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ABSTRACT With the proliferation of smart embedded devices, cyber physical social computing and
networking systems (CPSCN) are emerging as a next generation of social networks. Unlike traditional
social networks that run on cloud-based infrastructure, CPSCN systems usually depend on a large number of
distributed, heterogeneous devices, such as mobile phones, smart vehicles, or network access points. These
computing resources, which are often referred to as fog computing systems, provide a gateway to the physical
world, and thus offer new possibilities for social applications. Unfortunately, building CPSCN systems that
leverage fog computing infrastructure is not straightforward. Significant challenges arise from the large
scale distribution of computing resources over a wide area, and the dynamic nature of multiple, possibly
mobile, hosts. In this paper, we extend our previous work on a distributed dataflow programming model and
propose an application platform for realizing CPSCN systems. A key aspect of our work is the development
of an exogenous coordination model, which exhibits a separation of concern between computation and
communication activities, and helps resolve some of the challenges brought about by the dynamic and large
scale nature of CPSCN systems.

INDEX TERMS Cyber physical social computing and networking, fog computing, Internet of Things,
exogenous coordination, data-flow.

I. INTRODUCTION
As the number of smart embedded devices increases, com-
puting infrastructure is more intimately tied to the physical
world, often capturing high volumes of real world sensor data.
This not only gives us more insight into our surroundings but
also opens a communication channel between humans and
physical objects, thus enabling a new class of systems that
we called Cyber Physical Social Computing and Network-
ing systems (CPSCN). These systems, where the presence
of physical entities plays a significant role, often depend
on fog computing - a distributed computing platform that
encompasses devices and servers from the edge, through the
network, to the cloud.

Thanks to its widely distributed nature, fog computing can
support the large numbers of participating smart devices in
CPSCN applications in a scalable and efficient way. In par-
ticular, by distributing workloads across network edges and
the cloud it offers scalability and flexibility. However, while
fog computing enables a more efficient and time sensitive

model for executing many tasks, it comes with its own
challenges that require some new approaches to the devel-
opment process. Particularly, these challenges stem from
the intrinsic characteristics of fog computing systems and
the CPSCN: widely distributed computing resources and
rapidly changing contexts across a large number of compute
nodes.

Since the computing resources in CPSCN systems are
often widely geographically distributed, it requires a dif-
ferent application model and software engineering process
as compared to traditional social networks. While existing
networks also consist of distributed components, the distri-
bution of these components on the computing infrastructure
is usually transparent to the developer. This is because in a
centralized data center, application developers do not worry
about which machine hosts computation. In contrast, in fog
computing systems where the computing and communication
infrastructure is not centralized, or homogeneous, developers
need to specifically cater to these differences. In CPSCN
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systems, we argue that the application model needs to take
into consideration the underlying computing infrastructure
and its associated contextual information as an integral part
of an application. As a simple example, it should allow the
developers to choose a particular physical location where a
computation activity should run.

Second, the large scale characteristic of fog computing
infrastructure and the complexity of CPSCN systems suggest
that we should rethink the separation of concerns between
communication and computation activities. Traditionally,
these activities are often mixed together in the applica-
tions’ codes. With more complex CPSCN applications, an
exogenous coordination model, which explicitly separates
communication and computation, could provide a more com-
plete solution [1]. In an exogenous coordination model [2],
the process of developing application components is com-
pletely separated from the communications or co-operations
among them. Every component is modeled as a computation
activity with its own input and output ports. At development,
a computation activity does not have knowledge about the
peers it will interact with. All it does is to take the data
from its inputs, do the computation and place the result on
its outputs. The developers design the application by describ-
ing how these independent computation activities co-operate
with one another. At runtime, the co-operation among these
activities is then coordinated by an external coordinator. That
is, depending on the application design, the coordinator takes
data from the outputs of one activity and place them on the
inputs of other activities. In other words, the coordinator
‘‘wires’’ or ‘‘routes’’ data among the computation activities
so that the developer’s application design or requirements
are met. When the system is large and composed of many
devices, an exogenous coordination model relieves the devel-
opers from the communication details and helps them to focus
on the abstract application model.

In summary, we propose a new approach to building
CPSCN systems that embraces all these fog-based character-
istics. Our key contributions are as follows:
– We show that contextual information of a computation

activity plays an important role in designing an applica-
tion platform to support CPSCN systems.

– We demonstrate that an exogenous coordination model
can help to maximize the reusability of off-the-shelf soft-
ware components in building complex CPSCN applica-
tions in a fog computing infrastructure.

– We propose our design of a scalable context-dependent
exogenous coordination platform and show that it can
greatly facilitate the development of large scale CPSCN
applications.

II. CPSCN SYSTEMS USING FOG
COMPUTING INFRASTRUCTURE
Unlike traditional social networks running in the cloud,
CPSCN systems using a fog computing infrastructure can
leverage many advantages provided by the distributed and
close-to-the-edge nature of the computing platform.

For example, consider a hypothetical CPSCN scenario
where traffic information, which is computed from sensor
streams (e.g., video streams from dashcams) generated by
vehicles, is shared back to other vehicles based on their
proximity to one another. This CPSCN scenario involves
a large number of smart, connected motor vehicles, many
data processing units that are distributed over a large area
such as the whole city and human social networks where the
computed traffic information is shared. The data processing
units could be mounted on the street lamp posts, as well as
be installed in communication access points (APs), such as
Wi-Fi APs or cell towers. The proximity to data sources
where data are generated allows these processing units to
deliver fast responses or notifications while saving network
bandwidth. Thus, whenever a traffic event occurs, a notifi-
cation can be sent to all the vehicles in close proximity to
the incident and at the same time, posted on traditional social
networks (e.g., Twitter).

In this class of CPSCN applications, resource management
and application development are still very challenging as it
is unclear how to coordinate the operation of such a large
number of smart devices in a large scale deployment [3].
Two distinguishing characteristics of fog computing systems
that very much influence the process, are the geographic
distribution and dynamic nature of the participating entities.

A. GEOGRAPHIC DISTRIBUTION OF FOG
COMPUTING INFRASTRUCTURE
Large scale CPSCN applications may range from industrial
applications spanning factories to smart cities spanningmetro
areas or larger geographical groupings. This large scale geo-
graphic distribution has several consequences that influence
the way applications are developed.

First, fog computing resources generally communicate
over heterogeneous networks that involve 1) different com-
munication mediums (e.g., Wi-Fi, LTE, Wired, etc.) and
2) a mix of static and dynamic endpoints with different
reachability (e.g., direct IP (Internet Protocol) addresses vs.
behind NAT (Network Address Translation)). This hetero-
geneity makes it more difficult for inter-device communi-
cation. In large scale fog applications, these communication
details should not hinder the development of the application
in general. Therefore, the developers should be provided with
enough programming tools and primitives that allow them to
focus only on the application logic.

Second, due to the large scale distribution of computing
resources, their physical locations, or in general their physical
context becomes an important factor in the fog computing
application model. Returning to our smart city vehicle exam-
ple, although there are many instances of the application
running in vehicles, a particular traffic update might only be
sent to a subset of vehicles that are directly affected by the
incident. That is, in addition to specifying the location where
an application component should be deployed, a developer
might want to restrict the interaction between two compo-
nents based on their locations or other context information.
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B. DYNAMIC NATURE OF FOG COMPUTING SYSTEMS
Due to the close bonding with the physical world, fog
computing systems often exhibit a highly dynamic nature,
in terms of both load fluctuation and context changes
(e.g., location changes when fog nodes are mobile). While
load balancing and dynamic scaling is commonly used in
cloud computing to cope with the fluctuation in application
load, it is more difficult to do the same in the fog computing
environment. This is partly because fog computing resources
are not as centralized and readily available as cloud comput-
ing resources so that it is harder to scale horizontally, and
partly because the heterogeneous networking environment
makes it difficult to locate resources for the load balancing
task.

In addition to load fluctuation, changes in physical context,
which as described in the previous section plays an important
role in IoT applications, requires a certain level of con-
text monitoring and situational re-evaluation. The involve-
ment of dynamic physical context also leads to the question
of how to expose the context information to programming
primitives or constructs that developers can use to build
the application. Furthermore, the application model should
explicitly distinguish contextual data and application data
so that the coordination of computation activities is driven
by the contextual data and ensuring application data are
communicated properly. Returning to our previous vehicle
example, the application data in this case is the sensing
data generated by vehicle and road side sensors. In order to
communicate or send this data to the appropriate recipients,
the contextual data - vehicle locations - are used to coordinate
the communication, that is, to route the sensing streams to the
appropriate end-points.

III. CONTEXT-DEPENDENT EXOGENOUS COORDINATION
AS AN INTEGRAL DEVELOPMENT MODEL
To develop complex CPSCN systems like the one illustrated
in SectionII, we need an appropriate application model that
eases the development process from design, through develop-
ment to deployment. Traditionally, in many existing Internet-
based social networks, the whole application is developed and
run in the cloud. In fog computing systems, the same process
becomes more complex as the computing resources are both
dynamic and unpredictable, leading to two important design
requirements; the ability to decompose the applications into
independent components and the ability to compose and coor-
dinate those components.

Although modular application design has been well stud-
ied, as well as the associated need of inter-process communi-
cation, to date there has been less study on how to coordinate
the participating components when they are part of a fog
based CPSCN system. In particular, since the components
run on a dynamic fog computing platform, important research
questions arise as to the correctness of the application which
no longer depends solely on the correctness of the computa-
tion activities, but also the physical context they are running
within.

As indicated, our approach to answering these research
questions is based on the notion of an exogenous coordination
model. In [1], we suggested that this was a promising appli-
cation model for fog applications. In this work, we develop
that idea and explore the details of such an approach and its
implications for the underlying fog platform.

With an exogenous coordination model, a distributed
application in the fog consists of independent software com-
ponents that cooperate with each other in fulfilling the appli-
cation’s requirements. The communications amongst them
is externally managed by a coordination entity (coordinator)
and explicitly separated from the computation activities. That
is, each software component is modeled as a computation
activity with well-defined communication ports for inputs
and outputs. Computation proceeds by taking incoming data
on the input port, carrying out processing and placing the
results on the output port. Communications between compo-
nents are realized by the external coordinator which arranges
for data from one output to be routed to another input. In other
words, the coordinator wires the components together using
the underlying networking infrastructure.

Our experiences with the exogenous coordination concept
in CPSCN, has highlighted a second, related issue. Coordinat-
ing distributed computation requires an understanding of the
physical context that computation operates within, and this
physical context needs to be separated from the sensor data
generated by said computation.

For example, in our hypothetical CPSCN application
described in Section II, it is common practice to mix the
physical location data with the sensor streams so that the
applications can take advantages of the location information.
However, by mixing these two, it is difficult to maintain
the reusability of the application design. This is because the
developers have to rewrite the code to extract the context
information from the data whenever they want to derive new
context-dependent application logics.

In our context-dependent exogenous coordination model,
we treat the contextual data separately from the actual appli-
cation data.While the application data flow between software
components’ ports, the contextual data is used to coordinate
how these components communicate with one another. For
instance, based on the location of the sensor streams, we can
coordinate the communication among two software compo-
nents so that they only communicate when they are nearby.

IV. SYSTEM DESIGN
To validate our approach, we have developed a system model
that supports context-dependent exogenous coordination and
have developed a design (and implementation) for a system
platform supporting the model.

A. CONTEXT-DEPENDENT COORDINATION PRIMITIVES
In our exogenous coordination model, a CPSCN application
comprises a large number of participating devices, denoted
as D. Each participating device Di ∈ D has a set of proper-
ties P that defines its context, such as location, computing
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FIGURE 1. Coordinating software components in fog-based CPSCN applications.

resources, etc. Each of these properties contributes to the
dynamic nature of the system in general.

The CPSCN application also involves a set of software
components S, each of which is modeled as a computa-
tion activity with input and output ports. Each applica-
tion in this CPSCN is then represented by a dependency
graph of S, showing how data are originated, processed and
consumed.

We define function V : D → P that captures the value
of property set P of a device D, which normally represent
the context of D. Vx : V (D) → Px is another function that
extracts a single property x from the set of device properties
V (D). Function F : S → D to select all the devices that are
capable of running a given software component.

The CPSCN application also includes a set of con-
straints C , represents the application-level requirements
on the software components set with regard the devices’
properties P.
We propose a context-dependent coordination primitive

γ (Si)P that defines a subset of C called context-dependent
constraints. In essence, context-dependent constraints are
restrictions on the execution of a particular software compo-
nent Si ∈ S with regard property set P. γ (Si)P is formulated
as follow:

γ (Si)P
⇐⇒ ∃Dm ∈ F(Si),

satisfied(VP(Dm))

where satisfied is a function provided by the develop-
ers to define the required device properties for a software

component to run. An example of such constraint is:

onServer(S1){numberOfCores,freeMem}
⇐⇒ ∃Di ∈ D,

(VnumberOfCores(Di) > 8)

∧(VfreeMem(Di) > 2)

Here onServer is the constraint name, numberOfCores is a
property of the participating devices D where the application
can be deployed on. assign is a function that enables the
execution of S1 on the device Di. This constraint restricts
the execution of software component S1 on only the devices
where the number of CPU cores is greater than 8 and the
available memory is greater than 2GB.

It is the definition of γ (Si)P that makes our platform a
context-dependent coordination platform because it takes the
physical context of the device where the software components
run into account.

More importantly, we propose a second novel type of
context-dependent primitive 0(Si, Sj)P that defines the other
subset in C called inter-component. Inter-component con-
straints are restrictions of the cooperation between any two
software components Si, Sj ∈ S with regard property set P.
0(Si, Sj)P is formulated as:

0(Si, Sj)P
⇐⇒ ∃Dm ∈ F(Si), ∃Dn ∈ F(Sj),

related(VP(Dm),VP(Dn))

where related is a function provided by the developers to
define the required context-dependent relationship between
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any two or more software components. Some examples of
such constraint are:

nearby(S1, S2){lat,lon}
⇐⇒ ∃Dm ∈ F(S1), ∃Dn ∈ F(S2),

|Vlat (Dm)− Vlat (Dn)| < M

∧|Vlon(Dm)− Vlon(Dn)| < N

sameHost(S1, S2){macAddr}
⇐⇒ ∃Dm ∈ F(S1), ∃Dn ∈ F(S2),

VmacAddr (Dm) == VmacAddr (Dn)

Here M ,N denote the range that defines the nearby sit-
uation in one application. lat and lon are the latitude and
longitude properties of the participating devices.

B. COORDINATION PROBLEM MODELING
Using our context-dependent primitives, the developers are
now able to express different coordination constraints for
their fog-based CPSCN applications. In order to fulfill those
constraints so that the application can run correctly given all
the contextual data, we model our coordination problem as a
Constraint Satisfaction Problem as follow:
– Variable: the involved set of software components -
{S1, S2, . . . Sn}

– Domain: the participating devices - {D1,D2, . . .Dm}
– Constraint: application-level requirements on the execu-

tion of S - {C1,C2, . . .Ck}
– Goal: deliver the right assignments of S to D that satisfy

all constraints C .
An illustration of CPSCN applications modeling is shown

in Figure 1
Another important definition in our model is the system

dynamic SDwith regard to a property Pi ∈ P. SD is a variable
that captures the change of Pi in time. Thus, SD can be seen
as a measure to quantify the dynamic level of our system.

Since the system is dynamic, the process of fulfilling
the constraints has to be re-executed periodically to keep
up with SD. That is, the coordinator has to periodically
reevaluate to deliver up-to-date assignments.Whenever a new
assignment is published, all participating devices update their
running software components and establish communication
with external components as needed. It is worthwhile not-
ing that in contrast to many existing constraint satisfaction
problems, our approach requires the coordinator maintains a
notion of past events. That is, to reduce the system level over-
head of communication establishment, the coordinator needs
to maintain its history and use it to minimize the number of
reconfigurations so as to avoid unnecessary communication
reconfiguration and associated overhead.

Further, the constraint solver has to deliver as many inde-
pendent solutions as possible in a scalable way. This is
because the large scale deployment of CPSCN, which usually
encompasses a large number of devices and software compo-
nents, makes it possible to have different assignments serving
at different locations.

FIGURE 2. System architecture.

C. SYSTEM DESIGN
Figure 2 presents our system architecture design. Our system
consists of three layers: a coordination layer, a layer of com-
munication brokers and a layer of participating devices.

The use of communication brokers is necessary to facilitate
the communication among devices which reside, sometime
behind firewalls, or on a heterogeneous set of networks.
Briefly the system leverages a publish/subscribe mecha-
nism to glue software components together based on their
names or identifications.

All participating devices are provisioned to take part in the
CPSCN, e.g., by end users signing up to the network. While
we do not explicitly study the incentive aspect of participants,
we believe that a typical crowd-sourcing incentive model
could be easily employed.

As seen in the previous Section, there can be many par-
ticipating devices that are capable of running a particular
software component. Thus, there are usually more than one
instance of each software component running at the same
time. These multiple instances of an software component
all participate in the application’s execution in a large scale
setting. Periodically, participating devices ‘‘contribute’’ their
software component instances that they are capable of run-
ning to a component repository, which is maintained at the
coordination layer.

From time to time, based on this repository and the appli-
cation descriptions (the dependency graph of components
and the constraints), the coordination layer uses a distributed
network of constraint solvers to calculate the assignment of
software components to devices. Each solver is then respon-
sible for a subset of the input. The results, which are the non-
overlapping combinations of software component instances,
are then synchronized back to the participating devices so that
they can update their communication peers.

To fulfill the inter-component constraints, the coordination
layer also needs to know the context of the involved soft-
ware components. In order to do this, participating devices
also periodically synchronize their contexts to the coordi-
nation layer. Thus, these device contexts are also fed into
the constraint solvers to calculate the coordination result.
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Again, each constraint solver (coordinator) is responsible
for capturing the context of a subset of all the participating
devices.

To carry out the constraint solving task, we adapt an
off-the-shelf constraint solver, the Google OR Tools1 for our
coordination platform. Google OR Tools include an opti-
mized implementation of constraint solvers that can be con-
figured with a time-based deadline so that we can control the
execution time of our coordinators. The tool also provides a
solutions collector where multiple solutions can be collected
after one execution instead of producing just one result. This
feature meets one of the model needs identified above, i.e., a
need to produce as many solutions as possible. To generate
independent solutions, we add an extra step of filtering all the
overlapped solutions from the tools’ results. Each solution is
a combination of software component instances where each
one of them represents a physical device that can fulfill the
application description.

When the participating devices receive the solutions, they
extract the solution that involves them. From that they further
extract the peer devices they should be connecting with.
Finally they establish the communication with these peers to
fully accomplish their roles.

As we described earlier, it is beneficial to retain some
history of configuration events to minimize disruption as
existing communications among devices might be rerouted
due to new coordination decisions. In some cases this might
result in unnecessary communication rerouting if existing
communication paths still meet all the application constraints.
In our current implementation, before reestablishing any
communication path, the devices always check with their
current peers to see if the existing combination is still valid.
If it is still valid, the device simply ignores the coordination
decision sent from the coordinator.

V. EXPERIMENTAL VALIDATION
We have conducted several experiments with our context-
dependent exogenous coordination model using both a phys-
ical testbed and a simulation. Our physical testbed is based
on the open source, Node-RED project from IBM2 which
we have extended with distribution support. Since we are
interested in large scale deployments, which are obviously
difficult to test with prototype research software, we have
also developed a network model using the Omnet++ sim-
ulator in order to study our constraint solver at scale. This
section describes our experiments with regard these two
implementations.

A. DISTRIBUTED NODE-RED
In our previous work [4] we augmented Node-RED, an open
source project that features a dataflow-based visual pro-
gramming model, to create a distributed dataflow application
development platform called Distributed Node-RED (DNR).

1https://developers.google.com/optimization/
2http://nodered.org

The original Node-RED project itself does not have the capa-
bility to develop and execute distributed applications and
runs as a single process on a single machine. Our DNR lets
application developers specify the deployment constraints
of an application flow so that once deployed, nodes in an
application flow can be executed on multiple devices while
still connecting to one another to deliver a fully functional
application. Our original version of DNRwas designed to be a
deployment configuration model that exposes the underlying
computing resources to the high-level application develop-
ers. Once deployed, the deployment configuration cannot be
changed and thus, does not have the capability to execute a
highly dynamic fog-based CPSCN, such as our example.

We have extended our DNR to add the coordination
component and continuous context acquisition component
described in this paper, so as to support the dynamic char-
acteristics of fog computing systems. We have also imple-
mented our context-dependent primitives into the platform
so that the ability to express application constraints based
on device’s properties. These currently include resource-
based constraints, communication constraints and temporal
and spatial constraints.

The platform is deployed across a network of nodes rang-
ing from hosted cloud infrastructure, through lab servers
to edge devices such as Raspberry Pis or similar. A single
server or cloud instance is designated as the coordinator and
also serves as the component repository.

Since Node-RED comes with a comprehensive software
component library, especially when there are existing com-
ponents that can interact with traditional social networks
(e.g., Facebook or Twitter), integrating these networks with
physical devices is straightforward. Therefore, a CPSCN
application can be easily provisioned. Furthermore, with
its visual programming interface, the path from design to
development has been shortened significantly. Based on this
easy to use programming tool, we add our own coordination
primitives that improves the seamlessness of the CPSCN
application development.

Figure 3 shows the development canvas of our DNR plat-
form. To build an application, the developer only needs to
drag the software components from the left column to the
canvas and wire them together. The application constraints
can be added by using the Node Requirement button at the top
right corner. The constraint definition dialog allows to define
constraints based on physical location of the devices, or any
of their computing resources, such as the number of CPU
cores or the amount of free memory. For example, the devel-
oper can request that a certain node should only run within
a particular geographical location. In cases where the node
is deployed to a moving vehicle, it will only be activated
if the vehicle passes through a certain area - defined by the
geographical constraint.

B. OMNET++ SIMULATION
In addition to our DNR coordination platform, we created an
Omnet++ network that simulates the coordination problem
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FIGURE 3. Building CPSCN applications using the DNR platform.

FIGURE 4. Omnet++ a network model for a fog-based CPSCN system.

in a large scale setting. Figure 4 shows our network design
in the Omnet++ simulator. The network consists of one
coordinator that oversees all network elements and a number
of mobile and fog devices. The mobile devices are configured
to move with certain speed and angle, which vary over time.
Communication among devices are direct Omnet++ point-
to-point channels with pre-configured communication delay.
The simulation configuration can be seen in Table 1. The
fog devices are configured to be stationary and randomly
distributed over the simulation area. The simulation area is
configured to be a large square of 1000 square meters.

The application is represented by four software compo-
nents that are connected to one another. The application
is constrained so that the data processing nodes (node b)

TABLE 1. Omnet++ simulation configuration.

can only be run by the stationary fog devices. It is also
required that the data source and sink nodes cannot be located
on the save device. Lastly, node a and node c are con-
strained to only participate in an application flow if they are
300 meters or closer to one another. Apart from the data
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processing node, node b, all other nodes run on mobile
devices. Each device also has its own local coordinator
which periodically updates the centralized coordinator with
the device’s location (i.e., x,y coordinates in Omnet++
simulation).

FIGURE 5. Scalability study.

We study how the coordination layer copes with the
increase in the number of participating devices. Figure 5
shows the results of varying the number of devices from
50 to 300 for both categories (stationary fog devices and
mobile devices). The horizontal axis shows the normalized
ratio between the number of coordination solutions and the
number of devices that need a solution. In this graph, 1 means
all devices are getting their needed coordination solution.
That is, they all know their peers to which they should send
the data to. On the other end, 0 means none of the device
knows where to send the data to. As the number of devices
increases, the domain space of the constraint solver increases
proportionally. When there is only one coordinator, the sys-
tem is able to keep up with the increase in number of devices
until 150 devices and started to quickly degrade. By adding
a second coordinator to the coordination layer, the problem
space of each coordinator is reduced in half, which results in
a much better, scalable result. This result verifies that a dis-
tributed coordination layer is required to build a coordination
platform for fog-based CPSCN applications.

VI. RELATED WORK
A. EXOGENOUS COORDINATION RESEARCH IN
OPEN DISTRIBUTED SYSTEMS
Exogenous coordination [2] is itself not a new idea and a
number of researchers have applied an exogenous coordina-
tion approach in distributed systems. One of the closest lines
of work to ours is to coordinate Open Distributed Systems,
which according to Agha [5], are systemswhose functionality
is not solely defined by the result of evaluating an expres-
sion. In these systems, the relative state of components, their
locality and distribution of the computation, etc., also play an
important role in the correctness of the application itself.

In the current state of the art in coordination systems
however, the dynamic characteristics of the systems are often
limited to the fluctuations in the availability of computation

activities (software components). Many existing coordination
models and languages only support this level of dynamic
nature without taking into consideration constant changes
in the physical context of the computation activities. These
works also mainly focus on coordinating different communi-
cation patterns among the computation activities rather than
coordinating the dynamic nature of the system. For example,
context-dependent connectors have received much attention
over the past ten years [6]–[8]. However, the notion of context
referred to in these works is limited to the pending activities
on each of the connector’s ports. The goal of the coordination
model is then to react to the presence of components on each
port and to propagate this event further into the connector’s
composing channels. In [9], Lombide Carreton and D’Hondt
addressed the problem of coordinatingmobile distributed sys-
tems that have frequently changing network topology. While
this is the closest work to our research as far as we are aware,
it only addresses the intermittent connectivity of participating
devices without taken into account their actual movement
and changes in context. Moreover, it focused on a small
scale mobile distributed systems with local network broad-
casting used as the coordination medium among participating
components.

B. APPLICATION DEVELOPMENT IN FOG COMPUTING
As a new computing paradigm, fog computing with its own
characteristics requires an appropriate application model.
Some recent attempts to address these problems have been
demonstrated by Hong et al. [10], Skarlat et al. [11] and
Cheng et al. [12]. Hong et al. [10] proposed a high-level
programming model that allows the developers to specify
how the application can be deployed to many fog comput-
ing nodes and supports dynamic scaling of the computing
resources. This work demonstrated that the application model
itself should be aware of the underlying computing node
on which the application is running. On the down side,
the proposed model does not explicitly break the application
into sub components, which makes it impossible to have
different deployment strategies without changing the appli-
cation logic. Skarlat et al. [11] proposed that fog applications
consisting of many services that have their own computation
demands and are placed into the fog computing system in
a way that satisfies the deadline requirements of the appli-
cations. While this work considered the componentization
of the application code and studied the placement of those
components, it does not take into account the contextual
information of data. Thus, it does not greatly differ from
the scheduling problem in traditional distributed systems.
Cheng et al. [12] proposed a containerized dataflow-oriented
application models with external configurations that specify
how the data flows through the fog computing nodes. This
could be seen as an important contribution toward exoge-
nous coordination of fog-based applications as the execution
of the individual software components is totally separated
from the communications among them. However, the coor-
dination mechanism is still simple and based on only the
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deployment scope. The inter-node communication is also
limited at either broadcast or unicast fashion.

While we specifically studied the task assignment problem
in fog computing, code offloading and task scheduling are the
other two closely related problems to our work. For exam-
ple, Cheng et al. [13] proposed a optimization strategy for
offloading code and scheduling task in wearable computing
setting in order tomaximize the user experience. The different
between these and our addressed problem is that we let the
developers to explicitly specify the application constraints
rather than predefine the objective function. Based on the
defined constraints, we derive as many non-overlapping
assignments as possible rather than looking for the
best one.

Dynamic characteristic of distributed systems has also
been well studied. For example, Zhang et al. [14] proposed a
deep learning model to predict cloud workload, so as to cope
with the dynamic nature of load in cloud computing. Despite
of existing efforts, supporting dynamic characteristic of fog
computing infrastructure is still a challenging task as fog
devices are less homogeneous, geographically distributed,
and not controlled by a single entity.

In our work, contextual information is incorporated into
the application model, letting the developers to express
application-level constraints based on the physical context
of the computation activities (i.e., software components,
dataflow nodes). In addition to that, our coordination model
explicitly separate contextual data and application data,
allowing for the separation of concern between communi-
cation and computation. That is, application data are used
in computation activities while contextual data are used to
coordinate the communication among those activities.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have explored the the requirements of fog
computing application development as it relates to CPSCN
systems and highlighted the issues raised by the scale and the
changing context of the computing infrastructure. To address
these issues, we have developed an exogenous coordina-
tion model that supports a reusable and scalable application
model. We also show that coordination in a fog computing
setting needs to incorporate the contextual data of the partici-
pating computation activities, and that the explicit separation
of contextual data and application data makes it easier to sep-
arate communication and computation activities. To validate
our approach, we have developed a fully functional research
platform, DNR, which has been used for a number of small
scale prototypes. In addition, to validate that our approach
scales adequately, we have simulated a larger scale system
using the Omnet++ system. In future work, we will address
two areas; firstly, we plan to deploy larger scale real world
CPSCN applications to validate our simulations and ensure
the exogenousmodel meets the needs of developers; secondly
we will extend the capabilities of our constraint solver, both
in terms of constraints supported and in terms of scale and
adaptability to system changes.
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