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ABSTRACT Conditional diagnosability is widely accepted as an important measure in determining the reli-
ability of an interconnection network. The conditional diagnosability of many well-known interconnection
networks has been investigated. Exchanged crossed cube(ECQ(s,t)) is a novel variant of hypercube, which
retains the advantages of exchanged hypercube and crossed cube in terms of the smaller diameter, fewer
links, and lower cost factor, and indicates more balanced consideration among performance and cost. In this
paper, several topological properties of ECQ(s,t) are derived. On this basis, the conditional diagnosability of
ECQ(s,t) under the PMC model is shown to be 4(s− 1)+ 1 for t ≥ s > 2, which is almost two times larger
than its classical diagnosability and also is larger than its conditional diagnosability under the MM model.

INDEX TERMS Exchanged crossed cube, conditionally t-diagnosable, conditional diagnosability.

NOMENCLATURE
ABBREVIATIONS AND ACRONYMS
PMC Preparata, Metze, Chien
MM Maeng, Malek
MM* Maeng, Malek*

NOTATIONS
G(V ,E) A multi-processor system
V (G) The vertex set of G
E(G) The edge set of G
N (u) The neighbors of vertex u
N (X )

⋃
v∈XN (v)− X

degG(u) The degrees of vertex u in G
degH (u) The degrees of vertex u in H
Pg(G) Every vertex in G has at least

g neighbors in G
k(G) The vertex connectivity of G
kc(G) The conditional vertex connectivity of G
kr (G) The restricted vertex connectivity of G
F1

a
F2 (F1 − F2) ∪ (F2 − F1)

ECQ(s, t) Exchanged crossed cube
t(G) The classical diagnosability of G
tc(ECQ(s, t)) The conditional diagnosability

of ECQ(s, t)

I. INTRODUCTION
With the continuous development of very large scale inte-
gration (VLSI) technology, a multi-processor system has

the capacity to contain hundreds, thousands, even tens-of-
thousands of processors. However, the high complexity of
these systems may threaten their reliability. As a result,
the problem of fault location is becoming a matter of major
importance in such a system.

System-level diagnosis is a rapid and reliable tool for fault
location. It proceeds under a special diagnosis model such
as the PMC(Preparata, Metze and Chien) model [1] and the
MM(Maeng andMalek) model [2]. The PMCmodel assumes
that each processor is able to test the adjacent processors and
determine them to be faulty or fault-free. The test outcomes
are considered reliable if the tester is fault-free. In the MM
model, a processor, called a comparator, sends the same
testing task to each pair of its distinct neighboring processors
and then compares their responses. A disagreement over a
comparison performed by a fault-free comparator indicates
the existence of at least a faulty processor, whereas the test
outcome of a comparison performed by a faulty comparator
is unreliable.

As we know, the classical connectivity of Menger [3],
in which any processor subsets can potentially fail simulta-
neously, is an important measure of the fault-tolerance abil-
ity. However, in classical connectivity, it has generally been
assumed that all neighbors of a processor can potentially fail
at the same time, which is almost impossible in a real large-
scale multi-processor system. To compensate for this short-
coming, Harary [4] introduced the definition of conditional
connectivity. Following this trend, restricted connectivity was
proposed in [5] and [6].
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There are two commonly used fault models: randommodel
and conditional model. The random model is assumed that
faults can occur everywhere, while the conditional model is
assumed that the distribution of faults must satisfy certain
constraints(e.g., any faulty set cannot contain all neighbors
of any vertex) [7]. A system is said to be t-diagnosable if
all faulty vertices can be identified under the random model,
provided the fault bound is t. The classical diagnosability
of G, denoted by t(G), is the maximum value of t such that
G is t-diagnosable. The classical diagnosability is used to
measure the diagnostic ability of multiprocessor systems. The
classical diagnosability of many interconnection networks,
including hypercube(denoted by Qn for short), folded hyper-
cube(denoted by FQn for short), crossed cube(denoted by
CQn for short), m?bius cube(denoted by MQn for short),
twisted cube(denoted by TQn for short), exchanged hyper-
cube(denoted by EH (s, t) for short) and locally twisted
cube(denoted by LTQn for short), based on PMC and MM*
model have been proposed [8]–[15]. In applications of diag-
nosability, it indicates the low possibility that the adjacent
processors of any processor are faulty simultaneously. Moti-
vated by this, a novelmeasure of diagnosability, named condi-
tional diagnosability, was introduced by Lai et al. [16], under
the conditional fault model. The conditional diagnosability
is an important diagnostic strategies that can significantly
enhance the system’s diagnostic capability and ensure the
reliable parallel operation of system. The conditional diag-
nosability of many novel interconnection networks are stud-
ied in the literature [16]–[36].

In order to obtain better topological properties, basing
on exchanged hypercube and crossed cube, a new varia-
tion of hypercube called exchanged crossed cube(denoted by
ECQ(s, t) for short) was proposed by Li et al. [37] in 2013.
Some basic properties and characteristics of ECQ(s, t) were
studied [37]–[42].

In this paper, after exploring various desire properties of
exchanged crossed cube ECQ(s, t), we evaluate the condi-
tional diagnosability of exchanged crossed cube ECQ(s, t).
We show that the conditional diagnosability of ECQ(s, t)
under the PMC model is 4(s− 1)+ 1 for t ≥ s > 2. The con-
ditional diagnosability of ECQ(s,t) under the PMC model is
almost two times as large as its classical diagnosability [41],
and also is larger than its conditional diagnosability under the
MM model [42], which indicates stronger diagnostic ability.

The remainder of this paper is divided into four sections.
Section 2 introduces some terminologies and preliminaries.
In section 3, we propose some important topological proper-
ties ofECQ(s, t). Section 4 discusses the conditional diagnos-
ability of ECQ(s, t) under the PMC model. Our conclusions
are in section 5.

II. TERMINOLOGIES AND PRELIMINARIES
Amulti-processor system can bemodeled as a graphG(V ,E),
where V (G) and E(G) denote vertex and edge sets of G,
respectively. N (u) in graphG(V ,E) is the set of all neighbors
of a vertex u, and N [u] = N (u) ∪ {u}. For an arbitrary vertex

TABLE 1. Invalidation rules for the PMC model.

set X , N (X ) =
⋃

v∈XN (v) − X and N [X ] = N (X ) ∪ X . For
brevity, N ({u, v}) = N (u, v) = N (u) ∪ N (v) − {u, v} and
N [{u, v}] = N [u, v] = N (u, v)∪ {u, v}. degG(u) and degH (u)
are the degrees of vertex u in G(V ,E) and in subgraph H ,
respectively. The property Pg(G) holds for G(V ,E) if and
only if every vertex in G has at least g neighbors in G.
If G is connected and G − F is disconnected, where F is

a set of vertices, then we say that F is a vertex cut. The
classical vertex connectivity k(G) of a graphG can be denoted
by k(G) = min{|F | : F ⊂ V (G) and F is a vertex cut}.
A conditional vertex cut of a graph G is a vertex cut and
N (u) 6⊂ F for each vertex u ∈ V (G) − F . The conditional
vertex connectivity, kc(G), of a graph G, is the minimum
cardinality of a conditional vertex cut of G, denoted by
kc(G) = min{|F | : F ⊂ V (G) and F is a conditional
vertex cut }. Following this trend, in [5] and [6], restricted
connectivity is introduced by imposing some conditions or
restrictions on F . A restricted vertex cut F of a graph G is
a vertex cut of G and N (u) 6⊂ F for any u ∈ V (G). The
restricted vertex connectivity, kr (G), of a graph G, is defined
as the minimum cardinality of a restricted vertex cut of G,
denoted by kr (G) = min{|F | : F ⊂ V (G) and F is a restricted
vertex cut }.

A. THE PMC MODEL
In the PMC model, a multi-processor system can be modeled
as a graph G(V ,E) and each vertex is able to test another
vertex if there is a link between them. (u, v) ∈ E(G) means
there is a test performed by u on v. Each vertex has two
states: fault-free and faulty. The outcome σ (u, v), of a test
(u, v), equal 0 if u evaluates v as a pass and 1 otherwise.
Table 1 summarizes the invalidation rules for the PMCmodel.
The collection of all test outcomes in G(V ,E) is called a
syndrome, denoted by σ .

B. CLASSICAL DIAGNOSABILITY AND CONDITIONAL
DIAGNOSABILITY
In a t-diagnosable system G(V ,E), any vertex subset of V
can potentially fail simultaneously. As is well known, it is
impossible to identify whether a vertex v is fault-free or faulty
whenN (v) are simultaneously faulty. As a result, the classical
diagnosability is no more than its minimum degree. But,
in real applications, the probability that all neighbors of a
vertex fail at the same time is usually very small.Motivated by
this, Lai et al. [16] proposed a newmeasure of diagnosability
which is called conditional diagnosability, by claiming the
property that each vertex has at least one fault-free neighbor.
A conditional fault set F is a fault set and each vertex of
the system has at least one neighbor not in F . Lai et al. also
introduced an important theorem to identify whether a given
system is conditionally t-diagnosable or not as follow.
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Theorem 1 [16]: A system G(V ,E) is conditionally
t-diagnosable if (F1, F2) is distinguishable, for each pair of
distinct conditional faulty sets F1, F2 ⊂ V (G) with |F1| ≤ t
and |F2| ≤ t .
Let (F1, F2) be a pair of distinct faulty sets. (F1, F2) is

indistinguishable if and only if there exists no edge between
V (G)− (F1∪F2) and F1

a
F2 (F1

a
F2 = (F1−F2)∪ (F2−

F1)) [16]. The conditional diagnosability of a graphG(V ,E),
denoted by tc(G), is the maximum value of t such that G is
conditionally t-diagnosable. According to the definition of
conditional diagnosability, a useful lemma about conditional
faulty sets is described as follows.
Lemma 1 [16]: Let G(V ,E) be the graph representation

of a system G. If (F1, F2) is a pair of distinct indistinguish-
able conditional faulty sets, the following two conditions
hold:

(1) |N (u) ∩ (V − (F1 ∪ F2))| ≥ 1 for u ∈ (V − (F1 ∪ F2))
and

(2) |N (v)∩ (F1 − F2)| ≥ 1 and |N (v)∩ (F2 − F1)| ≥ 1 for
v ∈ F11F2

C. EXCHANGED CROSSED CUBE
Exchanged crossed cube is a new variant of hypercube, which
retainsmany advantages of exchanged hypercube and crossed
cube such as recursive structure, high partitionability and
strong connectivity.

Let T = {(00, 00), (10, 10), (01, 11), (11, 01)}. Two
binary strings X = x1x0 and Y = y1y0 are pair related iff
(X ,Y ) ∈ T , denoted by X ∼ Y .
An exchanged crossed cube ECQ(s, t) with s ≥ 1 and

t ≥ 1 can be modeled as an undirected graph G(V ,E), where
V = {as−1as−2 . . . a0bt−1bt−2 . . . b0c|ai, bj, c ∈ {0, 1}, i ∈
[o, s), j ∈ [o, t)}, E = {(u, v)|(u, v) ∈ V × V }. There are
three types of edges, i.e., E1, E2 and E3, as described below:
E1: u[0] 6= v[0], u ⊕ v = 1, where u[i] denotes the ith bit

of vertex u and ⊕ is the exclusive-OR operator.
E2: u[0] = v[0] = 0, u[1 : t] = v[1 : t], where u[x :

y] denotes the bit pattern of u between dimensions x and y,
inclusive. For all s ≥ 1, if and only if there exists a positive
integer l, s + t ≥ l > t , such that u[l : s + t] = v[l : s + t],
u[l − 1] 6= v[l − 1], u[l − 2] = v[l − 2] if l − t is even, and
u[t + 2i + 2 : t + 2i + 1] ∼ v[t + 2i + 2 : t + 2i + 1] for
(l − t − 1)/2 > i ≥ 0.
E3: u[0] = v[0] = 1, u[t + 1 : s + t] = v[t + 1 : s + t].

For all t ≥ 1, if and only if there exists a positive integer l,
t ≥ l ≥ 1, such that u[l : t] = v[l : t], u[l − 1] 6= v[l − 1],
u[l − 2] = v[l − 2] if l is even, and u[2i + 2 : 2i + 1] ∼
v[2i+ 2 : 2i+ 1] for b(l − 1)/2c > i ≥ 0.
By the definition of ECQ(s, t), the total number of vertices

in ECQ(s, t) is 2s+t+1, the number of edges in ECQ(s, t) is
(s + t + 2)2s+t−1. The definition of ECQ(s, t) also reveals
that the number of edges in E1 is 2s+t , the number of edges in
E2 is t×2s+t−1, the number of edges in E3 is s×2s+t−1 [37].

Figure 1 shows an illustration of ECQ(s, t) with s = 2 and
t = 2, where the dashed links, solid heavy links and solid thin
links correspond to E1, E2 and E3, respectively [37].

FIGURE 1. An exchanged crossed cube ECQ(2, 2).

There are some important topological properties of
exchanged crossed cube ECQ(s, t) as follows.
Lemma 2 [37]: The degree of vertices in V (ECQ(s, t))

whose bit addresses end in 0 is s + 1, while the degree
of vertices in V (ECQ(s, t)) whose bit addresses end in 1
is t + 1.
By Lemma 2, we can show the minimum degree of

ECQ(s, t), denoted by δ(ECQ(s, t)), is s+1, where t ≥ s ≥ 1.
Lemma 3 [37]: An exchanged crossed cube ECQ(s, t)

can be decomposed into two copies of ECQ(s −
1, t) or ECQ(s, t − 1).
By Lemma 3, an ECQ(s, t) can be partitioned into two

subgraphs L and R, where V (L) = {0as−2 . . . a0bt−1 . . . b0c|
ai, bj, c ∈ {0, 1}, i ∈ [0, s − 2], j ∈ [0, t − 1]}, V (R) =
{1as−2 . . . a0bt−1 . . . b0c|ai, bj, c ∈ {0, 1}, i ∈ [0, s − 2], j ∈
[0, t− 1]}, L ∼= ECQ(s− 1, t) and R ∼= ECQ(s− 1, t). More-
over,V (L) can be subdivided into two vertex setsA andB, and
V (R) can be subdivided into two vertex sets C and D, where
A = {0as−2 . . . a0bt−1 . . . b00|ai, bj ∈ {0, 1}, i ∈ [0, s − 2],
j ∈ [0, t − 1]}, B = {0as−2 . . . a0bt−1 . . . b01|ai, bj ∈
{0, 1}, i ∈ [0, s − 2], j ∈ [0, t − 1]}, C =

{1as−2 . . . a0bt−1 . . . b00|ai, bj ∈ {0, 1}, i ∈ [0, s − 2], j ∈
[0, t − 1]}, D = {1as−2 . . . a0bt−1 . . . b01|ai, bj ∈ {0, 1},
i ∈ [0, s− 2], j ∈ [0, t − 1]} [38].
A shown in Figure 2, the edges between A and B and the

edges between C and D belong to E1. The edges between
A andC belong toE2. By the definition ofA,B,C andD, there
are three perfect matchings of subgraphs induced by A ∪ B,
A∪C andC∪D [38]. The edges between two distinct vertices
in B (orD) belong to E3. Similarly, the edge between two dis-
tinct vertices in A(or C) belong to E2. As shown in Figure 2,
a path u1 − u2 − u3 − u4 of length 3 with u1 ∈ B, u2 ∈ A,
u3 ∈ C and u4 ∈ D, such that (u1, u2), (u2, u3), (u3, u4) ∈
E(ECQ(s, t)), is a horizontal straight line. There are 2s+t−1

horizontal straight lines in ECQ(s, t).
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FIGURE 2. The vertex sets of A, B, C and D.

Lemma 4 [37]: ECQ(s, t) and ECQ(t, s) are isomorphic,
denoted by ECQ(s, t) ∼= ECQ(t, s).
By Lemma 4, without loss of generality, we can assume

t ≥ s > 0 in the following discussion.
Lemma 5 [38]: k(ECQ(s, t)) = s+ 1, where t ≥ s.
Lemma 6 [39]: kr (ECQ(s, t)) = 2s, where t ≥ s > 0.
Lemma 7 [38]: There is no triangle in exchanged crossed

cube ECQ(s, t).
Lemma 8 [37]: An exchanged crossed cube ECQ(s, t) can

be decomposed into 2s topological networks of CQt and 2t

topological networks of CQs.
According to the definition of exchanged crossed cube

ECQ(s, t), when c = 0 and have the same value in bit
addresses [1 : t], there are 2s vertices which can compose
a crossed cube CQs. Similarly, when c = 1 and have the
same value in bit addresses [1 + t : s + t], there are 2t

vertices which can compose a CQt . Thus an ECQ(s, t) can
be decomposed into 2s topological networks of CQt and 2t

topological networks of CQs [39]. Each pair of distinct CQss
(or CQts) is not connected directly [39]. For CQn, two extra
but important properties are presented below.
Lemma 9 [20]: For any two distinct vertices u and v of

CQn, they share at most 2 common neighbors, denoted by
|N (u) ∩ N (v)| ≤ 2.
Lemma 10: Let (u, v) be an arbitrary edge of crossed cube

CQn and w be another vertex of CQn with n ≥ 2. Then
|N (u, v) ∩ N (w)| ≤ 3.

Proof: This is clearly true for the case n = 2 and
n = 3. Assume this to be true for CQn−1. We show that this
is true for CQn. For n ≥ 2, By the definition of CQn, it can
be partitioned into two copies of CQn−1, denoted by CQ0

n−1
and CQ1

n−1, such that CQ0
n−1 and CQ1

n−1 are connected by
a perfect matching, i.e., every vertex of CQ0

n−1(or CQ
1
n−1)

is adjacent to exactly one vertex of CQ1
n−1(or CQ

0
n−1) [43].

Without the loss of generality, three possibilities need to be
investigate.

FIGURE 3. Illustration for Case 2.

FIGURE 4. Illustration for Case 3.

Case 1 ((u, v) ∈ E(CQ0n−1) and w ∈ V (CQ
0
n−1)): By the

induction assumption, we have |N (u, v) ∩ N (w)| ≤ 3.
Case 2 ((u, v) ∈ E(CQ0n−1) and w ∈ V (CQ

1
n−1)): Let u

′
=

N (u) ∩ V (CQ1
n−1), v

′
= N (v) ∩ V (CQ1

n−1) and w
′
= N (w) ∩

V (CQ0
n−1), as shown in Figure 3. Since CQ0

n−1 ∪ CQ
1
n−1 is

a perfect matching, N (u, v) ∩ N (w) ⊆ {u′, v′,w′}. Therefore,
|N (u, v) ∩ N (w)| ≤ 3.
Case 3 (u ∈ V (CQ0n−1), v ∈ V (CQ1n−1) and w ∈

V (CQ0n−1)): Let w
′
= N (w) ∩ V (CQ1

n−1), N (w) ∩ N (v) ⊆
{u,w′}. If (u,w) ∈ E(CQ0

n−1), we have N (u) ∩ N (w) = ∅
because there is no triangle in CQn. Then N (u, v) ∩ N (w) ⊆
{w′}. Otherwise, (u,w) /∈ E(CQ0

n−1). By Lemma 9, we have
|N (u)∩N (w)| ≤ 2, as shown in Figure 4. Therefore, |N (u, v)∩
N (w)| ≤ 3. �

III. THE TOPOLOGICAL PROPERTIES OF
EXCHANGED CROSSED CUBE
This section presents some useful topological properties of
exchanged crossed cube ECQ(s, t).
Theorem 2: Let a, b, c and d be four arbitrary vertices of

ECQ(s, t) where a ∈ A, b ∈ B, c ∈ B and d ∈ A. Then,
a-b-c-d-a is not a cycle of length four in ECQ(s, t).

Proof: As shown in Figure 5, we assume
a-b-c-d-a is a cycle of length four in ECQ(s, t) where a ∈ A,
b ∈ B, c ∈ B and d ∈ A. Then, we have (a, b) ∈ E1,
(b, c) ∈ E3, (c, d) ∈ E1, and (d, a) ∈ E3. Let a =
{0as−2 . . . a0bt−1 . . . b00}. By the definition of E1, we have
b = {0as−2 . . . a0bt−1 . . . b01}. By the definition of E3, we
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FIGURE 5. A cycle of length four in ECQ(s, t) with a ∈ A, b ∈ B, c ∈ B
and d ∈ A.

have c = {0as−2 . . . a0dt−1 . . . d01} and dt−1 . . . d0 exists at
least one bit different from bt−1 . . . b0. By the definition of
E1, we have d = {0as−2 . . . a0dt−1 . . . d00}. Thus, a and d
cannot be connected by a edge because dt−1 . . . d0 exists at
least one bit different from bt−1 . . . b0, which contradicts the
assumption. �
Theorem 3: For any two distinct vertices u and v of

ECQ(s, t), they share at most 2 common neighbors, denoted
by |N (u) ∩ N (v)| ≤ 2.

Proof: By induction. Clearly, the theorem holds for
ECQ(1, 1). Assume true for ECQ(s−1, t) (or ECQ(s, t−1)).
According to Lemma 3, we decompose ECQ(s, t) into L and
R, L andR are both isomorphic toECQ(s−1, t) (orECQ(s, t−
1)). Without loss of generality, we assume L ∼= ECQ(s−1, t)
and R ∼= ECQ(s − 1, t). When u, v ∈ V (L) (or u, v ∈ V (R))
we have N (u) ∩ N (v) ⊂ V (L) (or N (u) ∩ N (v) ⊂ V (R)).
By the induction hypothesis, we have |N (u) ∩ N (v)| ≤ 2.
When u ∈ L and v ∈ R (or u ∈ R and v ∈ L), by the fact that
A∪C contains a perfect matching, we have |N (u)∩N (v)| ≤ 2.
Hence, the theorem holds. �
Theorem 4: Partition an ECQ(s, t) into two subgraphs L

and R, L ∼= ECQ(s − 1, t) and R ∼= ECQ(s − 1, t). Let F
be a set of vertices, F ⊂ V (ECQ(s, t)). We set F0 = F ∩ L
and F1 = F ∩R. Suppose that ECQ(s, t)−F is disconnected
and there exists a component H of ECQ(s, t) − F , such that
V (H ) ∩ (V (R) − F1) = ∅ and degH (v) ≥ 2 for any vertex v
in H , denoted by P2(H ). Then, |F | ≥ 4s− 4 for t ≥ s ≥ 2.

Proof: Since degH (v) ≥ 2 for any vertex v in H , there
exists a cycle inH [19]. Since ECQ(s, t) is triangle-free, there
exists a cycle in H with minimum length 4. Let CH be a
cycle inH with minimum length, then we have |V (CH )| ≥ 4.
Without loss of generality, there are 3 cases to be considered.
Case 1 (V (H ) ∈ B): V (CH ) ∈ B because V (H ) ∈ B.

Let NB(CH ) = N (CH ) ∩ B, we have NB(CH ) ⊆ (F ∩ B) ∪
(V (H )−V (CH )). Since V (H ) ∈ B, each edge inH lies in E3.
According to the definition of E3 in ECQ(s, t), all vertices
in H have c = 1 and have the same value in bit addresses
[1 + t : s + t]. Similarly, all vertices in NB(CH ) have c = 1
and have the same value in bit addresses [1 + t : s + t].
By Lemma 8, all vertices in H and NB(CH ) are in the same
CQt , denoted by Y . Because NA(H ) = N (H )∩A ⊆ (F ∩A),
we have |F ∩A| ≥ |NA(H )|. By the fact that A∪B contains a

FIGURE 6. A cycle CH of length four in H with V (H) ⊂ B.

FIGURE 7. A cycle CH of length five in H with V (H) ⊂ B.

perfect matching and V (H ) ∈ B, we have |NA(H )| = |V (H )|.
Then, |F | ≥ |F ∩ A| + |F ∩ B| ≥ |NA(H )| + |NB(CH )| −
|V (H )−V (CH ))| = |V (H )|+|NB(CH )|−|V (H )|+|V (CH )| =
|NB(CH )| + |V (CH )|.
When |V (CH )| = 4, let CH = a− b− c− d − a, as shown

in Figure 6, |NB(CH )| = |NY (CH )| = |NY (a, b, c, d)| = 4t−
8. So |F | ≥ |NB(CH )| + |V (CH )| ≥ 4t − 8 + 4 = 4t − 4 ≥
4s− 4.

When |V (CH )| = 5, letCH = a−b−c−d−e−a, we have
t ≥ 3 because V (CQt ) = 2t ≥ 5. Because there is no triangle
in CQn, we have NY (a) ∩ NY (b) = ∅, NY (b) ∩ NY (c) =
∅, NY (c) ∩ NY (d) = ∅, NY (d) ∩ NY (e) = ∅, and NY (e) ∩
NY (q) = ∅, as shown in Figure 7. By lemma 10, we have
|NY (a) ∩ NY (c, d) − {e, b}| ≤ 1 and |NY (e) ∩ NY (b, c) −
{a, d}| ≤ 1. If |NY (a) ∩ NY (d) − {e}| = 1, then NY (a) ∩
NY (c) − {d} = ∅ and NY (d) ∩ NY (b) − {c} = ∅. Similarly,
if |NY (b) ∩ NY (e) − {a}| = 1, then NY (c) ∩ NY (e) − {d} =
∅. Hence, As shown in Figure 7, |NB(CH )| = |NY (CH )| =
|NY (a, b, c, d, e)| ≥ 5t−12. So |F | ≥ |NB(CH )|+|V (CH )| ≥
5t − 12+ 5 = 4t − 4+ (t − 3) ≥ 4t − 4 ≥ 4s− 4.
When |V (CH )| = 6, let CH = a− b− c− d − e− f − a,

we also have t ≥ 3 by V (CQt ) = 2t ≥ 6. If t = 3,
then each vertex in CH has 3 neighbors in B. Therefore,
as shown in Figure 8, each vertex in CH has at most one
common neighbor with other nonadjacent vertices in CH .
Hence, |NB(CH )| = |NY (CH )| = |NY (a, b, c, d, e, f )| ≥
6t − 15. So |F | ≥ |NB(CH )| + |V (CH )| ≥ 6t − 15 + 6 =
4t − 4 + (2t − 5) ≥ 4t − 4 ≥ 4s − 4. If t = 4, then
each vertex in CH has 4 neighbors in B. Therefore, as shown
in Figure 9, each vertex inCH has at most 2 common neighbor
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FIGURE 8. A cycle CH of length six in H with V (H) ⊂ B and t = 3.

FIGURE 9. A cycle CH of length six in H with V (H) ⊂ B and t = 4.

FIGURE 10. A cycle CH of length six in H with V (H) ⊂ B and t ≥ 5.

with other nonadjacent vertices in CH . Hence, |NB(CH )| =
|NY (CH )| = |NY (a, b, c, d, e, f )| ≥ 6t − 18. So |F | ≥
|NB(CH )| + |V (CH )| ≥ 6t − 18 + 6 = 4t − 4 + (2t − 8) ≥
4t − 4 ≥ 4s− 4. If t = 5, then each vertex in CH has at most
5 neighbors in B. In an extreme case, as shown in Figure 10,
each vertex in CH has at most 3 common neighbor with other
nonadjacent vertices in CH . But as we know, CQ5 does not
contain a subgraph isomorphic to Figure 10. Hence, when
t = 5 |NB(CH )| = |NY (CH )| = |NY (a, b, c, d, e, f )| >
6t − 21. Then, we have |NB(CH )| ≥ 6t − 20. So |F | ≥
|NB(CH )| + |V (CH )| ≥ 6t − 20 + 6 = 4t − 4 + (2t −
10) ≥ 4t − 4 ≥ 4s − 4 for t = 5. If t ≥ 6, we have
|NB(CH )| = |NY (CH )| = |NY (a, b, c, d, e, f )| ≥ 6t − 21
as shown in Figure 10. So |F | ≥ |NB(CH )| + |V (CH )| ≥
6t−21+6 = 4t−4+ (2t−11) ≥ 4t−4 ≥ 4s−4 for t ≥ 6.

When |V (CH )| ≥ 7, we also have t ≥ 3 by V (CQt ) =
2t ≥ 7. There exists a path . . .− a− b− c− d − . . . in CH ,
where a, b, c, d are 4 vertices inCH and (a, b), (b, c), (c, d) ∈

FIGURE 11. A cycle CH in H with |V (CH )| ≥ 7 and V (H) ⊂ B.

FIGURE 12. Illustration for Case 2.

E(CH ). By lemma 10, we have |NY (a) ∩ NY (c, d) − {b}| ≤
2 and |NY (d) ∩ NY (a, b) − {c}| ≤ 2. There is an extreme
case as shown in Figure 11. Hence, |NB(CH )| = |NY (CH )| ≥
|NY (a, b, c, d) − V (CH )| ≥ 4t − 11. So |F | ≥ |NB(CH )| +
|V (CH )| ≥ 4t − 11+ 7 = 4t − 4 ≥ 4s− 4.
Case 2 (V (H ) ∩ A 6= ∅ and V (H ) ∩ B 6= ∅): By P2(H )

and A ∪ B contains a perfect matching, there exists a path
a− b− c− d in H , where a, b ∈ B and c, d ∈ A. According
the definition of ECQ(s, t), we have a[t+1 : s+t] = b[t+1 :
s + t], b[1 : s + t] = c[1 : s + t] and c[1 : t] = d[1 : t].
As shown in Figure 12, let N (a)∩ B− {b} = X1, N (b)∩ B−
{a} = X2, N (c) ∩ A− {d} = X3, N (d) ∩ A− {c} = X4. Note
that |X1| = t−1, |X2| = t−1, |X3| = s−2, and |X4| = s−2.
Because there is no triangle in ECQ(s, t), we have X1 ∩X2 =
∅, X2 ∩ X3 = ∅, and X3 ∩ X4 = ∅. By Theorem 2, all the
vertices in N [a, b, c, d] will at least appear in t − 1+ t − 1+
s− 2+ s− 2+ 3 ≥ 4s− 3 horizontal straight lines as shown
in Figure 12. Each horizontal straight line in subgraph P has
at least one vertex in F because V (H ) ∩ (V (R) − F1) = ∅.
Therefore, |F | ≥ 4s− 3.
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FIGURE 13. A cycle CH in H with V (H) ⊂ A and |V (CH )| = 4.

FIGURE 14. A cycle CH in H with V (H) ⊂ A and |V (CH )| = 5.

Case 3 (V (H ) ∈ A): By V (H ) ∈ A, we have V (CH ) ∈ A.
By the fact that there are two perfect matchings of subgraphs
induced by A ∪ B, A ∪ C , each vertex in H has exactly one
neighbor in B, one neighbor in C , and s − 1 neighbors in
A, then |F | ≥ |N (H )| ≥ |NA(CH ) − (V (H ) − V (CH ))| +
2|V (H )| ≥ |NA(CH )| + |V (CH )| + |V (H )|.
When |V (CH )| = 4, as shown in Figure 13, we have
|NA(CH )| = |NA(a, b, c, d)| = 4s − 12. Hence, |F | ≥
|NA(CH )| + |V (CH )| + |V (H )| ≥ 4t − 12+ 4+ 4 ≥ 4s− 4.

When |V (CH )| = 5, let CH = a− b− c− d − e− a. In an
extreme case, as shown in Figure14, by lemma 9, lemma 10
and there is no triangle in ECQ(s, t), we have |NA(CH )| ≥
|NA(a, b, c, d) − {e}| ≥ 4s − 14. Hence, |F | ≥ |NA(CH )| +
|V (CH )| + |V (H )| ≥ 4s− 14+ 5+ 5 = 4s− 4.

When |V (CH )| ≥ 6, as shown in Figure 15, there exists
a path . . . − a − b − c − d − . . . in CH , where a, b, c, d
are 4 vertices in CH and (a, b), (b, c), (c, d) ∈ E(CH ). In an
extreme case, as shown in Figure15, by lemma 9, lemma
10 and there is no triangle in ECQ(s, t), we have |NA(CH )| ≥
|NA(a, b, c, d)−V (CH )| ≥ 4s−15. Hence, |F | ≥ |NA(CH )|+
|V (CH )| + |V (H )| ≥ 4t − 15+ 6+ 6 ≥ 4s− 3.

The proof is complete. �
Theorem 5: For any edge (u, v) of ECQ(s, t), where u ∈ A

and v ∈ C , |N (w)∩N (u, v)| ≤ 3 for any vertexw ofECQ(s, t).
Proof: There are 2 cases to be considered.

Case 1 (w ∈ A (Similarly, w ∈ C)): We have N (w) ∩
N (u, v) ⊂ A ∪ C . By theorem 3, we have |N (w) ∩ N (u)| ≤ 2
and |N (w) ∩ N (v)| ≤ 2. When |N (w) ∩ N (v)| = 2, we have
u ∈ N (w)∩N (v). Then we also have |N (w)∩N (v)|−|N (w)∩
{u, v}| ≤ 1. Hence, |N (w) ∩ N (u, v)| = |N (w) ∩ N (u)| +
|N (w) ∩ N (v)| − |N (w) ∩ {u, v}|≤ 2+ 2− 1 = 3.

FIGURE 15. A cycle CH in H with V (H) ⊂ A and |V (CH )| ≥ 6.

Case 2 (w ∈ B (Similarly, w ∈ D)): w and v have exactly
one common neighbor if and only if u, v and w are in a hori-
zontal straight line. Then we have |N (w)∩N (u)| = 0 because
ECQ(s, t) is triangle-free. Therefore, |N (w) ∩ N (u, v)| ≤ 2.
When u, v and w are not in a horizontal straight line,

we have |N (w)∩N (v)| = 0. By theorem 3, we have |N (w)∩
N (u)| ≤ 2. Thus, |N (w) ∩ N (u, v)| ≤ 2.
The proof is complete. �

IV. THE CONDITIONAL DIAGNOSABILITY OF
EXCHANGED CROSSED CUBE UNDER THE PMC MODEL
In this section, we will give a general method to investigate
the conditional diagnosability of ECQ(s, t) under the PMC
model. Before discussing this, we introduce some useful
theorems as follows.
Theorem 6:LetF be a vertex set of exchanged crossed cube

ECQ(s, t) with |F | ≤ 2s− 1. Then, one of the following two
conditions hold:

(1) ECQ(s, t)− F is connected or
(2)ECQ(s, t)−F has exactly two components, one is trivial

and the other is nontrivial.
Proof: By Lemma 3, we partition an ECQ(s, t)

into two ECQ(s − 1, t) subgraphs, denoted by L and
R, where V (L) = {0as−2 . . . a0bt−1 . . . b0c}, V (R) =
{1as−2 . . . a0bt−1 . . . b0c}, L ∼= ECQ(s − 1, t) and R ∼=
ECQ(s − 1, t). Let F0 = F ∩ L and F1 = F ∩ R, we have
F0 ∩ F1 = ∅. Because F0 ∩ F1 = ∅ and |F | ≤ 2s − 1,
either |F0| < s or |F1| < s. Without loss of generality,
we may assume that |F1| < s. Since R ∼= ECQ(s − 1, t),
we have k(R) = s by Lemma 5. Then, by k(R) = s and
|F1| < s, we know R − F1 is connected. In the following
proof, we investigate two cases.
Case 1: There exists a vertex u ∈ V (L) − F0 such that

N (u) ⊂ F .
Let v be an arbitrary vertex of V (L)−F0−{u}, denoted by

v ∈ V (L)−F0−{u}. We consider the following two subcases:
v ∈ A and v ∈ B.
Subcase 1.1 (v ∈ A): Let v′ = N (v) ∩ C .
Subcase 1.1.1 (v′ /∈ F): Since v′ /∈ F , v can be connected

to R− F1 by edge (v, v′).
Subcase 1.1.2 (v′ ∈ F): If N (v) ⊂ F , then |F | ≥ |N (u) ∪

N (v)| = |N (u)|+|N (v)|−|N (u)∩N (v)| ≥ s+1+s+1−2 =
2s, which contradicts the condition of |F | ≤ 2s−1. Therefore,
N (v) 6⊂ F which implies N (v) ∩ (A ∪ B) 6= ∅.
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FIGURE 16. Illustration for Subcase 1.1.2.1 in theorem 6.

Subcase 1.1.2.1 (N (v) ∩ B /∈ F): Let v = N (v) ∩ B.
As shown in Figure 16, v has s− 1 neighbors in A and v̄ has t
neighbors in B by the definition of ECQ(s, t). By theorem 2,
each vertex in N (v)∩A and each vertex in N (v̄)∩B are not in
a horizontal straight line. If v cannot connect to R− F1, then
each horizontal straight line of subgraph P and Q has at least
one vertex in F . There are s−1+1+t horizontal straight lines
in subgraph P and Q. Therefore, |F | ≥ s − 1 + 1 + t ≥ 2s,
which contradicts the condition of |F | ≤ 2s− 1.
Subcase 1.1.2.2 (N (v)∩B ∈ F and N (v)∩A 6⊂ F): Let v ∈

N (v)∩A−F . As shown in Figure 17, v has s−2 neighbors inA
besides v, and v has s− 2 neighbors in A besides v. We have
|N (v) ∩ N (v)| = 0 because ECQ(s, t) is triangle-free. If v
cannot connect to R − F1, then each horizontal straight line
in subgraph P has at least one vertex in F (see Figure 17). If
N (v)∩B ∈ F , we have |F | ≥ s− 2+ 1+ s− 2+ 1+|N (v)∩
B|+|N (v)∩B| = 2s, which contradicts the condition of |F | ≤
2s − 1. If N (v) ∩ B 6∈ F , with the proof of Subcase 1.1.2.1,
we have |F | ≥ 2s, which also contradicts the condition of
|F | ≤ 2s− 1.
Subcase 1.2 (v ∈ B): Let v′ = N (v) ∩ A.
Subcase 1.2.1 (v′ /∈ F):With the proof of Subcase 1.1.2.1,

we have |F | ≥ 2s, which also contradicts the condition of
|F | ≤ 2s− 1.
Subcase 1.2.2 (v′ ∈ F): If N (v) ⊂ F , we have |F | ≥
|N (u)∪N (v)| = |N (u)|+|N (v)|−|N (u)∩N (v)| ≥ s+1+s+
1− 2 = 2s, which contradicts the condition of |F | ≤ 2s− 1.
Therefore, N (v) 6⊂ F which implies N (v) ∩ (A ∪ B) 6⊂ F .
Since v′ ∈ F , we have N (v)∩ B 6⊂ F . Let v̄ be an arbitrary

vertex ofN (v)∩B−F , denoted by v ∈ N (v)∩B−F . As shown
in Figure 18, v has t−1 neighbors inB besides v and v has t−1
neighbors in B besides v. Because ECQ(s, t) is triangle-free,
we have |N (v) ∩ N (v)| = 0. If v cannot connect to R − F1,
then each horizontal straight line in subgraph P has at least
one vertex inF . We have |F | ≥ t−1+1+t−1+1 = 2t ≥ 2s,
which contradicts the condition that |F | ≤ 2s− 1.

FIGURE 17. Illustration for Subcase 1.1.2.2 in theorem 6.

FIGURE 18. Illustration for Subcase 1.2.2 in theorem 6.

Hence, any vertex in V (L)−F0−{u} is connected to R−F1
when there exists a vertex u ∈ V (L)−F0 such thatN (u) ⊂ F .
Since R− F1 is connected, then condition (2) holds.
Case 2 (N (u) 6⊂ F for any vertex u ∈ V (L)−F0):We have

the following two subcases.
Subcase 2.1 (u ∈ A): Let ū = N (u) ∩ C .
Subcase 2.1.1 (u /∈ F): u can be connected to R − F1 by

edge (u, ū).
Subcase 2.1.2 (u ∈ F and N (u)∩B /∈ F): Let u′ = N (u)∩

B. If u cannot connect to R − F1, with the proof of Subcase
1.1.2.1, we have |F | ≥ 2s, which contradicts the condition of
|F | ≤ 2s− 1.
Subcase 2.1.3 (u ∈ F and N (u) ∩ B ∈ F): By N (u) 6⊂ F ,

we have N (u) ∩ A 6⊂ F . Let u′ = N (u) ∩ A − F . If u cannot
connect to R−F1, with the proof of Subcase 1.1.2.2, we have
|F | ≥ 2s, which contradicts the condition of |F | ≤ 2s− 1.
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Subcase 2.2 (u ∈ B):
Subcase 2.2.1 (N (u)∩A /∈ F): If u cannot connect toR−F1,

with the proof of Subcase 1.1.2.1, we have |F | ≥ 2s, which
contradicts the condition of |F | ≤ 2s− 1.
Subcase 2.2.2 (N (u) ∩ A ∈ F): Since N (u) 6⊂ F , we have

N (u) ∩ B 6⊂ F . Let u′ ∈ N (u) ∩ B − F . If u cannot connect
to R − F1, with the proof of Subcase 1.2.2, we can deduce
|F | ≥ 2s, which contradicts the condition of |F | ≤ 2s− 1.
Therefore, for any vertex u in L − F0, u is connected to

R− F1 when N (u) 6⊂ F for any vertex u ∈ V (L)− F0. Since
R− F1 is connected, ECQ(s, t)− F is connected. Condition
(1) holds. �
Theorem 7:LetF be a vertex set of exchanged crossed cube

ECQ(s, t) with s ≥ 1 and t ≥ 1. Suppose that ECQ(s, t) −
F is disconnected and every component of ECQ(s, t) − F is
nontrivial and suppose that there exists one component H of
ECQ(s, t)−F such that degH (v) ≥ 2 for every vertex v in H ,
denoted by P2(H ). Then, one of the following two conditions
holds:

(1)|F | ≥ 4(s− 1) or
(2)|H | ≥ 4(s− 1)− 1.
Proof: By Lemma 3, we partition an ECQ(s, t)

into two ECQ(s − 1, t) subgraphs, denoted by L and
R, where V (L) = {0as−2 . . . a0bt−1 . . . b0c}, V (R) =
{1as−2 . . . a0bt−1 . . . b0c}, L ∼= ECQ(s − 1, t) and R ∼=
ECQ(s − 1, t). Let F0 = F ∩ L and F1 = F ∩ R. Two
possibilities need to investigated.
Case 1 (|F0| ≥ 2(s − 1) and |F1| ≥ 2(s − 1)): We have
|F | = |F0| + |F1| ≥ 4(s− 1), then condition (1) holds.
Case 2 (|F0| ≤ 2(s − 1) − 1 or |F1| ≤ 2(s − 1) − 1):

Without loss of generality, we assume |F1| ≤ 2(s − 1) − 1.
By Theorem 6, R−F1 is connected or R−F1 is disconnected
and has exactly two components, one is trivial and the other
is nontrivial.
Subcase 2.1: R− F1 is connected.
Subcase 2.1.1 (V (H ) ∩ (V (R)− F1) 6= ∅): Because

V (H ) ∩ (V (R)− F1) 6= ∅ and R− F1 is connected, we have
V (R) − F1 ⊂ V (H ). Therefore, |V (H )| ≥ |V (R)| − |F1| ≥
2s+t − [2(s− 1)− 1] ≥ 4(s− 1)− 1 when s ≥ 1 and t ≥ 1.
Then, condition (2) holds.
Subcase 2.1.2 (V (H ) ∩ (V (R)− F1) = ∅): Since V (H ) ∩

(V (R) − F1) = ∅, we have V (H ) ⊂ V (L) − F0. Then,
we consider the following two subcases.
Subcase 2.1.2.1 (L−F0 Is Connected): SinceECQ(s, t)−F

is disconnected, each edge between A and C has at least
one adjacent vertex in F because L − F0 and R − F1 are
connected. There are 2s+t−1 edges between A and C . Hence,
|F | ≥ 2s+t−1 ≥ 4(s− 1) for s ≥ 1 and t ≥ 1. Then condition
(1) holds.
Subcase 2.1.2.2 (L − F0 Is Disconnected): Because H is

a component of ECQ(s, t) − F , such that degH (v) ≥ 2 for
every vertex in H , by Theorem 4, we have |F | ≥ 4s − 4.
Then, condition (1) holds.
Subcase 2.2 (R − F1 Is Disconnected): Let the trivial

component of R − F1 be vertex u, the nontrivial component
of R− F1 be R− F1 − {u}.

FIGURE 19. A cycle of length four in ECQ(s, t).

Subcase 2.2.1: V (H ) ∩ (V (R)− F1) 6= ∅.
Subcase 2.2.1.1 (V (H )∩{u} 6= ∅): Since V (H )∩{u} 6= ∅,

we have u ∈ H . Because u is a trivial component of R − F1
and every component of ECQ(s, t)−F is nontrivial, we have
u ∈ C . By the fact that A ∪ C contains a perfect matching,
u has no more than one neighbor in H , which contradicts the
condition of P2(H ). Hence, V (H ) ∩ {u} = ∅.
Subcase 2.2.1.2 (V (H ) ∩ {u} = ∅): Since V (H ) ∩ {u} =

∅, we have V (H ) ∩ (V (R) − F1 − {u}) 6= ∅. Hence, H is
connected to (R−F1−{u}) which implies (R−F1−{u}) ⊆ H .
Because |F1| ≤ 2(s − 1) − 1, we have |V (H )| ≥ |V (R) −
F1 − {u}| = |V (R)| − |F1| − |{u}| = 2s+t − |F1| − 1 ≥
2s+t − (2(s − 1) − 1) − 1 > 4(s − 1) for s ≥ 1 and t ≥ 1.
Then, condition (2) holds.
Subcase 2.2.2 (V (H ) ∩ (V (R)− F1) = ∅): Since H is a

component of ECQ(s, t) − F and degH (v) ≥ 2 for every
vertex v in H . By Theorem 4, we have |F | ≥ 4(s− 1). Then,
condition (1) holds. �
Theorem 8: tc(ECQ(s, t)) ≤ 4(s− 1)+ 1, t ≥ s > 2.
Proof: In order to derive the upper bound of

tc(ECQ(s, t)), we may assume that there exists two distinct
conditional faulty sets F1 and F2, such that |F1| = 4(s −
1) + 2 and |F2| = 4(s − 1) + 2. If (F1,F2) is a pair of
indistinguishable conditional faulty sets, thenECQ(s, t) is not
conditional 4(s− 1)+ 2-diagnosable under the PMC model.
Therefore, tc(ECQ(s, t)) ≤ 4(s− 1)+ 1.
Suppose u1 = {as−1 . . . a200bt−1 . . . b00}, u2 =

{as−1 . . . a201bt−1 . . . b00}, u3 = {as−1 . . . a211bt−1 . . . b00},
u4 = {as−1 . . . a210bt−1 . . . b00}. As shown in Figure 19,
u1− u2− u3− u4− u1 is a cycle of length four in ECQ(s, t).
We set F1 = N (u1, u2, u3, u4) ∪ {u1, u4} and F2 =

N (u1, u2, u3, u4) ∪ {u2, u3}. It is easy to check that
F1 and F2 are two distinct conditional faulty sets of
ECQ(s, t), such that |F1| = |F2| = 4(s − 1) + 2,
F11F2 = {u1, u2, u3, u4} and V (ECQ(s, t)) − (F1 ∪ F2) =
V (ECQ(s, t))−N (u1, u2, u3, u4)− {u1, u2, u3, u4}.

Because N (F11F2) = N (u1, u2, u3, u4), any vertex in
F11F2 is disconnected to ECQ(s, t) − (F1 ∪ F2). Hence,
(F0,F1) is a indistinguishable pair of conditional faulty
sets. Then, ECQ(s, t) is not conditional 4(s − 1) + 2-
diagnosable under the PMC model by Theorem 1. There-
fore, tc(ECQ(s, t)) < 4(s − 1) + 2, which can deduce
tc(ECQ(s, t)) ≤ 4(s− 1)+ 1 for t ≥ s > 2. �
Theorem 9: tc(ECQ(s, t)) ≥ 4(s− 1)+ 1, t ≥ s > 2.
Proof: Let F1 and F2 be any two distinct condi-

tional faulty sets of ECQ(s, t) with |F1| ≤ 4(s − 1) and
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|F2| ≤ 4(s − 1). Then, F1 ∩ F2 is also a conditional faulty
set of ECQ(s, t) and |F1 − F2| ≥ 1 or |F2 − F1| ≥ 1.
Suppose (F1,F2) is an indistinguishable pair. Hence, there

is no edge between F1
a
F2 and V (ECQ(s, t)) − (F1 ∪ F2),

which implies that F1 ∩ F2 is a vertex cut of ECQ(s, t). By
Lemma 1, any vertex of F11F2 has at least two neighbors in
F11F2 and any vertex in V (ECQ(s, t)) − (F1 ∪ F2) has at
least one neighbor in V (ECQ(s, t))− (F1 ∪ F2). Because F1
and F2 are two distinct conditional faulty sets, any vertex of
F1∩F2 has at least one neighbor in V (ECQ(s, t))−(F1∩F2).
SoF1∩F2 is a restricted vertex cut ofECQ(s, t). By Lemma 6,
kr (ECQ(s, t)) = 2s for t ≥ s > 2. Therefore, |F1 ∩ F2| ≥ 2s.
Two possibilities need to be investigated.
Case 1 (V (ECQ(s, t)) = F1 ∪ F2): Since V (ECQ(s, t)) =

F1 ∪ F2, we have |V (ECQ(s, t))| = 2s+t+1 = |F1| + |F2| −
|F1∩F2| ≤ |F1|+ |F2| ≤ 8(s−1), which contradicts the fact
that 8(s−1) < 2s+t+1 for t ≥ s > 2. Hence, V (ECQ(s, t)) 6=
F1 ∪ F2.
Case 2 (V (ECQ(s, t)) 6= F1 ∪ F2): By Lemma 1, there

exists a component H of ECQ(s, t) − (F1 ∩ F2), such that
V (H ) ⊂ F11F2 and degH (v) ≥ 2 for v ∈ V (H ). Because
V (H ) ⊂ F11F2, we have |H | ≤ |F11F2|. Since F1 ∩ F2
is a restricted vertex cut of ECQ(s, t), each component of
ECQ(s, t)− (F1 ∩ F2) is nontrivial. By Theorem 7, We have
the following two subcases.
Subcase 2.1 (|F1 ∩ F2| ≥ 4(s − 1)): Since |F1 − F2| ≥

1 or |F2 − F1| ≥ 1, we have |F1| = |F1 − F2| + |F1 ∩ F2| ≥
1 + 4(s − 1) or |F2| = |F2 − F1| + |F1 ∩ F2| ≥ 1 + 4(s −
1), which contradicts the conditions of |F1| ≤ 4(s − 1) and
|F2| ≤ 4(s− 1).
Subcase 2.2 (|H | ≥ 4(s−1)−1): Since |F1∩F2| ≥ 2s and
|H | ≤ |F11F2|, we have |F1| ≥ |F11F2|/2 + |F1 ∩ F2| ≥
2(s− 1)+ 2s = 4s− 2 or |F2| ≥ |F11F2|/2+ |F1 ∩ F2| ≥
2(s−1)+2s = 4s−2, either of which contradict the conditions
of |F1| ≤ 4(s− 1) and |F2| ≤ 4(s− 1).
Therefore, (F1,F2) is an distinguishable pair, then

tc(ECQ(s, t)) ≥ 4(s− 1)+ 1 for t ≥ s > 2. �
Theorem 10: tc(ECQ(s, t)) = 4(s− 1)+ 1, t ≥ s > 2.
Proof: By Theorem 8 and Theorem 9, we have

tc(ECQ(s, t)) = 4(s− 1)+ 1 for t ≥ s > 2. �

V. CONCLUSIONS
The conditional diagnosability of exchanged crossed cube
ECQ(s, t) is studied in this paper. By exploring the topolog-
ical properties of ECQ(s, t), we have successfully demon-
strated that the conditional diagnosability of ECQ(s, t) under
the PMC model is 4(s − 1) + 1 for t ≥ s > 2. For further
discussion, It is an attractive work to expose the g-good-
neighbor conditional diagnosability [44] of ECQ(s, t) under
the PMC and MM* model.
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