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ABSTRACT In order to improve the performance of cable-driven parallel robots (CDPRs), the configuration
of the redundantly actuated CDPRs is optimized, and a feasible continuous tension distribution method
for tracking the trajectory of the robot is proposed. A convex analysis method is used to determine the
wrench-feasible workspace of CDPRs and the grouped coordinate descent method is used to determine the
size of the redundantly actuated six-degree-of-freedom CDPRs. By changing the cable layout and using
the geometric analysis method for the redundantly actuated CDPRs, the maximum rotation angle of the
mobile platform in 3-D space is determined. The optimal size and layout of the CDPR are determined by
comparison and analysis. The high dynamic CDPRs require real-time control to adjust the cable tension.
In order to solve this issue, a real-time cable tension distribution algorithm for a non-iteration two-degree-
of-freedom actuation redundancy CDPR is proposed. The proposed tension distribution algorithm is applied
to the optimized six-degree-of-freedom eight-cable CDPR, and compared with other existing cable tension
distribution algorithms. The simulation results demonstrated that the feasibility and the advantages of the
proposed cable tension distribution algorithm.

INDEX TERMS Cable-driven parallel robots, cable layout, wrench-feasible workspace, tension distribution
algorithm.

I. INTRODUCTION
Cable-driven parallel robots (CDPRs) components include
a fixed platform, a cable drive unit, cables, and a mobile
platform. For example, a typical CDPR, a cable-driven virtual
assembly training robot (CDVATR), has been shown in Fig. 1.
The computer control cable drive unit transmits motion and
force to the mobile platform via the cables. Due to the phys-
ical characteristics of the cable, these parallel robots have
several properties, such as a very large reachable workspace,
high speed, large carrying capacity, low installation and
maintenance costs [1]–[3]. Because of its unique advantages,
CDPRs is applied in many industrial situations, e.g., reha-
bilitation system [4]–[6], camera robot [7], giant radio tele-
scope [8]–[10] and haptic interfaces [11], [12], locomotion
interfaces [13]. Since cables can only work in tension, i.e., the
cable tension must satisfy the unidirectional force property
that the tension must maintain positive, hence it needs con-
sidering the unidirectional force property under arbitrary
external wrench when the mobile platform is in different

FIGURE 1. Cable-driven virtual assembly training robot.

poses [14], [15]. The unilateral nature of cable forces, CDPRs
has many disadvantages, which limits its application to some
extent. For example, n-degree-of-freedom (DOF) CDPRs
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need to use at least n + 1 drive units to ensure that each
cable maintains a positive tension. According to the rela-
tionship between the number of cable m and the number of
degrees of freedom n, the general CDPRs can be divided into
three types, that is, under constraint cable parallel mechanism
(m < n + 1), completely constrained cable parallel mech-
anism (m = n + 1), redundant constraint cable parallel
mechanism (m > n+ 1) [16].
The workspace of a CDPR is one of the most important

indexes for evaluating the performance of a robot. In order to
improve the performance of CDPRs, many researchers have
paid attention to the workspace. According to the properties
of cable tension, the workspace associated with the robot
structure and the mobile platform pose is defined as the
wrench closed workspace [17], [18], and with the structure of
the robot, the mobile platform pose and the cable tension is
defined as the wrench feasible workspace (WFW) [19]–[21].
In general terms, if the mobile platform is located in the
WFW, the cables within the given tension range can bal-
ance the external wrench set applied to the mobile plat-
form [22], [23]. However, the workspace of the CDPR is
also affected by cable interference. Collisions between cable
and cable, and mobile platform and cable should be avoided
during movement of the robots. Merlet [24] proposed an
algorithm that allow to study the influence of cable and cable,
and cable andmobile platform interference on the workspace,
assuming a fixed orientation of the fixed platform.
Blanchet [25] presented two algorithms to handle the col-
lisions with the robot’s environment and self-interference.
However, there are some references that allow the collision
of cable and cable in order to increase the workspace of
the robot [26], but a collision between cable and cable can
reduce the control accuracy or even cause loss of control of
the robot. Some researchers have analyzed the influence of
the cable layout on the workspace of the plane CDPR, and
improved the robot workspace quality by changing the posi-
tion parameters of the pulley in the fixed platform [27]–[29].
Nguyen et al. [30] and Nguyen and Gouttefarde [31] used
multi-objective optimization to change the position of the
hinge point of the cable and the fixed platform to improve the
quality of the workspace of the suspension CDPR. Lorenzo
Gagliardini et al. [32] used a Dijkstra’s based algorithm to
optimize the position of the hinge point of the cable and
the fixed platform to expand the workspace of the CDPR.
Although most of the research that is carried out on theWFW
has mainly focused on the influence of the mobile platform,
the fixed platform, and tension constraints there is a few
references analysis of the influence of the hinge point of cable
and mobile platform on the WFW. Therefore, it is necessary
to study the influence of the cable layout on the WFW and
the cable layout needs to be optimized.

Another restriction factor of the CDPR is that the robot
needs to meet the workspace requirements and, at the same
time, it must meet the stiffness variable and the corresponding
speed requirements [33]. If it is to achieve real-time control.
For example, the CDVATR, shown in Fig. 1, needs to be

simulated to adjust the location of different size and quality
objects in real time. Therefore, redundantly actuated CDPRs
require a tension distribution algorithm thatmeets the require-
ments for real-time control. Some previous studies have
focused on optimizing the tension distribution in the cables.
In [34] and [35] put forward an objective function to optimize
the cable tension distribution with p-norm. However, this
method can easily cause cable tension discontinuity when the
mobile platform moves along the track. In [36] presents a
simple, fast, predictive computation method for a CDPR with
2-DOF or 3-DOF actuation redundancy. However, this
method does not prove that the CDPR works in the WFW.
Further, a general problem is that the exact solution can-
not be found. In [37], a safe tension method is proposed
to increase the stiffness of the CDPR to avoid low cable
tension. However, a safe and reliable calculation of the cable
tension distribution is time-consuming and affects the real-
time performance control of the robot. In addition, the safe
tension method relies on linear programming so that the cable
tension calculated in the worst-case may be discontinuous.
In [38]–[40] has proposed a tension optimization distribution
algorithm based on obtaining the cable tension and config-
uring the center of gravity, which is located in the effec-
tive tension polyhedron, without iteration. This algorithm is
proven to be continuous along the given trajectory. Then,
this algorithm is a resource intensive computation because
of the high actuation redundancy, and it takes a lot of time
to compute the center of gravity of the polygon. There-
fore, an algorithm is proposed to obtain tension optimization
distribution without compute the center of gravity of the
polygon.

Therefore, this paper has investigated the WFW algo-
rithm considering interference, which makes the obtained
workspace closer to the actual workspace of CDPRs. To max-
imize the WFW, the mechanical structure of a CDPM is opti-
mized using the grouped coordinate descent (GCD) method.
The workspace corresponding to the optimal size of the
mobile platform is calculated by using the WFW algorithm,
and the continuity of the workspace is verified. The influence
of the cable layout on the WFW is further analyzed, and
the maximum attitude angle of the three layout schemes is
determined. Through comprehensive comparison and anal-
ysis, the optimal configuration for CDPRs is determined.
Furthermore, the problem of optimal tension distribution is
transformed into a convex program problem based on convex
theory. Then, any point is used as the starting point to find
next feasible points along the line motion to determine the
feasible region. Finally, the best feasible point is quickly
determine. Thus, an algorithm for optimal distribution of
cable tension, which takes full account of the time when the
cable tension is feasible in the feasible polygon and reduces
the CDPRs energy loss, is introduced. Finally, the feasibility,
continuity, and real-time performance of the algorithm are
verified by simulation experiments. Compared with other
algorithms proposed in references, the advantages of the
proposed algorithm are further proved.
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The rest of this paper is organized as follows. In section II,
the kinematic and dynamic modelling of CDPRs are
established. In section III, judgment conditions of WFW
considering interference. In section IV, configuration opti-
mization of CDPRs and determination of optimal configu-
ration. In section V, a rapid optimization method of cable
tension distribution is proposed, and detailed design proce-
dures are described. In section VI, simulation experiments
are implemented on a six degree of freedom eight cables
CDPR, the feasibility and advantages of the proposed algo-
rithm are analysed. Finally, concluding remarks are presented
in section VII.

II. KINEMATIC AND DYNAMIC MODELING
Notation of a n-DOF CDPR with m cables is shown in Fig. 2;
coordinate frame O is the base frame and coordinate frame
O1 is the local frame fixed on the mobile platform. The
kinematic and dynamic equations of a CDPR can be derived
based on the architecture shown in Fig. 2. Here, the gravity of
the cable is neglected, and each cable is considered a straight
line.

FIGURE 2. Notation of an n-DOF CDPR.

A. KINEMATIC MODELING
The position of the connection point between the guide pulley
and the cable of the drive unit is expressed as Ai in the coor-
dinate frame O, and vector ai are constant position vectors
connecting O to Ai. The coordinate frame O1 is expressed
as b in the coordinate frame O. The position vector of hinge
point location Bi on mobile platform and point Bi in the local

frame O1 representations for ri. The Z -Y -X Euler angles
of the local frame to the base frame are α, β, γ , and the
corresponding coordinate frame based onmobile platform for
attitude angles is (α, β, γ ). R is the transformation matrix
fromO1 toOwhich is expressed in (1), as shown at the bottom
of this page.

The kinematic of each cable can be established by the
vector loop method:

li = ai − (b+ ORO1ri) i = 1, 2, · · · ,m (2)

Then, the unit vector of the ith cable becomes:

ui = li/ ‖ li ‖ i = 1, 2, · · · ,m (3)

B. DYNAMIC MODELING
Assume that the cable mass of the CDPR can be very small,
and its gravity and inertia force can be neglected during mov-
ing. However, in general, the quality of the mobile platform
is very high, and there may be large speed and acceleration
while moving. Therefore, the gravity and inertia of themobile
platform cannot be ignored. According to Newton’s law,
the dynamic model of the CDPR is obtained:

JT+G+W =MẌ+ NẊ (4)

where

J =
[

u1 u2 · · · um
r1 × u1 r2 × u2 · · · rm × um

]
,

T = [t1 t2 · · · tm]T

G = [mg c× mg]T , W =
[
Fx Fy Fz Mx My Mz

]T

M =


m

 1 0 0
0 1 0
0 0 1

 −m

 0 −cz cy
cz 0 −cx
−cy −cx 0


m

 0 −cz cy
cz 0 −cx
−cy −cx 0

  Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz




IO1 =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

, c =

 0 −cz cy
cz 0 −cx
−cy −cx 0


X = [x y z α β γ ]T ,

N =
[

0 −m(w× c)×

m(w× c)× −(IO1w)
×

]
In the above equations, vectorsG ∈ R6 andW ∈ R6 are the

gravity wrench and the external wrench, respectively; m is the
mass of the mobile platform; IO1 is the 3×3 inertia tensor of
the mobile platform about applied point of external wrench;
g ∈ R3 is the gravity acceleration vector; T ∈ Rm is a vector
consisting of all individual cable forces; ti is the cable force
of the ith cable; J is the 6×m Jacobian matric of the CDPR;

ORO1 =

 cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ
sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ
− sinβ cosβ sin γ cosβ cos γ

 (1)
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c ∈ R3 is the position vector of the mass center of the mobile
platform in the O1 coordinate frame.

Let We = MẌ+ VẊ−G−W. Then, the Eq. (4) can be
re-written into a compact form as:

JT =We (5)

III. WFW ANALYSIS
The accurate judgment of the WFW of a CDPR lays a theo-
retical foundation for the trajectory planning and control of
the robot. In addition to meeting the WFW, the robot needs
to determine whether there is interference between cable and
cable, and cable and themobile platform, so that the robot will
not lose control or damage during the movement process.

A. WFW DEFINITION
Definition 1: TheWFW is the set of mobile platform poses

that are wrench-feasible, i.e., for which, for any wrench We
in WT , there exists a vector of cable tension T in Treq =

{t|ti ∈ [tmin, tmax], 1 ≤ i ≤ m} such that JT =We [23].
TheWFWneeds to be satisfied with the conditions defined

as the balance of the cable tension for a given range of
external wrench in a certain range [41]. Expression as:

∀We ∈WT ∀T ∈ Treq JT =We (6)

where WT , Treq is the set of external wrench and the cable
tension set to meet the requirements, respectively.

0 = {WT | wd ∈ [wmin,wmax] , 1 ≤ d ≤ n} (7)

� =
{
Treq | ti ∈ [tmin, tmax] , 1 ≤ i ≤ m

}
(8)

where wmin, wmax are the minimum and maximum of the
external wrench, respectively. tmin, tmax are the minimum and
maximum of each cable tension, respectively.

According to the wrench feasible condition definition,
if WA =

{
JT
∣∣ T ∈ Treq

}
and WA ∈ WT are set up,

the posture of the mobile platform satisfies the wrench fea-
sible condition. WA is a convex set because Treq is a convex
set [42].

B. INTERFERENCE DETECTION
When the mobile platform is moved in a certain position, it is
necessary to compute the distance between the two vertical
lines of the cable space and whether d is smaller than the
interference threshold δ when judging whether the cables
cause interference [43], [44]. As shown in Fig. 3, the cable
BiAi and the cable BjAj of a CDPR can be selected as the
research objects without losing its generality. The unit vector
of the cable BiAi is ui = (uix , uiy, uiz), the plane is represented
as abni; The unit vector of the cable BjAj is uj = (ujx , ujy, ujz),
the plane is represented as abnj; The common normal vector
between the two cables is n=abni∩abnj; The unit vector of n
is on = (onx ony onz), the normal vector ni = (nix , niy, niz)
of the plane abni; The normal vector nj = (njx , njy, njz) of the
plane abnj.
From Fig. 3, it can be seen that the shortest distance

between two cables is the distance between the intersection

FIGURE 3. The distance between cable and cable, the angle between
cable and the normal of mobile platform surface.

point Ci of the cable BiAi and the plane abni and the intersec-
tion point Cj of the cable BjAj and the plane abnj. Suppose
that any point on the plane abni is expressed as (Xi, Yi, Zi),
and any point on the plane abnj is expressed as (Xj, Yj, Zj),
the two planes can be expressed by the following equations:{

nix(Xi − Bix)+ niy(Yi − Biy)+ niz(Zi − Biz) = 0
njx(Xj − Bjx)+ njy(Yj − Bjy)+ njz(Zj − Bjz) = 0

(9)

Since points Ci and Cj, respectively, are in the cable BiAi
and BjAj, the coordinates can be represented respectively as:

Cix = (Bix + uixκ)
Ciy = (Biy + uiyκ)
Ciz = (Biz + uizκ)

(10)


Cjx = (Bjx + ujxη)
Cjy = (Bjy + ujyη)
Cjz = (Bjz + ujzη)

(11)

Point Ci and Cj are in the plane abni and abnj, by substi-
tuting (10) and (11) into (9), the proportional parameter κ , η
can be obtained. Hence, the point Ci and Cj can be expressed
as:

Cix = Bix−uix
njx(Bix−Bjx)+njy(Biy−Bjy)+njz(Biz−Bjz)

njxuix + njyuiy + njzuiz

Ciy = Biy−uiy
njx(Bix−Bjx)+njy(Biy−Bjy)+njz(Biz−Bjz)

njxuix + njyuiy + njzuiz

Ciz = Biz−uiz
njx(Bix−Bjx)+njy(Biy−Bjy)+njz(Biz−Bjz)

njxuix + njyuiy + njzuiz
(12)

Cjx = Bjx−ujx
nix(Bix−Bjx)+niy(Biy−Bjy)+niz(Biz−Bjz)

nixujx + niyujy + nizujz

Cjy = Bjy−ujy
nix(Bix−Bjx)+niy(Biy−Bjy)+niz(Biz−Bjz)

nixujx + niyujy + nizujz

Cjz = Bjz−ujz
nix(Bix−Bjx)+niy(Biy−Bjy)+niz(Biz−Bjz)

nixujx + niyujy + nizujz
(13)
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The distance between two points according to the distance
formula between two points in space can be found using:

d =
∥∥CiCj∥∥2 ≤ δ (14)

where δ is interference threshold, and δ cannot be zero
because transversal vibration occurs when the platform
moves.

The following theorem can be used to judge whether the
cable interferes with the surface of the mobile platform.
Theorem 1: The mobile platform is a convex polyhedron

and the surface is plane, and there is no interference between
cable and plane. Only the cable unit vector and the normal
vector of the hinge plane have an acute angle [43].

As shown in Fig. 3, the mobile platform is convex. The
condition that the jth cable does not contact with several
adjacent surfaces is given by:

arccos(uj · nk ) < 90◦

or arccos(uj · nm) < 90◦ (15)

C. SOLVING STEPS OF THE WFW WHEN
CONSIDERING INTERFERENCE
According to the judgment method of the WFW that is put
forward in [41] and [45], for further consideration of interfer-
ence detection between cable and cable, and cable and the
mobile platform, the solving steps of the WFW has more
practical significance when considering the interference of
the cable.

1) Set the position of the mobile platform and select the
search range.

2) Determine the point of the centroid of the mobile plat-
form, whether it meets the condition of the WFW, and deter-
mine whether there is interference between cable and cable,
and cable and the mobile platform.

3) Detect whether other location points in the workspace
determined by the first step, meet the WFW and interference
conditions. If two judgment conditions are met at the same
time then the location point is saved, if any one of them is not
satisfied, the point is deleted.

Finally, the WFW, considering the interference, is finally
determined. By changing the posture of the mobile platform
and repeating the above process, it can be used to judge the
WFW in the different postures of CDPRs.

IV. CONFIGURATION OPTIMIZATION OF CDPMs
Because of the cable’s unilateral characteristics, the fixed
platform and the mobile platform’s size and layout will
affect the workspace of the robot; therefore it is necessary
to design a suitable fixed platform and mobile platform size
and layout of the CDPR so it has the largest WFW. Many
researchers have taken a strong interest in the box structure
of both fixed and mobile platform, as shown in Fig. 1. The
redundant cable CDPR with a box structure improved the
reliability of the robot, and at the same time, the geometric
structure and the workspace are symmetrical [46]–[48]. Thus,
the research work in this paper has also aimed to study a

box-shaped CDPR. Fig. 1 shows a CDVATR as an example
design of the size of a CDPR. Because the virtual assembly
process is a human-machine interaction process, the fixed
platform and mobile platform must have driving units, sensor
installation dimensions, and man-machine operation. So the
fixed platform side length is chosen as ρ = 4 m with the
mobile platform as a cube of size (Lm, Wm, Hm).

A. SIZE OPTIMIZATION OF THE MOBILE PLATFORM
As shown in Fig. 1, a virtual assembly operation with a CDPR
needs to meet the virtual assembly requirements of the virtual
components of different spatial structures. The robot’s mov-
ing space enables the robot to complete the assembly needs
of larger structural components, thus making the robot more
widely useable. Scheme 1 of the CDPR cable layout struc-
ture diagram of the CDVATR is shown in Fig. 4, the guide
pulley of the drive unit is simplified at the apex of the fixed
platform. The fixed platform is a cube of length ρ = 4 m.
The mobile platform is a Lm×Wm×Hm block whose center
of mass is at its geometric center. The minimum tension of
the cable is set to 10 N and the maximum tension is 300 N to
ensure the tension of each cable.

FIGURE 4. Scheme 1 CDPR cable layout structure diagram.

According to the Jacobian matrix J, it can be known that
the larger the size of the mobile platform, the larger the
external force of the robot that can be balanced. However,
if the size of the mobile platform is too large, it will also
reduce the workspace of the robot. When keeping the mobile
platform at a neutral orientation, the cable interference is
the smallest and the workspace is the largest. The structure
of the CDPR is optimized, and the maximum of the WFW
as the objective function. As shown in Fig. 4, it is assumed
that the function of the WFW of a CDPR V (Lm,Wm, Hm, ρ)
is feasible, where Lm represents the distance ofB7B8,Wm rep-
resents the distance of B6B7, and Hm represents the distance
of B3B7. The position of the articulated point of the cable and
the mobile platform can be changed arbitrarily, for example,
the actual map of the virtual assembly robot.
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Thus the optimization of a CDPR can be given in the form
of the following expression [41]:

max V (Lm,Wm,Hm, ρ)

s.t. 0 ≤ Lm ≤ ρ, 0 ≤ Wm ≤ ρ, 0 ≤ Hm ≤ ρ (16)

Although the volume of the WFW is difficult to express,
the GCD method can be actually used to optimize the size of
the mobile platform. Two of three unknowns, the change of
one of the unknowns, which optimizes each unknowns, and
the optimization process can be expressed as:

ak+1 = argmax
a

V (b, c) (17)

where for a, b, c, if one of them represents the length variable
of the mobile platform, then the other two will be expressed
as width and height variables, respectively.

The size optimization of the mobile platform process is
implemented in MATLAB with Intel Core i5-3470, 3.2 GHz,
and 16G RAM. The algorithm proposed in part III is used
to compute the WFW of the robot, and the mobile platform
is searched with a search step of 0.12 m in the fixed plat-
form space. When the size of the mobile platform is (1.2 m,
0.8 m, 0.4 m), the WFW of the robot is the largest.

FIGURE 5. Scheme 1 optimal dimension WFW for mobile platform.

As shown in Fig. 5, the maximum number of robot
workspace points is 17342. The blue box represents the work-
able points of the mobile platform in the fixed platform, and
the red represents the boundary lines of the workspace.

B. NEW LAYOUT SCHEME
In Section IV-A determined the size of the mobile platform
when the cable driven parallel machine has the maximum
WFW, but at this point, the cable layout plan does not guar-
antee that the robot has the largest attitude angle. Therefore,
it is necessary to further analyze the layout of the robot cables,
and put forward second and third layout schemes, as shown
in Fig. 6. As shown in Fig. 1, the CDPR needs to have
the largest possible space angle in the center of the fixed
platform, in order to meet different training needs. As shown
in the two new layout schemes, the position of the hinge point
of the cable and the mobile platform is determined by using
the GCD method for the two new schemes.

FIGURE 6. Scheme 2 and scheme 3 CDPR cable layout structure diagram,
(a) represents the scheme 2, (b) represents the scheme 3.

In order to ensure the stability of the mobile platform,
the position of the B1, B2, B3, B4 hinge joint is fixed because
scheme 2 and scheme 3 are completely symmetrical. The
GCD method in IV-A is used to optimize scheme 2 and
scheme 3, and to determine the optimal distance between
the hinged points B5 and B6, B6 and B7 of the cable and
the mobile platform. Considering the influence of stiffness,
interference, and reducing machine freedom, the distance
between B5B6/2 and B6B7/2 is symmetrical, the minimum
distance is 0.05 m, and the maximum distance is 0.35 m. The
volume of the WFW for the different distance B5B6/2 and
B6B7/2 are given in Table 1 and Table 2 which represent the
number of poses within the workspace, respectively.

TABLE 1. Volume of the WFW with different distance B5B6/2.

TABLE 2. Volume of the WFW with different distance B6B7/2.

From the optimization results that are shown in Table 1,
it can be seen that the optimal value of B5B6/2 is 0.2 m. From
Table 2, the optimal value of B6B7/2 is 0.25 m. The optimal
layout scheme for scheme 2 and scheme 3 has therefore been
determined.

C. DETERMINE THE MAXIMUM ANGLE
OF THE THREE SCHEMES
According to some training subjects (for example, the switch
door training of the aircraft), the CDPR is required to have a
large rotation angle in the centroid of the workspace. Because
of the complex influences, and the three-dimensional rela-
tionship between the dimension parameters of the mobile
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FIGURE 7. Scheme 1 and scheme 2 projection views in three directions,
the wide black solid line represents the initial position of the mobile
platform, and the wide green line represents the extreme position of the
mobile platform that can be rotated. (a) Top view of scheme 1. (b) Top
view of scheme 2. (c) Left view of scheme 2. (d) main view of scheme 2.

platform, the rotation angle is difficult to ascertain. In order
to reduce the difficulty of analyzing the rotation angle in the
center of the robot, the three schemes are projected onto three
directions of three views, the main view, the top view and the
left view, according to the geometric relationship of the fixed
platform, the cable, and the mobile platform in projection
view. For scheme 1 the structure of the CDPR is completely
symmetrical and the projection view is the same, as shown
in Fig. 7(a). From this the projection geometry relationship
in the center of the robot can be established. According to
the top view in Fig. 7(a), the maximum rotation angle for the
three directions of the mobile platform can be obtained by:

α1 = ξ2 − ξ1 (18)

where

tan ξ2 = 1, tan ξ1 =
Wm

Lm

According to the size of the mobile platform, determined
in Section IV-A, the maximum value of the rotation angle of
scheme 1 for the mobile platform in the three directions is
α1 = 11.31◦.
The geometric relationship of the rotation angle can be

determined by the projection of the three directions of
the scheme 2 for the mobile platform in the three direc-
tions, as shown in Fig. 7(b)–(d). According to the left view
in Fig. 7(d), the angle relation can be determined as follows:

γ1 = ψ1 + (ψ3 − ψ2) (19)

where

tanψ1 =

1
2Hm
1
2Wm

cosψ2

=

[
1
2

√
H2
m+W 2

m

]2
+(
√
2
2 l)

2
−[
√
( 12Wm−

l
2 )

2+( l2+
1
2Hm)

2]2
√
2
2 l
√
H2
m +W 2

m

cosψ3 =
Wm

l
√
2

According to the main view of Fig. 7(c), the angle relation
can be determined as follows:

β1 = ϕ1 + (ϕ3 − ϕ2) (20)

where

tanϕ1 =
1
2Hm
1
2Lm

cosϕ2

=

[
1
2

√
L2m+H2

m
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According to the top view in Fig. 7(b), the angle relation
can be determined as follows:

α1 = ξ2 − ξ1 (21)

where

tan ξ2 = 1

tan ξ1 =
Wm

Lm
According to the size of the mobile platform, determined

in Section IV-B, the maximum value of the rotation angle of
scheme 2 for the mobile platform in the three directions is
γ1 = 36.87◦, β1 = 32.75◦, α1 = 11.31◦. Scheme 3 has the
same projection geometry as that of scheme 2, and the main
view and left view in scheme 3 are equivalent to the scheme 2
left view and the main view respectively for the geometric
relationship. Therefore, it is possible to determine that for
scheme 3, α1 = 11.31◦, β1 = 30.05◦, γ1 = 31.26◦.
By comparing the WFW of the three schemes, we know

that the WFW of scheme 1 is larger than the latter two
schemes, but its space rotation angle is smaller than that of the
latter two schemes. The WFW of scheme 3 is larger than that
of scheme 2, but the angle of space rotation is less than that of
scheme 2. According to the actual application of the CDPM,
scheme 2 is the best scheme for the virtual assembly training
robot. The WFW range of scheme 2 is shown in Fig. 8.

From Fig. 8, the WFW of scheme 2 has more workspace in
the lower half. Therefore, when designing the trajectory of the
robot, we canmake the trajectory in the lower half plane cover
as much as possible, so that it can complete more complex
virtual assembly training.
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FIGURE 8. Scheme 2 optimal dimension WFW for mobile platform.

V. TENSION DISTRIBUTION ALGORITHM
Generally, 8 cable 6-DOF CDPRs with cable is redundant
actuation, and the cable tension needs to be distribution in real
time. Therefore, the non-iterative real-time tension distribu-
tion algorithm is necessary. For redundant actuated CDPRs,
the Jacobian matrix J is non-square, so there are infinite
solutions to the cable tension. Therefore, the real-time and
rationality of the tension distribution when computing the
cable tension of the CDPRs must be determined.

A. DETERMINATION OF FEASIBLE
CABLE TENSION POLYGON
m cable drive units are used to control the mobile platform to
make it have n-DOF and the degree of actuation redundancy
is r = m − n. This paper studies the 8 cable CDPR with
6-DOF, so the redundant freedom degrees r = 2, and J is
the 6×8 Jacobian matric. Because J is non-square matrix, the
Moore–Penrose pseudoinverse J+ that needs to be introduced
for calculating the cable tensions T = [t1, · · · , t8] ∈ R8,
and the solution of the cable tensions equation is expressed
as [30]:

T = J+We + N λ = Ts + Th (22)

with

Ts = J+
(
MẌ+ VẊ−G−W

)
(23)

and

Th = Nλ (24)

where N=null(J) is a full-rank 8×2 matrix, and λ =

[λ1, λ2]T is an arbitrary 2-dimensional vector. The two
columns ofN form an orthonormal basis of the 2-dimensional
nullspace of J. Ts = J+ We is special solution to the cable
tensions used to balance the external wrench on the mobile
platform. Th = Nλ is the homogeneous solution to the cable
tensions used to regulate the internal tensions of the cable
where N maps λ into the nullspace of J.

Define 6 ⊂ R8 the 2-dimensional affine space of the
solution to (5) and � ⊂ R8 the 8-dimensional hypercube of

feasible cable tensions [31]:{
6 = {T | JT =We}

� = {T | ti ∈ [tmin, tmax] , 1 ≤ i ≤ 8}
(25)

Suppose that the minimum force of the 8 cable is tmin, and
the maximum force is tmax . The intersection 3 = � ∩ 6

of the hypercube � and the affine space 6 is a convex
polytope representing the set of feasible tension distributions
T [38], [39]. The preimage of is 3 a 2-D convex polygon;
Fig. 9 shows the polygon of the CDVATR in a fixed posture.

FIGURE 9. Preimage of 3 in the plane (λ1, λ2) for the pose (0.152, 0.254,
2.485, 0, 0, 0)T (units: meters and degrees, XYZ Eurler angle convention)
with a 40 kg total mass.

According to Eq. (22), the feasible polygon consists of the
following 16 linear inequalities:

tmin − Ts ≤ N λ ≤ tmax − Ts (26)

At present, there is little references on the tension polygon
for the formation of the preimage of 3. In previous studies,
the computation of the safe and continuous cable tension
requires the calculating the tension feasible polygon gravity
center for the formation of the preimage of3 [42]. The result
is safe because the feasible point selected in the feasible
polygon is far away from the boundary. But this method needs
to compute all the intersections in the preimage of 3. The
preimage of3 needs to compute the intersection points of any
two inequality lines in Eq. (26). Eq. (26) has 2×8 inequali-
ties; when inequality takes equal sign, each row of equation
is defined as two parallel lines. Therefore, all inequalities
need to be solved by solving C16

2 − 8 = 112 intersection
points [38]. It is necessary to determine the center of gravity
of a polygon according to the triangle method after knowing
the intersection point of the feasible polygon. Although these
steps are simple, computation is very time-consuming.

Hiller et al. [49] proposed an effective method to quickly
find the intersection vertices of feasible polygons to reduce
the time consumption of finding the feasible polygon vertices.
The main idea of this method is to find the first intersection
vertex of the preimage of 3, and then move along one of
the lines forming the intersection point until the next new
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intersection vertex is found. It is found that the process of
intersection is continuous until the intersection vertices of
all feasible polygon are found. The following Section V-B
of simple recall step 1 and step 2, focuses on the third step,
innovative methods to reduce computational feasibility poly-
gon internal feasible point time.

B. DETERMINATION OF FEASIBLE CABLE
TENSION POLYGON
The three centering method develops according to the
following steps:

1) Determine any point in the preimage of 3 as the first
vertex.

The symbol of inequality in Eq. (26) is replaced by an
equality symbol, and the linear equations Lib and Ljb, {i, j} ∈
{1, · · · , 8} , i 6= j, which are composed of theminimum or the
maximum value, are selected in any two rows of them.
Lib and Ljb constitute the first vertex vij, and must satisfy the
following conditions [50]:

bi − tsi = niλij
bj − tsj = njλij
tmin − Ts ≤ Nλij ≤ tmax − Ts

(27)

where the 2-dimensional line vectors ni and nj denote the
lines i and j of N, respectively. The intersection point λij
between Lib and Ljb is a vertex vij of the preimage of 3.

2) Move along one straight line.
The second step is to follow a line Lib or Ljb along the first

intersection vertex vij, until the next intersection points p are
found. The next points p determines the formula as follows:

p = vij + α nT
i⊥

(28)

where ninTi⊥ = 0, α is a scalar and its determination is detailed
in [51]. After successive processes, all intersections of the
final feasible polygon are determined.

3) Feasible point determination in feasible polygon.
After the first two steps, the boundary line of the convex

set S and the intersection point vi j = [vp1 vp2 ] of the convex
set are determined. According to definition:
Definition 2: S ∈ Rn is a convex set, if any two points v1

and v2 in S, arbitrary scalar ζ ∈ (0, 1) satisfies:

ζv1 + (1− ζ )v2 ∈ S (29)

Select the minimum point of λ1 in the preimage of 3 as
vmin λ1 = (vpmin λ1

, vpλ2 ) and select the maximum point of λ1
in the preimage of 3 as vmax λ1 = (vpmax λ1

, vpλ2 ). The mid-
point of the two points is:

vλ1 =
1
2

(
vmin λ1 + vmax λ1

)
, ζ =

1
2

(30)

Select the minimum point of λ2 in the preimage of 3 as
vmin λ2 = (vpλ1 , vpmin λ2

) and select the maximum point of λ2
in the preimage of 3 as vmax λ2 = (vpλ1 , vpmax λ2

). The mid-
point of the two points is:

vλ2 =
1
2

(
vmin λ2 + vmax λ2

)
, ζ =

1
2

(31)

According to the convex optimization theory, the median
value is taken third times, and themedian point must be inside
the feasible polygon and away from the polygon boundary.
Finally, the feasible point is determined:

vλ =
1
2

(
vλ1 + vλ2

)
, ζ =

1
2

(32)

Note that these formulas are applicable since we have
found the full feasible polygon vertices. Finally, the desired
feasible cable tension distribution point vλ is determined after
three centering and find T = Ts + Nvλ.
As Fig. 9 shown, the feasible point determined by the first

centering is the midpoint of the black solid line marked with
black triangle; The feasible point determined by the second
centering is the midpoint of the red solid line marked red dot;
The desired feasible point determined by the third centering
is the midpoint of the purple solid line, marked with purple
square. The flowchart of the proposed algorithm is shown
in Fig. 10.

FIGURE 10. Flowchart of the algorithm of Section V.

C. PROOF OF CONTINUITY
If we prove that T is continuous, only need to prove that
both Ts and Th are continuous. Reference [34] has given the
continuity proof ofTs. It is no longer proved here that we only
need to prove that Th is continuous. The derivation process is
as follows:

Th = Nvλ (33)

Suppose that v = f (x) is a convex function, [v1, v2] ∈ S,
letting M = max{f (v1), f (v2)} and x ∈ [v1, v2], it then
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follows that:

f (x) = ζ f (v1)+ (1− ζ )f (v2) ≤ ζM + (1− ζ )M = M

(34)

Letting x = v1+v2
2 + ϑ , according to the convexity of the

function f (x), it can be obtained:

f (x) = f (
v1 + v2

2
+ ϑ) ≥ 2f (

v1 + v2
2

)− f (
v1 + v2

2
− ϑ)

(35)

According to Eq. (34), it can be obtained:

f (x)) ≥ 2f (
v1 + v2

2
)−M = µ (36)

Letting h > 0, [v1−h, v2+h] ∈ S, x, y ∈ [v1, v2], suppose
that z = y+ h

|y−x| (y−x), ζ =
|y−x|

h+|y−x| , so z ∈ [v1−h, v2+h],
y = ζ z+ (1− ζ )x, it then follows that:

f (y)− f (x) < ζ [f (z)− f (x)] ≤ ζ (M − ϑ) (37)

Because ζ = |y−x|
h+|y−x| ≤

|y−x|
h , it then follows that:

f (y)− f (x) <
|y− x|
h

(M − ϑ) = K |y− x| (38)

So the continuity of v is proved, and then Th is continuous.
Thus the continuity condition of T is proved.

VI. SIMULATION EXPERIMENTS
A simulation experiment of a 6-DOF 8 cable CDPR is
carried out to verify the proposed rapid optimization algo-
rithm of cable tension. Because the hinge position of the
CDAVOTR’s cable and the mobile platform can be flexibly
changed, the simulation adopted a layout scheme 2 with
larger workspace and pose angle. Set the mobile platform
quality is 40 kg, the Euler angles (0◦, 0◦, 0◦), when themobile
platform moves, the external force has gravity only.

FIGURE 11. Spiral trajectory in the WFW.

The CDVATR tension optimization distribution process is
implemented in MATLAB software. The trajectory of the
desired motion of the mobile platform in the WFW is shown
in Fig. 11. The red solid line is the robot WFW boundary,

and the black solid line is the moving trajectory of the mobile
platform. This trajectory is described as:

X = ρ × e−0.5wt × cos(wt)
Y = ρ × e−0.5wt × sin(wt)
Z = vt + 0.6

(39)

where ρ is the maximum radius of the spiral, w is the angular
velocity of the mobile platform, v is the mobile platform
Z direction speed, and t is trajectory time. The simulation
used values of ρ = 0.8 m, w = 0.8 rad/s, v = 1 m/s, t = 0:
π /80:0.8π . The starting point and pose of themobile platform
track are (0.055, −0.627, 0.6, 0◦, 0◦, 0◦), termination point
and pose are (0.152, 0.254, 2.485, 0◦, 0◦, 0◦).

The experimental results shown in Fig. 12(a) illustrate
the continuity of the proposed optimization algorithm. When
(CDAVOTR) moves along the trajectory, the cable ten-
sions vary continuously. According to the spiral trajectory
(Fig. 11), the center of mass termination point of the mobile
platform is 1.885 m higher than the starting point, and the
angle between the cables 1-4 and the Z -axis increases with
the height of the mobile platform. Therefore, the cable ten-
sion must be increased to balance the gravity of the mobile
platform and the downward cable tension of cables 5-8. The
angle between the cables 5-8 and the Z -axis decreases with
the increase of the height of mobile platform, so the cable
tension decreases gradually. Therefore, the cable tension of
cables 1-4 at the trajectory termination point is greater than
that at the starting point, and the cable tension at the track
termination point of cables 5-8 is less than that at the starting
point. The results show that the optimal tension distribution
algorithm is continuous and feasible. In addition, Fig. 12(b)
shows that the length of each cable varies continuously; the
mobile platform raise, the cables 1-4 shortens, and cables 5-8
extends. From Fig. 12 (c), the speed change of each cable
is a sine wave with decreasing amplitude, and the change
process is continuous. When the mobile platform is located at
a certain height, the greater the angle between the cables 1-4
and the Z -axis, the longer the cable, and the greater the
cable tension should be to balance the gravity of the mobile
platform and other cable tension, while cables 5-8 are the
opposite. Therefore, the cable tension of cables 1-4 should
gradually enlarge, that of cables 5-8 becomes smaller, and
the change of cable tension in Fig. 12(a) is consistent with the
law, thus proving the correctness of the proposed algorithm.

In order to prove that the proposed tension distribution
algorithm is done in real time, the time for each step of the
tension computation is analyzed when the spiral trajectory is
completed, as shown in Fig. 13.

From Fig. 13, it can be seen that the average time of
the cable tension distribution computation is 2 ms and the
maximum time is 5 ms, so this has proven that the proposed
algorithm can operate in real-time.

In order to prove the superiority of the proposed algorithm,
compared with the minimum norm method of [34] and the
safety tension method of [37], the three methods carried out
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FIGURE 12. Proposed method results showing cable tension, cable
length, cable velocity during execution of a spiral trajectory. (a) Tension
distribution of proposed method. (b) Cable length. (c) Cable velocity.

the same spiral trajectory and the time taken for the tension
distribution change when the mobile platform has different
attitude angles is measured. Tension distribution of the two

FIGURE 13. The computation time of proposed tension distribution
method when the mobile platform moves along the spiral trajectory.

FIGURE 14. Tension distribution of (a) minimum norm method and
(b) safety tension method when the mobile platform attitude angle
is (0◦, 0◦, 0◦).

methods from references when the mobile platform attitude
angle is (0◦, 0◦, 0◦) shown in Fig. 14. The all results are shown
in Tables 3–5.

TABLE 3. Task execution time of three methods when the mobile
platform attitude angle is (0◦, 0◦, 0◦).

TABLE 4. Task execution time of three methods when the mobile
platform attitude angle is (3◦, 0◦, 0◦).

Obviously, when the mobile platform is in three different
poses to complete the spiral trajectory, the proposed algo-
rithm has the least cost and the standard deviation is the
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TABLE 5. Task execution time of three methods when the mobile
platform attitude angle is (3◦, 1◦, 3◦).

smallest, and the total time spent on the whole trajectory is
the shortest; The minimum norm method took less time than
the safety tension method for the average time of tension
distribution to complete the whole trajectory. Out of the three
methods, the smaller the standard deviation of the computa-
tion time, the quicker the computation time, and therefore the
greater the reliability of the real-time control.

Through the experimental results and comparative analy-
sis, it is found that the proposed tension distribution method
can operate in real-time and be continuous in the WFW.

VII. CONCLUSION
This paper has studied the key problems that need to be solved
with regard to CDPRs real-time controls, including theWFW
taking interference into consideration, and the configuration
optimization and tension distribution. A WFW method of
considering interference between cable and cable, and cable
and the surface of the mobile platform has been proposed.
It was possible to determine the workspace of the robot
closer to the actual situation. The trajectory of the robot was
controlled in this workspace.

The size of the mobile platform of the common cable
parallel robots was optimized and the optimal size was also
determined, which established the maximum WFW of the
robot. The influence of the cable layout on the WFW was
innovatively analyzed, and the cable layout was determined
for the maximum workspace. The maximum attitude angle
of the three layout schemes was determined, and the optimal
scheme of the robot was determined by the comprehensive
comparison.

In order to make the robot have real-time control in the
WFW, a cable tension distributionmethodwas proposed. This
method can quickly determine the feasible point of tension
distribution and reduce the time of the tension distribution
computation. By comparing this with the results of two other
algorithms, it was proven that the proposed algorithm is
feasible and can operate in real-time.
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