE 12. The localization errors with different numbers of damaged
sensors.

The errors are slightly bigger than those without damaged
sensors, but they are less than the 50 mm training spac-
ing. When the number of damaged sensors is 2, the local-
ization errors rise obviously. The average localization error
is 38.6 mm. The maximum localization error is 73.2 mm,
which is bigger than the training spacing. When 3 sensors are
damaged, the average and maximum localization errors rise
sharply to 103.4 mm and 175.2 mm, respectively, twice that of
the training spacing. In addition, the integrated memberships
of the shocked set are 95%, 83%, 48%, and 41% when the
number of damaged sensors rises from 0 to 3. The member-
ship indicates the reliability of the impact localization results,
which is less than 50% when the number of damaged sensors
is more than 1. Therefore, the localization performance of the
proposed algorithm is relatively good with O or 1 damaged
Sensors.

C. LOCALIZATION PERFORMANCE IN DIFFERENT
MONITORING REGIONS

The localization results of the 20 impact points were obtained
when all four sensors were properly functioning. The target

VOLUME 6, 2018

points and predicted points are shown in Fig. 13. The aver-
age error of the whole monitoring region is 8.6 mm. The
maximum localization error is 17.5 mm at point 5, and
the minimum localization error is 4.5 mm at point 12. The
average errors of the local region 1 to local region 4 were
also calculated according to the localization results of these
regions, which are 8.6 mm, 7.4 mm, 8.0 mm, and 10.5 mm.
It can be concluded that the average localization errors have a
small difference from local region 1 to local region 4, which is
due to the symmetry of the spatial arrangement of the impact
monitoring region.

9
8 ; ] 2 3
15 14
E region 2 | region3
g 5 region 1 | region 4
~
4 16 17
3
18
1
x (mm)

FIGURE 13. The target points and predicted points obtained by 4 properly
functioning sensors.

The proposed algorithm was also carried out when
FBG sensor 1 was damaged. The localization results are
shown in Fig. 14. The localization errors have increased
compared with the results of properly functioning sensors,
and the distribution of errors along the monitoring regions
has also changed. The average error of the whole monitoring
region is 18.9 mm. The maximum and minimum localization
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TABLE 3. Comparison results of the localization performance.

Properly functioning condition

Running time

Damaged condition

Algorithm

(mm)

) Average error

Maximum error Average error Maximum error
(mm) (mm) (mm)

Neural Network 13.7 9.8
Wave Propagation 6.9 11.4
Traditional Reference Database 8.5 19.8
Current Work 15.3 8.6

24.6 58.7 88.9
26.5 75.6 102.3
28.0 46.2 85.5
19.5 18.9 30.2

region 2 | region 3

region 4
16

18

region 1

y (mm)

3 4
20

x (mm)

FIGURE 14. The target points and predicted points obtained under the
damage of sensor 1.

errors are 30.2 mm at point 1 and 10.4 mm at point 13,
respectively. Among the 20 random impact points, most of
the relatively large localization errors appear near the position
of sensor 1. The average error of local region 1 is 25.2 mm,
and it is significantly larger than the errors of the other 3 local
regions, which are 18.4 mm for region 2, 13.3 mm for region 3
and 18.8 mm for region 4. The localization accuracy of the
proposed algorithm is relatively low when the random impact
points are near the position of the damaged sensor. In fact,
the proposed algorithm reduces the decision-making power
of the damaged sensor according to the fuzzy evidence theory.
Therefore, the final localization results mainly depend on the
other properly functioning sensors. The localization accuracy
is enhanced when the random impact points are close to these
properly functioning sensors. The experimental results are in
accordance with the theoretical analysis.

D. THE LOCALIZATION PERFORMANCE COMPARISON

To check the localization performance of the proposed algo-
rithm, the localization results were compared with the results
of the neural network algorithm [13], the wave propagation
algorithm [16] and the traditional reference database algo-
rithm [20]. In this paper, the comparison of experiments
was conducted with the same conditions as described in
Section III. A. The 110 training points served as training set,
and the 20 random impact points served as validation set. The
experiments were carried out under the normal condition with
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4 properly functioning sensors and the damaged condition
with 1 or more damaged sensors. The running time of these
algorithms was recorded, and the average and maximum
localization errors were calculated as shown in Table 3.

The running time ranges from 6.9 s to 15.3 s, and the
time of the proposed algorithm is higher than that of other
algorithms. Compared with the traditional reference database
algorithm, the proposed algorithm mainly consumes time in
the interpolation and data fusion processes. For the normal
condition, the average localization error of the proposed
algorithm is 8.6 mm, smallest among all the algorithms. The
neural network algorithm is in the second place with 9.8 mm,
and the traditional reference database algorithm is in last
place with 19.8 mm. The maximum localization error of
the proposed algorithm is 19.5 mm, significantly better than
the errors of other algorithms, which range from 24.6 mm
to 28.0 mm. The proposed algorithm obtains the highest
accuracy among all the algorithms without damaged sensors.
In the case of sensor damage, the maximum localization
errors of all the algorithms are more than the space of 50 mm
between adjacent training points if the number of damaged
sensors is more than one. However, when there is one dam-
aged sensor, the average error and maximum error of the
proposed algorithm are 18.9 mm and 30.2 mm, respectively.
The traditional reference database algorithm is in the second
place. Compared with the results of the traditional reference
database algorithm, the average error and maximum error are
reduced by 59.1 % and 64.7 %, respectively. The localization
accuracy of the proposed algorithm is obviously superior to
the other algorithms.

V. CONCLUSION

This study suggests a low-velocity impact localization algo-
rithm based on interpolation reference database and fuzzy
evidence theory to realize accurate localizations on compos-
ites under sensor damage. A basic reference database is first
established. More correlation coefficients can be obtained by
the double cubic polynomial interpolation. Then, the fuzzy
evidence theory is used to evaluate the reliability of the
FBG sensors. The influence of damaged sensors on the local-
ization results is reduced.

The experiment results show the localization performance
of the proposed algorithm has been significantly improved.
The average error and maximum error are 8.6 mm and
19.5 mm, respectively, when all four sensors are running
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properly. When one of the sensors is damaged, the average
error is 18.9 mm, 40.9 % of the traditional reference database
algorithm, and the maximum error is 30.2 mm, 35.3 % of
the traditional reference database algorithm. The localization
results are much smaller than the results of the other algo-
rithms according to the comparison. Therefore, the proposed
algorithm has a strong ability to address the signal from the
damaged sensor.

Since the proposed algorithm can realize the impact local-
ization under sensor damage, more reliable and accurate
information can be provided to pilots and maintenance engi-
neers for inspection, which is of great significance to the
aerospace applications of composites.
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